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Natural compounds in the control of diabetes associated dyslipidemia: effects in 

the liver and small intestine 

 

Abstract 

 

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by 

elevated blood glucose levels (hyperglycaemia) as a result of defects in both insulin 

secretion and/or action. T2DM represents a major cardiovascular risk since, in addition 

to hyperglycaemia, diabetic patients frequently present an abnormal plasma lipid profile 

(diabetic dyslipidemia). Since the disease is gaining epidemic proportions, novel or 

complementary therapeutic interventions that open new paths for addressing 

hyperglycaemia and dyslipidemia may offer promising results to the approaches 

presently available. The present thesis aimed to study the effects of two species of the 

genus Salvia (S. officinalis and S. fruticosa) in preventing diabetes and its associated 

complications. In addition, this work also intended to identify potential antidiabetic and 

lipid-lowering natural compounds from these medicinal plants, and to characterize their 

mechanisms of action in target organs relevant for diabetes progression (the liver and 

the small intestine).  

In order to study the antidiabetic potential of Salvia officinalis water extract 

(prepared as a tea), a pilot trial was performed in healthy human volunteers, selected 

from an age group considered at risk to develop diabetes (chapter 2). This tea 

consumption ameliorated the lipid profile and increased the antioxidant defences of the 

volunteers, without causing hypoglycaemia and/or hepatotoxicity. These data indicate 

that S. officinalis tea may offer compounds with beneficial properties on the prevention 

of cardiovascular diseases (CVDs), the major cause of morbidity and mortality in 

diabetic patients. 

In a subsequent study, using dietary carbohydrate manipulation, the effects of the 

aqueous extracts of Salvia fruticosa (SFT) and rosmarinic acid (RA), the major phenolic 

compound of S. officinalis and S. fruticosa extracts, in several pathways of the lipid 

metabolism were evaluated (chapter 3). While the low carbohydrate (Lc) diet showed to 

reduce plasma cholesterol levels, SFT treatment during the four days of the 

reintroduction of the normal (referred as the high carbohydrate, [Hc]) diet showed to 

increase HDL cholesterol levels. Both SFT and RA treatments showed a potential to 

regulate the expression of transcription factors that modulate several lipogenic and 
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cholesterolgenic enzymes. In addition, RA drinking may be useful in modulating the 

hepatic fatty acid oxidation and preventing the carbohydrate-induced raise of intestinal 

cholesterol uptake.  

Chapter 4 is dedicated to the study of the effects of luteolin-7-glucoside (L7G), a 

dietary flavonoid also present in S. officinalis extract, on lipid metabolism in healthy 

rats. The results indicated that, like RA (chapter 3), L7G stimulated the expression of 

genes involved in fatty acid oxidation. In addition, L7G showed to downregulate the 

expression of the rate-limiting enzyme of the cholesterol biosynthetic pathway and to 

potentially repress the sterol regulatory element-binding protein-1 (SREBP-1) activity. 

Finally, a study was designed to evaluate the effects of glucose and RA in 

butyrate (NaBu)-differentiated HT-29 and spontaneously differentiated Caco-2 cells, 

frequently deemed good in vitro models of the intestinal epithelium (chapter 5). The 

results showed that the cellular growth and differentiation status of both cell lines were 

differently affected by glucose. A subcellular fractionation procedure revealed an 

increase of the sodium-glucose cotransporter 1 (SGLT1) protein at the apical membrane 

(BBM) and a raise on the facilitated glucose transporter 2 (GLUT2) in the remaining 

intracellular membrane fraction (including the basolateral membrane, [BLM]) of NaBu-

differentiated HT-29 cells. RA did not affect SGLT1 expression in NaBu-differentiated 

HT-29 cells. This evidence disagrees with the previous in vivo observations, where RA 

showed to repress BBM SGLT1 expression in response to dietary carbohydrates. 

Despite disclosing the same intracellular location in Caco-2 cells, the expression and/or 

location of both SGLT1 and GLUT2 were not affected by glucose or insulin. Also in 

HT-29 cells, insulin did not modify SGLT1 expression suggesting that, the hormone, 

may not contribute to the translocation of the transporter from intracellular storage sites 

to the apical membrane.   

This work allowed us to conclude that the studied Salvia species and their natural 

compounds may be useful in preventing and controlling diabetes and associated 

complications, namely dyslipidemia.   

 

    

 

 

 

 

  



ix | P a g e  

Compostos naturais no controlo da diabetes e associada dislipidemia: efeitos no 

fígado e no intestino delgado   

 

Resumo  
 

 

A diabetes de mellitus tipo 2 (T2DM) é uma doença metabólica caracterizada por 

elevados níveis de glucose no sangue (hiperglicemia), como consequência de falhas na 

secreção e/ou ação da insulina. A T2DM representa um fator de risco para o 

desenvolvimento de doenças cardiovasculares (DCVs) uma vez que, além da 

hiperglicemia, os diabéticos apresentam frequentemente níveis anormais de lípidos no 

sangue (dislipidemia diabética). Com a doença a atingir proporções epidémicas, surge a 

necessidade de encontrar terapias inovadoras ou complementares às metodologias 

tradicionalmente usadas no controlo da hiperglicemia e dislipidemia. A presente tese 

teve como objetivo estudar os efeitos de duas espécies do género de Salvia (S. 

officinalis e S. fruticosa) na prevenção da diabetes e suas complicações. Este trabalho 

pretendeu ainda identificar compostos naturais destas plantas medicinais com potencial 

antidiabético e de redução lipídica e caracterizar os seus mecanismos de ação no fígado 

e no intestino delgado, importantes alvos na progressão da diabetes.  

Com o intuito de estudar o potencial antidiabético do extrato aquoso de S. 

officinalis (preparado como chá), realizou-se um estudo piloto em voluntárias saudáveis 

que, de acordo com a idade, constituíam um grupo de risco para o desenvolvimento da 

diabetes (capítulo 2). O consumo deste chá melhorou o perfil lipídico e aumentou as 

defesas antioxidantes das voluntárias, sem no entanto provocar hipoglicemia e/ou 

hepatotoxicidade. Estas evidências indicam que o chá de S. officinalis pode conter 

compostos benéficos para a prevenção das DCVs, a principal causa de morbilidade e 

mortalidade em diabéticos. 

Num estudo posterior, recorreu-se à manipulação da dieta para avaliar os efeitos 

dos extratos aquosos de Salvia fruticosa (SFT) e do ácido rosmarínico (RA), o principal 

composto fenólico dos extratos de S. officinalis e S. fruticosa, em alguns processos do 

metabolismo lipídico (capítulo 3). A dieta pobre em hidratos de carbono (Lc) diminuiu 

os níveis plasmáticos de colesterol enquanto o SFT, administrado aquando da 

reintrodução da dieta normal (referida como rica em hidratos de carbono, [Hc]), 

aumentou os níveis de HDL no plasma. Ambos os tratamentos (SFT e RA) 

demonstraram efeitos na regulação de fatores de transcrição envolvidos na expressão de 
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enzimas que controlam a síntese lipídica. Adicionalmente, o RA demonstrou ser eficaz 

na indução de genes envolvidos na oxidação hepática de ácidos gordos e na prevenção 

de uma excessiva absorção intestinal de colesterol, como resposta à manipulação da 

dieta.  

O capítulo 4 é dedicado ao estudo dos efeitos da luteolina-7-glucosideo (L7G), 

um flavonoide também presente no extrato de S. officinalis, no metabolismo lipídico em 

ratos saudáveis. Os resultados obtidos demonstraram que, tal como o RA (capítulo 3), a 

L7G induz a expressão de genes envolvidos na oxidação de ácidos gordos. Além disso, 

a L7G diminuiu a expressão da enzima reguladora da síntese endógena de colesterol e 

sugeriu uma potencial inibição da atividade do SREBP-1 (um fator de transcrição 

regulador da lipogénese). 

Por fim, realizou-se um estudo para avaliar os efeitos da glucose e do RA em 

células HT-29, diferenciadas com butirato (NaBu) e Caco-2, diferenciadas 

espontaneamente em cultura. Estas linhas celulares são frequentemente consideradas 

bons modelos in vitro do epitélio intestinal (capítulo 5). Verificou-se que o crescimento 

e o estado de diferenciação de ambas as linhas celulares foram distintamente afetados 

pela glucose. O isolamento de frações celulares revelou um aumento da expressão 

proteica do transportador da glucose SGLT1 na membrana apical (BBM) e um 

enriquecimento do transportador da glucose GLUT2 na fração das restantes membranas 

intracelulares (incluindo a membrana basolateral, [BLM]) em células HT-29 

diferenciadas com NaBu. A expressão do SGLT1 nesta linha celular não foi afetada 

pelo RA. Esta observação opõe-se aos resultados previamente obtidos in vivo, que 

demonstraram a eficácia do RA para prevenir o aumento dos níveis de SGLT1 na BBM, 

em consequência da manipulação dos hidratos de carbono na dieta. Os transportadores 

(SGLT1 e GLUT2) demonstraram possuir a mesma localização intracelular em Caco-2 

contudo, a expressão e a localização de ambas as proteínas não foram afetadas pela 

glucose nem pela insulina. Do mesmo modo, os níveis proteicos e a localização 

intracelular do SGLT1 em HT-29 não foram afetados pela insulina podendo isto indicar 

que, esta hormona, não intervém no processo de transporte do SGLT1 intracelular para 

a membrana apical.     

Este trabalho permitiu concluir que as espécies de Salvia e os seus compostos 

naturais presentemente estudados, podem ser eficazes na prevenção e no controlo da 

diabetes e suas complicações, nomeadamente a dislipidemia. 
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1. Diabetes mellitus 

1.1. Brief considerations 

 

For long considered as a disease of minor significance, nowadays diabetes 

mellitus becomes a serious threat to world health and is considered the fourth leading 

cause of death in developed countries (Nather, 2008; Zimmet, 2000). Diabetes is a 

metabolic disease characterized by chronic elevated blood glucose levels 

(hyperglycaemia), caused by the lack in pancreatic insulin production and/or scarce 

response of the target tissues to insulin (Klover and Mooney, 2004). The number of 

diabetic patients dramatically increased in the past two decades and is expected to reach 

366 million individuals in 2030 (Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Global prevalence of diabetes mellitus with estimated number of people (in million) affected by 

the disease in 2000 (light blue) and 2030 (dark blue). Adapted from [Hossain et al., 2007; Wild et al., 

2004]. 

 

Diabetes-associated complications such as diabetic neuropathy, renal failure, 

cardiovascular diseases (CVDs), amputations and blindness increases disability, reduces 

life expectancy, and causes enormous health costs and social impact (American 

Diabetes Association, 2011; Nichols et al., 2000). Therefore, diabetes is one of the most 

challenging health problems in 21
st
 century (Wild et al., 2004; Zimmet, 2000). 
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1.1.1. Diabetes diagnosis 

 

Diabetes often remains undiagnosed since individuals can experience different 

warning signs, and most of the times the symptoms seem to be harmless. However, the 

early detection of diabetes symptoms could prevent the progression of the disease and 

reduce the change of developing diabetes-related complications. The described 

symptoms for diabetes include polyuria (excessive production of urine), polydipsia 

(excessive thirst), blurred vision and polyphagia (extreme hunger), sometimes 

associated with unexplained weight loss (The expert committee on the diagnosis and 

classification of diabetes mellitus, 2003). 

At least two tests are very common in diabetes diagnosis: the fasting plasma 

glucose test (FPG) and the oral glucose tolerance test (OGTT) (American Diabetes 

Association, 2011). The first one evaluates the blood glucose levels in a person in 

fasting for at least 8 hours. FPG test is the most common used to detect diabetes not 

only because is cheaper but also due to its convenience. However and despite the less 

convenience, the OGTT test is more sensitive and reliable than the FPG test for 

diagnosing diabetes. It allows to clinically diagnosing prediabetic and diabetic people 

through the evaluation of the efficacy of their body to metabolize glucose. The test 

requires an overnight fasting (at least 8 hours fasting) and plasma glucose is measured 

immediately before and 2 hours after the drinking of a standard amount of glucose 

(usually 75g/300ml of water). The values obtained are further compared. Table 1 

depicts the revised diagnostic reference values for blood glucose levels in fasting and 

after an OGTT.          

 

Table 1. Diagnostic values of diabetes mellitus. Adapted from [Diabetes Educational Services, 2009]. 

 

Stage 
FPG  

(mmol/l [mg/dl]) 

OGTT  

(mmol/l [mg/dl]) 

Normal < 5.6 [< 100] 
< 7.8 [< 140],  

2h plasma glucose 

Prediabetes 
IFG: ≥ 5.6 and < 7.0 

 [≥ 100 and < 126] 

IGT: ≥ 7.8 and < 11.1 

 [≥ 140 and < 200] 

2h plasma glucose 

Diabetes ≥ 7.0 [≥ 126] 
≥ 11.1 [≥ 200],  

2h plasma glucose 

FPG: Fasting plasma glucose; OGTT: oral glucose tolerance test; IFG: impaired fasting glucose; IGT: impaired 

glucose tolerance. 



CHAPTER 1 | G e n e r a l  I n t r o d u c t i o n  

5 | P a g e  

 

 

1.1.2. Classification of diabetes mellitus  

 

Diabetes mellitus is classified in different types according to its aetiology and 

clinical presentation:  

 Type 1 diabetes mellitus (T1DM): an idiopathic disease since it usually arises 

from an autoimmune destruction of the pancreatic β-cells, resulting in little or absolute 

deficient insulin production (Robertson, 2004; The expert committee on the diagnosis 

and classification of diabetes mellitus, 2003; Zimmet et al., 2001). Individuals with this 

type of diabetes became dependent on exogenous insulin for survival in order to control 

blood glucose levels and avoid ketoacidosis (excessive hepatic ketone bodies 

production that ultimately leads to diabetic coma) (American Diabetes Association, 

2004). 

 Type 2 diabetes mellitus (T2DM): a metabolic disease characterized by defects 

in insulin secretion and/or action, that leads to insulin resistance and consequently to 

hyperglycaemia (American Diabetes Association, 2011; Cheng and Fantus, 2005; 

Rydén et al., 2007). T2DM is the most common form of the disease and its prevalence 

is related with dietary choices, ageing, reduced physical activity and other unhealthy 

lifestyle patterns (Rydén et al., 2007). Unlike T1DM, people with T2DM are 

independent on exogenous insulin and, normaly, do not disclose ketoacidosis (American 

Diabetes Association, 2004; Rydén et al., 2007). Insulin treatment may, however, be 

required if diet alone or in combination with oral pharmacological agents, fails to 

control hyperglycaemia (Nyenwe et al., 2001). This type of diabetes could remain 

asymptomatic for many years leading to its tardily diagnosis, which often occurs 

casually through abnormal blood and/or urine glucose test or by detecting diabetes-

related complications (Conget, 2002). T2DM appears usually after the age 40 although 

its prevalence has been growing in children and young people (Conget, 2002; Libman 

and Arslanian, 2003).  

 Gestational diabetes mellitus: a glucose intolerance with any degree of severity 

which starts or is first recognized during pregnancy (Conget, 2002; Rydén et al., 2007; 

The expert committee on the diagnosis and classification of diabetes mellitus, 2003). 

 Other specific types: include rare forms of diabetes like Maturity-Onset Diabetes 

of the Young (MODY)  - caused by mutations in an autosomal dominant gene that leads to 

ineffective insulin production and release from the pancreas (Conget, 2002); Diseases of 
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the exocrine pancreas - caused by pancreatic injuries such as trauma, infection, 

pancreatitis and pancreatic carcinoma (Hardt et al., 2008) and Drug or chemical-

induced diabetes – caused by several drugs that affect insulin secretion leading to 

diabetes onset (Bendz and Aurell, 1999). 

 

1.1.3. Diabetes-associated complications 

 

 Diabetes is one of the leading causes of morbidity and mortality in developed 

countries mainly due to its associated complications that include microvascular 

(diabetic retinopathy, nephropathy and neuropathy) and macrovascular (cardiovascular 

diseases) complications (American Diabetes Association, 2011; Bloomgarden, 2004; 

The expert committee on the diagnosis and classification of diabetes mellitus, 2003). 

The main chronic complications of diabetes are reviewed in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overview of the major diabetes-associated complications and their ultimately consequences. 

 

Patients with diabetes experience significant risk to develop diabetic dyslipidemia, 

a disturbance characterized by elevated plasma triglyceride and very low-density 

lipoprotein (VLDL), reduced high-density lipoprotein (HDL), with or without increased 

low-density lipoprotein (LDL) (Boden and Pearson, 2000; Mooradian, 2009; Smith, 
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2007). This abnormal lipid profile pattern is strongly associated with increased free fatty 

acid (FFA) flux due to insulin resistance that prompts undesirable metabolic events 

within the endothelium, leading to impaired endothelial function, increased 

vasoconstriction, inflammation and thrombosis stimulation (Beckman et al., 2002; 

Chahil and Ginsberg, 2006; Mooradian, 2009). During this atherosclerotic process, LDL 

particles may undergo oxidation and be ingested by monocytes to originate foam cells 

that, once accumulated within blood vessels, leads to atherosclerotic plaque formation. 

This may result in ischemia and prompt to CVDs progression (like coronary heart 

disease and stroke) (Achmad et al., 1997; Jay et al., 2006; Wright et al., 2006).  

The hallmark of diabetes, chronic hyperglycaemia, is associated with chronic 

oxidative stress that harmfully modifies the cellular structure and function of several 

tissues. This accounts for the development of several diabetic complications that may 

culminate in blindness, renal failure, limb amputation as well as CVDs onset. Glucose 

autoxidation, oxidative phosphorylation and protein kinase C (PKC) activation 

constitute some of the biochemical pathways implicated in this “glucotoxicity” 

(Robertson, 2004; Robertson and Harmon, 2006).  

 

Since T2DM is considered a preventable disease through lifestyle modification 

(including healthy diet, physical exercise and weight controlling) in combination with 

pharmacological interventions, this type of diabetes will be focused in detail in 

subsequent sections of this dissertation.       

 

1.2. Type 2 diabetes mellitus: a multifactorial metabolic disorder 

 

T2DM is a multifactorial, progressive disease clinically manifested by 

hyperglycaemia as a result of impaired insulin sensitivity of the target tissues (liver, 

muscle and adipose tissue), a condition called insulin resistance. T2DM is the major 

responsible for the recent epidemic outbreak of diabetes, accounting for 90 to 95% of 

the prevalence of diabetes. The associated economic costs are even more eloquent and 

excluded from those facts is the reduced quality of life not only for diabetic patients, but 

also to their families and close friends. 

The evolution from normal glucose tolerance to impaired glucose tolerance (IGT) 

and ultimately to T2DM involves genetic and environmental factors (Stumvoll et al., 

2005; Surampudi et al., 2009). Although, is not possible to discuss the pathogenesis of 
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T2DM without considering the role of glucose on this process. Glucose is the primary 

metabolic source of energy to the body and its homeostasis is balanced between glucose 

intake (gut absorption), tissue consumption (metabolic processes such as glycolysis, 

pentose phosphate pathway, tricarboxylic acid cycle and glycogenesis) and intracellular 

production (gluconeogenesis and glycogenolysis) (Meyer et al., 2002).  

In order to avoid chronic complications, blood glucose levels are maintained 

within a narrow range by the body’s homeostatic mechanisms: a hormonal system in 

which insulin and glucagon are the protagonists (Desvergne et al., 2006; Kawahito et 

al., 2009). Insulin is produced and secreted by the pancreatic β-cells (Figure 3) in 

response to increased circulating glucose and amino acid levels after feeding (Sesti, 

2006). Once released, this anabolic hormone is crucial for glucose homeostasis since it 

induces glucose uptake (chiefly in skeletal muscle and adipose tissue) and suppresses 

endogenous hepatic glucose production, through decreasing both gluconeogenesis 

(glucose production) and glycogenolysis (glycogen degradation). Furthermore, insulin 

is also involved in lipid metabolism since it inhibits lipolysis (triglyceride degradation) 

and consequent fatty acid discharge from adipose tissue, favouring lipid synthesis 

(lipogenesis) in liver and fat cells (DeFronzo, 2004; Sesti, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Schematic representation of the pancreatic cells. Adapted from [Bardeesy and DePinho, 2002]. 

 

 

Glucagon is a counter-regulatory hormone that antagonizes insulin’s action 

mainly in the liver. In postabsorptive state (overnight fasting) or between meals, the 
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decrease of blood glucose to levels below the physiological range (lower than 4mM) 

leads to glucagon production and secretion by the pancreatic α-cells (Figure 3). Once 

released, this catabolic hormone induces the hepatic output and discharge of glucose by 

increasing glycogenolysis (during the first 8-12 hours of fasting) and gluconeogenesis 

(over longer periods of fasting) (Aronoff et al., 2004). The increase of blood glucose 

levels after a meal leads to the inhibition of glucagon production/release due to the 

increase of blood insulin levels (see section 1.4.1). 

 

1.2.1. Insulin signalling pathways  

 

Insulin is considered the key hormone for controlling critical energy functions 

such as glucose and lipid metabolism. At the cellular level, insulin affects vesicle 

trafficking, induces protein phosphatases and kinases, regulates gene expression and 

promotes cell growth and differentiation (Saltiel and Pessin, 2002). This intricacy 

indicates that insulin operates in multiple signalling pathways through the activation of 

its tyrosine kinase receptor (Saltiel and Pessin, 2002).   

Insulin signalling engages a cascade of molecular events initiated by the binding 

of this hormone to the extracellular α-subunit of its cell surface receptor, the insulin 

receptor (IR) (Figure 4). This induces a conformational change that directs to the 

autophosphorylation of numerous intrinsic tyrosine residues present in transmembrane 

β-subunit of the IR (Asante-Appiah and Kennedy, 2003; Choi and Kim, 2010; Sesti, 

2006). These residues are then recognised by different substrate adaptor proteins 

including the members of the insulin receptor substrate family (IRS) (Pessin and Saltiel, 

2000; Saltiel and Kahn, 2001). This recruitment and consequent phosphorylation results 

in IRS binding and activation of numerous signalling partners among them, the p85 

regulatory subunit of phosphatidylinositol 3-kinase (PI3K). PI3K is a heterodimeric 

lipid kinase that has become a major focus of attention due to its central role in cancer 

progression and insulin’s metabolic responses (especially the PI3K class Ia) (Bertrand et 

al., 2008; Zhao and Vogt, 2008). Once activated, the catalytic p110 subunit of PI3K 

catalyzes the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) into 

phosphatidylinositol 3,4,5-trisphosphate (PIP3) which stimulates phosphoinositide-

dependent kinase-1 (PDK1) activity (Figure 4). This conversion of PIP2 into PIP3 

could be reverted by the negative regulator phosphatase and tensin homologue deleted 
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on chromosome 10 (PTEN). A key downstream effector of PDK1 is Akt (the well-

known protein kinase B), but PDK1 is also capable of activating the atypical PKC 

isoforms ζ and λ (PKC ζ/λ) (Biddinger and Kahn, 2006; Montecucco et al., 2008; Sesti, 

2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic representation of insulin signalling pathway. IR: insulin receptor; IRS: insulin 

receptor substrate; PI3K: phosphatidylinositol 3-kinase (subunity p85 and subunity p110); PIP2: 

phosphatidylinositol 4,5-bisphosphate; PIP3: phosphatidylinositol 3,4,5-trisphosphate; PDK1: 

phosphoinositide-dependent kinase-1; PTEN: phosphatase and tensin homologue deleted on chromosome 

10; Akt: protein kinase B; PKC ζ/λ: atypical protein kinase C; GLUT4: glucose transporter 4; FOXO1: 

forkhead box O1; GSK3: glycogen synthase kinase-3; GS: glycogen synthase; eIF2B: eukaryotic  

initiation factor 2B; mTOR: mammalian target of rapamycin; p70S6K: p70 ribosomal S6 kinase; 4E-BP1: 

eukaryotic translation initiation factor 4E binding protein 1; eIF4E: eukaryotic initiation factor 4E; 

SREBP: sterol regulatory element-binding protein; SH2: Src homology 2 domain; Grb2: growth factor 

receptor binding protein-2; Ras: GTP-binding protein; MAPK: mitogen-activated protein kinase;  P : 

phosphorylation. 

 

In fat and muscle cells, activation of Akt induces the phosphorylation of its  

substrate (AS160) that leads to glucose uptake into cells by promoting glucose 

transporter 4 (GLUT4) mobilization from intracellular stores to the cell surface (Figure 

4). GLUT4 translocation is also regulated by the atypical PKC ζ/λ isoforms (Choi and 

Kim, 2010). A PI3K-independet pathway has been proposed to provide a second signal 

for regulating GLUT4 trafficking into cell surface athough, the importance of this 

pathway in insulin-stimulated glucose uptake remains controversial (Chang et al., 2004; 

Mitra et al., 2004; Watson and Pessin, 2007; Zhou et al., 2004).  
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Activated Akt also induces a cascade of events that culminates in glycogen 

synthesis (glycogenesis) through inactivation of glycogen synthase kinase-3 (GSK3), 

protein synthesis via the mammalian target of rapamycin (mTOR) and cell survival 

throughout the inhibition of several proapoptotic molecules. Under basal conditions, the 

constitutive activity of GSK3 results in inhibitory phosphorylation of glycogen synthase 

(GS) protein, the enzyme responsible for promoting glucose storage as glycogen. Upon 

insulin stimulation, phosphorylated Akt induces inhibitory phosphorylation of the 

regulatory Serine 21 or 9 residue of GSK3 (α and β, respectively), activating GS and 

consequently, glycogen synthesis (Lee and Kim, 2007) (Figure 4).  

Protein synthesis is promoted by insulin-mediated Akt activation through two 

distinct mechanisms (Figure 4). One mechanism engages the inhibitory 

phosphorylation of GSK3 and consequent dephosphorylation of eukaryotic initiation 

factor 2B (eIF2B) (Welsh et al., 1997). This guanine nucleotide exchange factor induces 

protein synthesis from amino acids since it regulates the initiation steps of protein 

translation (Lee and Kim, 2007; Lizcano and Alessi, 2002). The other mechanism 

involves Akt-mediated direct phosphorylation and activation of mTOR that leads to p70 

ribosomal S6 kinase (p70SK6) activation (Saltiel and Kahn, 2001) and inhibition of the 

eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) (Asnaghi et al., 

2004). Once inactivated, the translation inhibitor 4E-BP1 promotes the activation of the 

eukaryotic initiation factor 4E (eIF4E) and translation occurs (Asnaghi et al., 2004; 

Saltiel and Kahn, 2001).  

In addition to promoting glucose storage, insulin suppresses the hepatic 

production and secretion of glucose via blocking gluconeogenesis and glycogenolysis 

(Saltiel and Kahn, 2001). The phosphorylation of the transcription factor forkhead box 

O1 (FOXO1) by Akt, suppresses the transcription of phosphoenolpyruvate 

carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase), key enzymes involved in 

the gluconeogenic process (Biddinger and Kahn, 2006; Leclercq et al., 2007).  

Insulin also plays a role in regulating lipid metabolism by promoting lipogenesis 

instead of lipolysis (Figure 4). The mechanism behind this regulation seems to be 

dependent of the activation of the sterol regulatory element-binding protein-1c (SREBP-

1c) (Desvergne et al., 2006). This transcription factor regulates the expression of several 

lipogenic enzymes involved in fatty acid synthesis such as fatty acid synthase (FAS) 

and acetyl-CoA carboxylase (ACC) (Azzout-Marniche et al., 2000; Foretz et al., 1999a; 
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Saltiel and Kahn, 2001). It has also been reported that insulin-stimulated SREBP-1c 

expression inhibits the hepatic transcription of PEPCK, suggesting a role of SREBP-1c 

on the regulation of glucose metabolism by controlling gluconeogesis (Chakravarty et 

al., 2004; Yamamoto et al., 2004). Repression of the hepatic ketogenesis (a process by 

which fatty acids are converted into ketone bodies to serve as a fuel for the brain during 

prolonged starvation), stimulation of hepatic triglycerides synthesis and storage in 

adipose tissue are additional insulin functions (Karam, 1997). 

Finally, activation of the IR also drives the activation of mitogen-activated protein 

kinase (MAPK) pathway (Figure 4). Controlled regulation of this cascade of 

phosphorylation events is critical for cell proliferation and differentiation. However, 

unregulated activation can result in oncogenesis.   

 

1.2.2. Insulin resistance 

 

Any derangement in insulin signalling can eventually lead to inhibition of its 

effects and guide to insulin resistance. As afore mentioned, insulin resistance is a 

condition in which the sensitivity of the target cells to normal circulating levels of 

insulin is decreased and it is a hallmark of T2DM (Montecucco et al., 2008). This state 

is known to be present in insulin-sensitive tissues such as skeletal muscle, liver, kidney 

and adipose tissue, previous to the onset of hyperglycaemia. When these tissues fail to 

effectively respond to normal circulating insulin levels, blood glucose levels raise 

leading to hyperglycaemia. Beta-cells continue to produce and secrete insulin as an 

attempt to improve insulin response of peripheral tissues (Guillausseau et al., 2008; 

Robertson and Harmon, 2006). Nevertheless, this compensatory mechanism fails and 

hyperglycaemia aggravates, leading to β-cell exhaustion and eventually apoptosis, 

culminating in impaired insulin production and secretion. As hyperglycaemia 

aggravates, prolonged exposure to elevated glucose levels becomes deleterious to 

normal cell metabolism and function (Robertson, 2004; Robertson and Harmon, 2006).   

Defects in IR including gene expression, protein activity or even in 

phosphorylation status have been implicated in insulin resistance (Pessin and Saltiel, 

2000). Alterations on the phosphorylation status of IR could influence its expression, 

ligand binding and tyrosin kinase activity and impair insulin signalling (Pessin and 

Saltiel, 2000). Several other events, such as reduced PI3K activity and induced atypical 

PKC activation, are negative regulators of the insulin signalling (Kruszynska et al., 
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2002; Montecucco et al., 2008; Sesti, 2006). The role of Akt in insulin resistance 

remains, however, controversial. While some studies reported that skeletal muscle from 

T2DM patients and obese subjects have decreased insulin-induced Akt activation 

(Beeson et al., 2003; Brozinick et al., 2003; Krook et al., 1998), others did not succeed 

to detect changes in Akt activation (Beeson et al., 2003; Kim et al., 1999; Krook et al., 

2000). Defects on GLUT4 gene expression seems not to be critical for impaired insulin 

sensitivity. Although, alterations on its translocation machinery including recruitment, 

docking and fusion of GLUT4-containing vesicles to the plasma membrane of muscle 

and adipose tissue, seems to play a role on insulin resistance (Montecucco et al., 2008; 

Zierath et al., 2000).  

Nonetheless, insulin resistance is a complex condition that involves intermediates 

other than those drawn in the insulin pathway, in which the molecular mechanisms 

underlying this state are not completely understood (Montecucco et al., 2008).  

Inflammatory molecules (like interleukin 1 and tumor necrosis factor-alpha [TNF-α]) 

are believed to play a role in the pathogenesis of insulin resistance, by increasing blood 

glucose levels, impairing β-cell secretion or affecting IRS activity (Herder et al., 2009; 

Larsen et al., 2007; White, 2002). 

Given the pivotal role of lipid metabolism in the pathogenesis of insulin 

resistance, the alteration of the expression “diabetes mellitus” to “diabetes lipidus” or 

“diabetes lipomellitus” has been proposed (Shafrir and Raz, 2003). It is widely accepted 

that increased fatty acids or its metabolites play a critical role in many insulin resistant 

states such as obesity and T2DM (Saltiel and Kahn, 2001; Wong and Sul, 2010). 

Elevated blood FFA levels are associated with hepatic and muscular accumulation of 

triglycerides and fatty acid metabolites, such as diacylglycerol and ceramides (Saltiel 

and Kahn, 2001). FFA stimulates serine phosphorylation of IRS proteins, which results 

in impaired insulin sensitivity (Gual et al., 2003; Yu et al., 2002a). In addition, FFA 

stimulates gluconeogenesis by supplying energy or inducing key gluconeogenic 

enzymes, leading to increased levels of insulin (hyperinsulinemia) and enhanced 

triglycerides production (Staehr et al., 2003). Diacylglycerol accumulation and 

consequent activation of PKC isoenzymes (especially PKC θ) induces β-cell 

dysfunction, leading to impaired insulin sensitivity and ultimately to insulin resistance 

(Shafrir and Raz, 2003). PKC θ is also associated with several pathogenic mechanisms 

involved in the development of atherosclerosis such as endothelial dysfunction and 

http://en.wikipedia.org/wiki/Tumor_necrosis_factor-alpha
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monocytes-mediated uptake of oxidized LDL particles (Rask-Madsen and King, 2005). 

Finally, FFA has also been positively associated with nuclear factor κB (NFκB) and c-

Jun N-terminal kinase (JNK), which negatively regulates insulin pathway (DeFronzo, 

2010; Itani et al., 2002). 

Therefore the complexity of insulin resistance is such that glucose and lipid 

metabolism but also inflammatory events are known to contribute to its onset. In 

addition to T2DM, insulin resistance plays a major role in the pathogenesis of several 

other disorders including the metabolic syndrome (MetS), the nonalcoholic fatty liver 

disease (NAFLD) and is also a feature of the endoplasmic reticulum stress.    

         

1.2.2.1. Insulin resistance and the metabolic syndrome  

 

The metabolic syndrome (MetS, also known as syndrome X), is a cluster of 

cardiometabolic risk factors that comprises several disturbances such as abdominal 

obesity (Després, 1998; Lemieux, 2001), hyperglycaemia (Balkau et al., 2007), 

dyslipidemia (Deen, 2004), hypertension (Marre et al., 2001) and inflammation (Ahmad 

I. and Miller M., 2001) (Figure 5). Several factors have been indicated as roots of the 

MetS but insulin resistance and consequently hyperinsulinemia, are considered direct 

causes of other MetS risk factors (Grundy et al., 2004; Saely et al., 2005). In addition to 

this, the global obesity epidemic has been considered the most important driving force 

behind the increased incidence 

of  MetS (Ford et al., 2004). 

MetS is also considered a 

stronger predictor for diabetes 

and CVDs (Borgman and 

McErlean, 2006; Isomaa et al., 

2001; Lorenzo et al., 2003).  

 

 

 

 

Figure 5. The cluster of conditions 

that characterizes the metabolic 

syndrome. 
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Multiple potential mechanisms of insulin resistance have been proposed for MetS 

onset, including: 1) decreased production of nitric oxide (a potent vasodilator), which 

leads to endothelial dysfunction (Wang et al., 2004); 2) increased lipolysis in adipocytes 

that results in increased FFA release and influx to other tissues, like the liver that 

becomes fatty (Eckel et al., 2005); 3) increased VLDL production and triglyceride 

levels, leading to a raise in blood pressure (Grundy, 2004) and 4) activation of the 

MAPK signalling pathway, which results in increased activity of growth promoting 

agents, a potential source of the proatherogenic mechanism (Wang et al., 2004).  

The prevalence of MetS is increasing as a result of increased obesity and ageing 

(Chew et al., 2006). Management of MetS should initially include lifestyle 

modifications such as increased physical activity, healthy diet and weight loss, in order 

to prevent CVDs and diabetes. Physical exercise ameliorates insulin resistance, 

improves dyslipidemia and decreases visceral obesity, contributing to decrease the 

incidence of diabetes and MetS (Braith and Stewart, 2006; Knowler et al., 2002). 

However, pharmacological interventions should be considered to treat MetS more 

aggressively. Since it has not a single pathogenic mechanism, there is not a unique and 

specific treatment for this syndrome. The current pharmacological treatments for MetS 

includes LDL cholesterol-lowering agents (like statins), cholesterol absorption 

inhibitors (such as ezetimibe), and insulin sensitizing agents (like metformin and 

thiazolidinediones) (Gerstein et al., 2006; Knowler et al., 2005; Orchard et al., 2005; 

Tota-Maharaj et al., 2010). Their mechanisms of action and will be discussed in further 

sections of this thesis. 

 

1.2.2.2. Insulin resistance and nonalcoholic fatty liver disease 

 

Considered the hepatic expression of the MetS, NAFLD is strongly associated 

with insulin resistance (in liver and adipose tissue) as well as with T2DM and obesity 

(Bugianesi et al., 2005; Marchesini et al., 2001; Seppälä-Lindroos et al., 2002). NAFLD 

is a chronic and common hepatic disease characterized by fat deposition in the liver, in 

the absence of excessive alcohol ingestion and others known causes of fat accumulation 

such as viral and autoimmune hepatitis (Ali and Cusi, 2009; Utzschneider and Kahn, 

2006; Vanni et al., 2010). NAFLD is also a spectrum of diseases ranging from steatosis, 
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to nonalcoholic steatohepatitis and cirrhosis that ultimately may lead to 

hepatocarcinoma (Lewis and Mohanty, 2010).  

The pathogenesis and progression of NAFLD is explained based on a “multi-hit” 

hypothesis, since it is a complex process that comprises several steps (Jou et al., 2008; 

Lewis and Mohanty, 2010). Insulin resistance is responsible for initiating the first “hit” 

by inducing alterations in lipid metabolism including enhanced lipolysis in peripheral 

tissues, increased hepatic FFA uptake and trygliceride synthesis. This fat accumulation 

results in hepatic steatosis (Day and Saksena, 2002; Utzschneider and Kahn, 2006; 

Vanni et al., 2010). Furthermore, multiple “second hits” including oxidative stress, 

inflammatory molecules (TNF-α and adipocytokines) and atypical hepatic apoptosis, 

results in chronic inflammation or cirrhosis (Lewis and Mohanty, 2010; York et al., 

2009).     

Currently and contrarily to other hepatic disorders, there is no specific therapy for 

NAFLD. The management of this disease spectrum is limited to approaches that reduce 

risk factors (obesity, dyslipidemia and insulin resistance) such as lifestyle and 

pharmacological interventions (metformin, antioxidants, thiazolidinediones, statins and 

fibrates)  (Adams and Angulo, 2006; Orchard et al., 2005; Torres and Harrison, 2008).  

 

1.2.2.3. Insulin resistance and endoplasmic reticulm stress  

 

The endoplasmic reticulum (ER) is a dynamic organelle that plays a critical 

function in protein folding and secretion, lipid synthesis, and calcium (Ca
2+

) storage and 

secretion (Anelli and Sitia, 2008; Ni and Lee, 2007). The ER responds to changes in 

cellular homeostasis; any deviation threatens cell survival and induces ER stress (Eizirik 

et al., 2008). Multiple cellular disturbances such as disrumptions of cellular redox, Ca
2+

 

depletion, protein mutations and viral infection, leads to the accumulation of unfolded 

or misfolded proteins that aggregate in the ER lumen (Bernales et al., 2006; Eizirik et 

al., 2008). This imbalance between the ER protein load and folding capacity triggers the 

activation of a signal response, the unfolded protein response (UPR) (Eizirik et al., 

2008; Marciniak and Ron, 2006).  

The UPR response comprises three ER stress transmembrane transducers: the 

inositol-requiring enzyme 1 (IRE1), the PKR-like ER kinase (PERK) and the activating 

transcription factor 6 (ATF6) (Bernales et al., 2006; Schröder and Kaufman, 2005). 

Under ER homeostasis, these three sensors are maintained inactivated through their 



CHAPTER 1 | G e n e r a l  I n t r o d u c t i o n  

17 | P a g e  

 

 

binding to the ER chaperone 78 kDa glucose-regulated protein/immunoglobulin-binding 

protein (GRP78/BIP) (Rutkowski and Kaufman, 2004; Wu and Kaufman, 2006). The 

accumulation of unfolded and/or misfolded proteins in the ER lumen leads to 

GRP78/BIP recruitment, which dissociates and activates the UPR sensors. Once 

activated, these sensors act to restore ER homeostasis. Therefore, the primary function 

of the UPR is to adapt the ER to the changing environment and lessen ER stress, by re-

establishing its normal function and prevent cell death. This is achieved by some 

coordinated main responses: 1) prevention of protein synthesis and translocation into 

the ER, which decreases protein load that enters into this organelle; 2) increase the 

transcription of the UPR target genes, such as ER chaperones that increase the folding 

capacity of ER and 3) increase the proteasomal degradation of misfolded proteins (Ron 

and Walter, 2007). If, however, these responses fail to restore ER homeostasis, 

apoptotic cell death is triggered (Bernales et al., 2006; Ron and Walter, 2007). Thus, the 

UPR system is activated to ensure that normal tissue functions are maintained however, 

chronic ER stress seems to sense for disease progression such as diabetes and NAFLD 

(Thomas et al., 2010). 

Insulin resistance plays an important role in the ER stress-associated diabetes 

development. ER stress may activate JNK that phosphorylates the serine residues of the 

IRS, while repressing tyrosin phosphorylation of this protein, and impairs insulin 

signalling pathway (Hetz et al., 2011; Weickert and Pfeiffer, 2006). Recent evidences 

suggested also a link between the ER stress and the NAFLD progression by three major 

mechanisms: 1) through direct activation of SREBP-1c that induces lipogenesis 

(Kammoun et al., 2009a; Kammoun et al., 2009b); 2) through repressing triglyceride 

secretion by the liver (Ota et al., 2008) and 3) through enhancing lipolysis in adipose 

tissue that accounts for the hepatic triglyceride storage. Moreover, overexpression of 

GRP78/BIP chaperone improved hepatic steatosis and insulin sensitivity in ob/ob mice, 

by repressing ER stress-associated SREBP-1c induction and lipogenesis (Kammoun et 

al., 2009a).  

 

Taking into consideration the critical role of the small intestine and the liver on 

glucose and lipid homeostasis, the following sections of this dissertation will introduce 

some of their functional and regulatory features, highlighting the importance of consider 

both organs as emerging therapeutical targets.   
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1.3. The small intestine: some morphological and functional aspects 

 

The small intestine is the longest portion of the gastrointestinal tract and is 

constituted by three segments that connect the pylorus to the colon: the duodenum, 

jejunum and ileum. The small intestine plays an important role on the final steps of 

enzymatic digestion of fats, proteins and carbohydrates, but also on the absorption of 

nutrients, resulting from this process, as well as water and electrolytes, from the 

intestinal lumen into the bloodstream and lymph (Caspary, 1992). The absorption 

process and a large part of the enzymatic digestion take place at the small intestinal 

epithelial cells, and requires an increased absorptive surface area (Despopoulos and 

Silbernagl, 2003). This requirement is achieved due to three important modifications on 

mucosa structure of the small intestine:  

Kerckring folds – (also called plicae circulars) are circular mucosal folds that slow 

food passage and increase surface area for absorption; 

Villi – (singular, villus) are large fingerlike protrusions of the intestinal wall. At 

the base of villi is possible to observe deep cavities, called crypts of Lieberkühn, where 

epithelial cells are generated; 

Microvilli – microscopic fingerlike protusions of the epithelial cells that, in turn, 

cover each villus.  

The small intestinal epithelium is renewed constantly since many cellular 

processes like proliferation, differentiation, maturation and apoptosis occur along the 

crypt-villus axis (Shirazi-Beechey et al., 2010; Yen and Wright, 2006). As they migrate 

and differentiate towards the villus tip, epithelial cells are extruded into the lumen in a 

process that takes about 2-5 days after rising out from the crypt (Ferraris, 2001).  

In intestinal crypts the proliferative, undifferentiated stem cells originate the  

differentiated cells that characterize a mature small intestinal epithelium: goblet cells, 

enteroendocrine cells, Paneth cells and absorptive cells (Clatworthy and Subramanian, 

2001) (Figure 6). Goblet cells, located along the epithelium, are responsible for 

secreting mucus that protects and lubrificates the epithelial layer. Paneth cells produce 

important molecules that maintain the gastrointestinal barrier such as growth factors, 

digestive enzymes and antimicrobial substances. Contrarily to the others, Paneth cells 

complete their differentiation at the crypt base, being phagocytosed afterwards (about 

23 days later) (Cheng and Leblond, 1974; Snoeck et al., 2005). The enteroendocrine 

cells represent about 1% of all epithelial cells and are responsible for secreting several 
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hormones such as glucagon-like peptide 2 and the incretins glucagon-like peptide-1 and 

glucose-dependent insulinotropic peptide (Shirazi-Beechey et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.  Schematic representation of a crypt-villus region (A) and epithelial cell types (B) in the small 

intestine. 1- Absorptive cell (enterocyte); 2- Goblet cell; 3- Enteroendocrine cell; 4- Paneth cell. Adapted 

from [Crosnier et al., 2006]. 

 

 

The absorptive cells, the well-known enterocytes, are the most abundant cells in 

villus, representing about 90% of all epithelial cells (Dauça et al., 1990). These highly 

polarized cells have an apical membrane (brush-border membrane, [BBM]) and a 

basolateral membrane (BLM) domain that allows an efficient transport of nutrients from 

intestinal lumen to the blood (Ferraris, 2001; Shirazi-Beechey et al., 2010). Enterocytes 

are linked together by tight junctions that maintain the polarity of this epithelial linage 

and helps to control nutrient, electrolyte and water absorption (Fries et al., 2008; Turner, 

2006).  
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1.3.1. Intestinal glucose transporters 

 

Enterocytes differentiate as they migrate toward the villus tip and express 

carbohydrate digestive enzymes and sugar transport proteins (Cheeseman, 2010). 

Dietary carbohydrates are digested into simplest forms (monosaccharides) in the small 

intestine by the intestinal BBM disaccharidases (lactase, maltase and sucrase) and also 

by pancreatic enzymes (α-amylase) (Dyer et al., 2002). The resultant monosaccharides 

are absorbed across the apical membrane of enterocytes through sodium (Na
+
)-

dependent (SGLT family) or independent (GLUT family) membrane protein 

transporters.  

The SGLTs comprise a large family of membrane proteins that transports glucose, 

amino acids, vitamins and electrolytes across the intestinal and renal BBM (Neumiller 

et al., 2010). The Na
+
/glucose cotransport hypothesis was postulated for the first time by 

Crane and its colleagues (1961). The authors defended that glucose is actively 

transported across the intestinal ephethelium in process that requires a Na
+
 gradient 

(Crane et al., 1961). The piooner work done by Crane was followed by many studies 

that allowed to characterize and understand the Na
+ 

-coupled cotransport. 

The first Na
+
/glucose cotransporter isoform to be cloned was the rabbit SGLT1 

followed by the human analogue a few years later (Hediger et al., 1987; Hediger et al., 

1989; Wright et al., 2007). The secondary structure of SGLT1 encloses 14 

transmembrane α-helices with N and C terminus (facing the extracellular side of the 

cellular membrane), two phosphorylation sites and a single glycosilation site 

(Drozdowski and Thomson, 2006; Panayotova-Heiermann et al., 1997; Turk and 

Wright, 1997). SGLT1 is predominantly expressed in the BBM of the enterocytes and is 

responsible for transporting glucose and galactose through these epithelial cells.  

Like many proteins, SGLT1 is submitted to posttranslational processes that 

modulate its expression, activity or even function. The posttranslational events comprise 

glycosylation at the ER, transport to the Golgi apparatus, sorting into the appropriated 

domains in the plasma membrane, protein turnover and recycling. Some authors have 

reported that the intracellular RS1 protein (RSC1A1 gene) regulates SGLT1 trafficking, 

incorporation and retrieval into plasma membrane (Reinhardt et al., 1999; Valentin et 

al., 2000). Moreover, removing RS1 in mice results in obesity and overexpression of the 

intestinal SGLT1 (Osswald et al., 2005). In addition, the serum and glucocorticoid 

inducible kinase isoforms 1 and 3 (SGK1 and SGK3) also modulates intestinal glucose 
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absorption mediated by SGLT1 (Lang et al., 2006; Nasir et al., 2010; Sandu et al., 

2005). In fact, increased SGK1 activity has been associated with enhanced SGLT1 

activity, T2DM and MetS development (Dieter et al., 2004; Schwab et al., 2008). In 

2010, Nasir and collaborators found that the dietary fibre Gum Arabic (from Acacia 

Senegal) inhibit the intestinal glucose absorption stimulate. However, this effect was not 

due to a direct interference with the SGLT1 carrier but to a stimulation of RS1 and 

decrease of SGK3 expression, which regulate SGLT1-vesicle trafficking and protein 

stability (Nasir et al., 2010).  

 

 

GLUT family comprises several protein transporters that utilize the diffusion 

gradient of sugares across plasma membranes of target tissues (Amidon et al., 2002; 

Brown, 2000). As the other members of the family, GLUT2 has 12 transmembrane 

domains containing intracellular N and C terminals but of all, GLUT2 is the one that 

possess the highest Km value for glucose (> 50 mM), explaining its high transport 

capacity for that sugar (Amidon et al., 2002; Drozdowski and Thomson, 2006). Besides 

glucose, GLUT2 has also the ability to transport fructose (Barone et al., 2009; Sakar et 

al., 2009) and is predominantly expressed in liver, pancreatic β-cells, intestinal 

absorptive cells and kidney proximal tubule (Bouché et al., 2004; Brown, 2000). 

GLUT2 is found at the intestinal BLM and contributes for the enterocytic transcellular 

transport of glucose and fructose (Wood and Trayhurn, 2003).  

Firstly cloned by Burant and colleagues (1992), GLUT5 is a specific transporter 

for fructose localized not only in the intestine and testis, but also in kidney, skeletal 

muscle, adipose tissue and brain (Burant et al., 1992; Hajduch et al., 1998; Hajduch et 

al., 2003; Mate et al., 2001; Sasaki et al., 2004). Like SGLT1, GLUT5 is expressed at 

the BBM of intestinal epithelium where it mediates the uptake of fructose, but not of 

glucose or galactose as the former (Burant and Saxena, 1994; Douard and Ferraris, 

2008).  

 

1.3.1.1. Intestinal sugar uptake  

 

Wright and its colleagues (2003) have proposed a simplified six-state kinetic 

model for the Na
+
/glucose cotransport (symport) by SGLT1 (Figure 7). The process 
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begins with the binding of two Na
+ 

ions to SGLT1 at the luminal side of the BBM. This 

induces a conformational change that allows glucose to bind (Wright et al., 2007; 

Wright et al., 2003). Two Na
+
 ions and one glucose molecule enter the enterocyte and 

dissociate from SGLT1 owing to the low intracellular concentration of Na
+
. The cycle is 

completed with the reorientation of the empty binding sites of the carrier to the external 

surface (Drozdowski and Thomson, 2006; Wright et al., 2007). This process yields one 

mole of glucose and two moles of cations (Na
+
) that across the enterocyte, and is 

accompanied by water and two moles of anions that ensure the electroneutrality of the 

process. The required energy gradiente for the whole process is maintained by the 

Na
+
/K

+
-ATPase, localized at the BLM of the enterocytes  (Drozdowski and Thomson, 

2006; Wright et al., 2007; Wright et al., 2003).  

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Squematic representation of the six-state kinetic model for the Na
+
/glucose cotransport 

mediated by SGLT1. The binding of two Na
+
 ions promotes a conformational change in the cotransporter 

(1) that allows glucose to bind (2). The substrates are then transported across the membrane where 

glucose (3) and Na
+
 dissociate (4). The dissociation results in a relaxation of the protein conformation (5) 

and the empty sites are then reorientated to the external surface to complete the cycle (6). 

 

In addition, fructose is passively absorbed at the BBM of the intestinal 

epithelium with the aid of GLUT5 transporter. Afterwards, the absorbed sugars 

(glucose, galactose and fructose) across the BLM of the enterocyte into the systemic 

circulation through GLUT2-mediated facilitated diffusion (uniport) (Ferraris and 

Diamond, 1997; Wright et al., 2003) (Figure 8). It has been proposed that GLUT2 is 

rapidly recruited to the enterocytic BBM when the luminal concentration of glucose or 

fructose is increased to very high concentration (Affleck et al., 2003; Kellett and 

Helliwell, 2000). Apical GLUT2 was initially detected in an experimental model of 
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diabetes but other conditions seem also to lead to this change in glucose transport such 

as psychological stress (Boudry et al., 2007; Corpe et al., 1996). In addition, some 

authors believed that the classic model for the intestinal glucose absorption is not valid 

to explain sugar absorption when the apical SGLT1 and GLUT5 transporters are 

saturated (Kellett and Brot-Laroche, 2005). However, this apical location of GLUT2 

remains a controversial subject to many authors. Evidences from knockout mice and 

from humans with mutated GLUT2 do not demonstrate the presence of this transporter 

at the intestinal BBM (Santer et al., 2003; Stümpel et al., 2001). Additionally, 

immunohistochemical analysis using different GLUT2 antibodies reveals that this 

transporter is exclusively detected at the BLM of the enterocytes (Dyer et al., 2009; 

Moran et al., 2010).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Classical model of intestinal sugar transport across an enterocyte. Na
+
: sodium ions; K

+
: 

potassium ions; G6P: glucose-6-phosphate; SGLT1: sodium-glucose cotransporter 1; GLUT5: glucose 

transporter 5; GLUT2: glucose transporter 2. 

 

 

A second pathway for the intestinal sugar efflux has been suggested and is not 

mediated by GLUT2 (Stümpel et al., 2001) (Figure 8). The proposed mechanism relies 

on the fact that part of the glucose that enters in the enterocyte is phosphorylated and 

the resultant products (glucose-6-phosphate) incorporated into endosomes. Glucose is 

then delivered into the bloodstream by exocytosis through the BLM (Santer et al., 2003; 

Wright et al., 2007; Wright et al., 2003).  

 



                                  PhD THESIS | C a r l a  S á  

24 | P a g e  

 

1.3.1.2. Regulation of intestinal sugar transporters  

 

There are some substances that inhibit the intestinal sugar transporters and thereby 

repress the intestinal sugar uptake. Dietary phloridzin is a specific and competitive 

inhibitor of SGLT1 (Boyer and Liu, 2004; Masumoto et al., 2009). The compound is 

typically found in apples and derived processed foods (such as juice, ciders and purées) 

(Masumoto et al., 2009; Van Der Sluis et al., 2002). GLUT2 is highly inhibited by 

phloretin, a product of dietary phloridizin degradation, and cytochalasin B, a cell-

permeable fungal toxin (Faria et al., 2009; Ferraris, 2001). D-fructose and L-sorbose 

derivates showed to repress GLUT5 (Girniene et al., 2003; Miyamoto et al., 1994; 

Tatibouët et al., 2000).  

The expression of sugar transporters is upregulated in experimentally induced 

diabetes (Azevedo et al., 2011; Burant et al., 1994; Corpe et al., 2001; Corpe et al., 

1996). T2DM patients also reveal an enhanced intestinal sugar transport as a result of 

the increased abundance on intestinal sugar transporters (Douard and Ferraris, 2008; 

Dyer et al., 2002). In addition, Na
+
/K

+
-ATPase activity is also upregulated in 

streptozotocin-induced diabetic rats (Azevedo et al., 2011; Drozdowski and Thomson, 

2006; Wild et al., 1999). 

Luminal carbohydrate content deeply regulates the activity and abundance of the 

intestinal glucose transporters. Prolonged consumption of high carbohydrate diets 

enhances SGLT1 expression and leads to increased intestinal sugar absorption 

(Cheeseman and Harley, 1991; Diamond et al., 1984; Ferraris, 2001; Ferraris and 

Diamond, 1989; Miyamoto et al., 1993). Furthermore, rats fed with high glucose, 

galactose or sucrose diets had increased SGLT1 gene expression than those fed on 

carbohydrate-free or low carbohydrate diets (Ferraris, 2001; Miyamoto et al., 1993; 

Shirazi-Beechey et al., 1991).  

SGLT1 is also regulated by other dietary constituents, including Na
+
 and fibre. 

Consumption of a low salt diet showed to be effective in decreasing the activity of 

SGLT1 due to a depletion of the luminal amount of Na
+
 (De La Horra et al., 2001; 

Ferraris, 2001). On the other hand, the effects of dietary fibre on SGLT1 regulation 

remain inconclusive: while some studies denoted a decrease in intestinal glucose 

uptake, others revealed that fibre consumption did not modify the intestinal glucose 

uptake (Ferraris, 2001).  
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The exact role of insulin on the regulation of these glucose transporters remains 

poorly understood. In diabetic rats, subcutaneous treatment with insulin showed to 

restore the normal levels of SGLT1 protein without affecting the mRNA levels of this 

transporter (Kurokawa et al., 1995). Troglitazone, an insulin sensitizer, showed to 

reduced SGLT1 expression and the protein levels of GLUT5 in diabetic animals. 

However, no changes on GLUT2 expression and GLUT5 mRNA levels were observed 

(Corpe et al., 2001). In Caco-2/TC7, a clone isolated from a late passage of the parental 

Caco-2 line, insulin targeted sugar absorption by regulating the membrane location of 

GLUT2 (Tobin et al., 2008). Nevertheless, it has been recently reported that insulin 

stimulates intestinal glucose transport by increasing the number of SGLT1 transporters 

and downregulating Na
+
/K

+
-ATPase activity (Serhan and Kreydiyyeh, 2010).  

Thus, regulation of these sugar carriers is crucial for glucose homeostasis and has 

important dietary and clinical implications.  

 

1.3.2. The intestinal cholesterol absorption 

 

Despite the undeniable value of the small intestine on sugar absorption and 

thereby glucose homeostasis, evidence has emerged that this organ is also an important 

regulator of cholesterol homeostasis.  

Animals are capable of producing cholesterol. In small amounts, cholesterol is a 

crucial compound to the animal’s body function: it is a constituent of cell membranes 

and a precursor for bile acids synthesis and steroid hormones (such as estrogen and 

androgen) (Chen et al., 2008; Desvergne et al., 2006). Cholesterol has attained a nasty 

reputation; it is sometimes treated as a “poison” due to its association with CVDs such 

as atherosclerosis. To avoid the accumulation of high levels of cholesterol, the body has 

mechanisms that tightly regulate cholesterol metabolism through coordinated effects of 

dietary absorption, endogenous production and excretion (Dietschy et al., 1993; 

Schoenheimer and Breusch, 1993). The main sources of cholesterol in the body are the 

diet (accounting to approximately 60% of the daily cholesterol) and the endogenously 

synthesized cholesterol, which is influenced by the total amount of dietary cholesterol 

absorbed (Hui et al., 2008).     

In the lumen of the small intestine, dietary cholesterol is included in micelle 

particles by the action of bile acids to facilitate uptake by the enterocytes. This 

cholesterol absorption across the BBM of enterocytes is performed by the Niemann-
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Pick C1-like 1 (NPC1L1). NPC1L1 activity is inhibited by ezetimibe, a cholesterol 

absorption inhibitor frequently used in the treatment of hypercholesterolemia (Garcia-

Calvo et al., 2005; Spener, 2007). Free cholesterol is taken up by the intestine and 

esterified in the enterocyte by the action of acyl-CoA:cholesterol acyltransferase 2 

(ACAT-2) and then incorporated with triglycerides and apolipoproteins into nascent 

chylomicrons (Wang, 2007). These lipoproteins will then be secreted into the lymph 

and afterwards into the bloodstream, where they acquire apo C and apo E from HDL, 

originating mature chylomicrons (Figure 9). (Havel et al., 1973; Sudhop and von 

Bergmann, 2002; Wang, 2007). The newly attained apo C on the surface of these 

mature particles activates the lipoprotein lipase (LPL), an endothelial enzyme, that 

hydrolyze their triglyceride core into FFA and glycerol that will be taken up by several 

tissues (Bengtsson and Olivecrona, 1980; Jackson et al., 1980; Warnakula et al., 2011).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Metabolic fate of chylomicrons. Apo: apolipoproteins (A, C and E); HDL: high-density 

lipoprotein; LPL: lipoprotein lipase; FFA: free fatty acid; VLDL: very low-density lipoprotein; hepatic 

receptors: LDL receptor (LDLR) or LDL receptor-related protein (LRP).   

 

At the same time, most of the apo A and apo C particles are transferred to HDL 

and the chylomicrons are converted into smaller particles, the chylomicrons remnants. 

These particles, relatively enriched in cholesterol, apo B48 and apo E, will be removed 

from circulation after interaction with specific apo E receptors in the liver (including 

LDL receptor, [LDLR] and LDL receptor-related protein, [LRP]) (Hui et al., 1981; 

Redgrave and Small, 1979; Sherrill et al., 1980; Warnakula et al., 2011). Once 

endocytosed, the remnant chylomicrons are degraded within the lysosomes and their 
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constituents released. These summarized stages constitute the exogenous pathway of 

lipid transport (Figure 9). 

Otherwise, a large amount of the absorbed cholesterol returns to the intestinal 

lumen for biliary cholesterol excretion, a process mediated by the brush-border ATP-

binding cassette transporters ABCG5/ABCG8 (Wang, 2007; Yu et al., 2002b; Yu et al., 

2002c). A small amount of cholesterol that enters the enterocyte is incorporated in 

nascent apo AI particles, the rate-controlling step in HDL formation. This process is 

mediated by the ATP-binding cassette transporters A1 (ABCA1) located at the BLM 

(Beltowski, 2008; Wellington et al., 2002).  

Thus, the intestinal cholesterol absorption is a complex process that involves and 

is regulated by several genes. The liver X receptor (LXR), is probably the major 

regulator of cholesterol metabolism since it regulates multiple genes involved in 

cholesterol efflux (like ABCA1, ABCG5, ABCG8) (Repa et al., 2002; Repa et al., 

2000b; Venkateswaran et al., 2000), bile acid synthesis (cholesterol-7α-hydroxylase, 

[Cyp7α1]) (Lehmann et al., 1997; Peet et al., 1998) and lipogenesis (SREBP-1c, FAS, 

ACC) (Repa et al., 2000a). Therefore, LXR activation is a “two-edged knife”: on one 

hand, it protects cells against cholesterol overload by inhibiting cholesterol absorption, 

stimulating cholesterol efflux to the liver and its conversion into bile for biliary 

excretion (Beltowski, 2008). On the other hand, LXR agonists also showed to induce 

hypertriglycemia (elevated plasma triglyceride levels) and hepatic steatosis (fatty liver) 

by enhancing hepatic lipogenesis  (Talukdar and Hillgartner, 2006; Yoshikawa et al., 

2001). 

 

Therefore, the small intestine should be considered as an emerging target for the 

development of novel strategies that helps to maintain both glucose and lipid 

homeostasis and thereby preventing pathogenic conditions.    

 
 

1.3.3. The in vitro intestinal models HT-29 and Caco-2 cells  

 

Attention has turned to the use of human cell culture systems as an alternative to 

time-consuming and resource-intensive in vivo studies. Human colonic HT-29 and 

Caco-2 cells have been widely used in many areas of pharmacology and toxicology 
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research, since they display a number of properties characteristic of differentiated 

intestinal cells (Gan et al., 1994; Hidalgo et al., 1989; Huet et al., 1987).   

Under standard culture conditions, HT-29 cells form a non-polarized, 

undifferentiated multilayer under (Cohen et al., 1999; Simon-Assmann et al., 2007). 

However, in specific culture conditions, these cells form polarized and differentiated 

monolayers that express typical enterocyte brush-border enzymes and well-developed 

tight junctions (Huet et al., 1987; Simon-Assmann et al., 2007). Among other 

experimental approaches, butyrate has been reported to induce HT-29 differentiation 

instead of growth (Archer et al., 1998; Barnard and Warwick, 1993; Hodin et al., 1996). 

Butyrate is a short-chain fatty acid resultant from the colonic bacterial fermentation of 

dietary carbohydrate and fibres (Topping and Clifton, 2001). Two mechanisms have 

been proposed for the butyrate-mediated inhibition of cell growth: one is related with 

histone hyperacetylation and p21 induction (that leads to cell cycle arrest) and the other 

involves decreased responsiveness to the epidermal growth factor (Archer et al., 1998).  

Kinetic studies showed that differentiated HT-29 cells contain a Na
+
-dependent 

sugar transporter sensitive to phloridzin (SGLT1) (Blais, 1991). In addition, it has been 

reported that the carbohydrate metabolism of cultured HT-29 cells responds to insulin 

(Babia et al., 1989). These findings indicate that HT-29 cells are valuable models for 

studying the regulation of intestinal sugar transport, but also the in vitro mechanisms of 

insulin action. 

Caco-2 cells differentiate spontaneously in culture and acquire structural and 

functional characteristics that resemble mature intestinal enterocytes (Engle et al., 1998; 

Pignata et al., 1994; Pinto et al., 1983). These cells reach confluency in 2-3 days and the 

stationary growth phase after 10 days in culture, while differentiation occurs within 20 

days (Braun et al., 2000; Pinto et al., 1983). Differentiated Caco-2 cells express typical 

brush-border hydrolases such as intestinal alkaline phosphatase (ALP) and sucrase-

isomaltase and form a polarized monolayer connected by well-developed tight junctions 

(Engle et al., 1998; Matsumoto et al., 1990; Ranaldi et al., 2003; Simon-Assmann et al., 

2007). Since Caco-2 cells express sugar transporters such as the ones found in the small 

intestine, they are considered valuable in vitro models for studying the activity and 

regulation of these transporters (Chang et al., 2007; Harris et al., 1992; Mahraoui et al., 

1994). Kipp and colleagues (2003) reported that, in Caco-2, SGLT1 is located in 

intracellular compartments that are associated with microtubules. Therefore, the authors 

considered that the intracellular pool of SGLT1 is highly mobile and the microtubules 
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function as the “railroad tracks” for the intracellular SGLT1 trafficking (Kipp et al., 

2003). Chang and colleagues (2007) demonstrated that specific ginsenosides modulates 

intestinal glucose uptake through modifying SGLT1 expression in Caco-2 cells.  

However, HT-29 and Caco-2 cells possess characteristics that resemble their 

colonic origin and also lack different cell types observed in the intestinal epithelium of 

animals and humans (Engle et al., 1998; Hilgendorf et al., 2000; Pontier et al., 2001; 

Rubas et al., 1993). Caco-2 cells are described to possess lower permeability than the 

human small intestine for hydrophilic compounds that across the epithelium and for 

compounds that are transported into the cell by specific carriers (Hilgendorf et al., 

2000). In order to obtain a more reliable in vitro model for the human small intestine, 

several approaches have been tried, including the search and isolation of new HT-29 or 

Caco-2 clones with improved characteristics or even the establishment of co-cultures of 

both cell lines (Hilgendorf et al., 2000; Pontier et al., 2001; Thomson et al., 1997).  

Despite presenting several limitations, both HT-29 and Caco-2 cells are still  

extensively used to study a wide range of issues ranging from the search of new drugs 

with beneficial pharmacologic effects, to the mechanisms intrinsic to the development 

of the intestinal epithelium and cell function (Simon-Assmann et al., 2007).  

 

1.4. The liver: some morphological and functional aspects 

 

The liver is the biggest solid organ of the human body and is responsible for 

multiple metabolic functions which include 1) the removal of xenobiotics, metabolites 

and other foreign molecules; 2) the synthesis and release into the blood of molecules 

that support whole body homeostasis (such as glucose and plasma proteins); 3) the 

synthesis of bile and its excretion into the intestine and 4) the storage of several 

substances such as glycogen, fat and vitamins (Ramadori et al., 2008).   

The cellular architecture of the liver is composed by distinct and well organized 

sub-populations: the parenchymal and non-parenchymal cells. The highly differentiated 

parenchymal cells, also known as hepatocytes, are the most abundant (representing 70 

to 80% of all) and the main functional cells in the liver (Ramadori et al., 2008). 

Hepatocytes play an important role on protein synthesis and storage, carbohydrate and 

lipid metabolism as well as in detoxification and excretion of substances. The main non-

parenchymal hepatic cells (Kupffer cells, sinusoidal cells and steallate cells) are 
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responsible for regulating hepatocyte proliferation and modulating liver structure (Malik 

et al., 2002).  

Like the small intestine (see section 1.3), the liver has also critical physiological 

functions in maintain both glucose and lipid homeostasis. This section will introduce 

some of the main intervenients of hepatic glucose and lipid metabolism. 

 

1.4.1. Hepatic glucose metabolism and its regulation  

 

In response to the body’ shifting demands, blood glucose levels are tightly 

maintained by hepatocytes through a process called gluconeogenesis (Klover and 

Mooney, 2004). This is mainly performed by the liver although, to a lesser extent it 

could also occur in the kidney, and is vital for normalizing glucose supply to the central 

nervous system. Starvation stimulates the production of glucagon by the pancreatic α-

cells (Figure 3, see section 1.2) and its secretion into circulation in order to increase 

glycaemia, by stimulating hepatic glucose production and subsequent release (Jiang and 

Zhang, 2003). Once released in the bloodstream, glucagon binds to its hepatic receptor 

and activates adenylate cyclise, which increases cyclic adenosine monophosphate 

(cAMP) levels. This increase induces the cAMP-dependent protein kinase (PKA) that 

stimulates the expression of gluconeogenic genes (like PEPCK and G6Pase) and 

increases gluconeogenesis (Agius, 2007). PKA is also responsible for inhibiting 

glycogenesis (through the inactivation of glycogen synthase) and glycolisis (by 

repressing glycolitic genes like piruvate kinase) (Agius, 2007; Jiang and Zhang, 2003).  

The increased levels of glucose after feeding inhibit glucagon secretion and 

stimulate insulin production and release by the pancreas. Insulin stimulates the hepatic 

glycogen synthesis, by activating the PI3K/Akt cascade, and blocks the hepactic 

glycogenolysis and gluconeogenesis (Aronoff et al., 2004; Lee and Kim, 2007). 

However, the hepatic glucose uptake is not directly stimulated by insulin. Postprandial 

glucose levels are cleared from circulation through the GLUT2 transporter and the sugar 

is rapidly converted in glucose-6-phosphate by glucokinase (Bae et al., 2010) 

Gluconeogenesis is regulated by AMP-activated protein kinase (AMPK), a major 

energy sensor and a regulator of the cellular energy homeostasis (Carling, 2004; Kahn 

et al., 2005; Lage et al., 2008). Several effectors have been described to induce AMPK 

activation ranging from hypoxia, exercise, and nutrient deprivation, that increases 



CHAPTER 1 | G e n e r a l  I n t r o d u c t i o n  

31 | P a g e  

 

 

AMP:ATP ratio to modifications of intracellular Ca
2+

 levels (Hardie, 2004; Kahn et al., 

2005; Zhang et al., 2009). AMPK is also activated by medicines such as metformine 

and thiazolidinedione and by a specific activator the adenosine analog 5-

aminoimidazole-4-carboxamide riboside (AICAR) (Carling, 2004; Fryer et al., 2002). 

Activated AMPK induces phosphorylation of multiple downstream targets to restrain 

energy-consuming pathways (such as hepatic gluconeogenesis and lipogenesis) and 

support energy-producing processes (like lipolysis and glycolysis), in order to re-

establish energy balance (Carling, 2004; Hardie et al., 2003; Long and Zierath, 2006; 

Zhang et al., 2009).  

Thus, the decision of activating glucose production when nutrient supply is 

limited, or to store glucose into glycogen when nutrient delivery is abundant, makes the 

liver a “buffering” system (Desvergne et al., 2006).  

 

1.4.2. Hepatic lipid metabolism: the role of SREBP  

 

When energy intake is abundant, the liver has also the ability to convert glucose 

into triglycerides through de novo synthesis, following the restore of the hepatic 

glycogen levels (Reddy and Hashimoto, 2001). This lipogenic pathway is stimulated by 

glucose in three different ways: 1) by serving as a substrate to fatty acid synthesis; 2) by 

inducing the transcription of lipogenic genes through the activation of carbohydrate 

responsive element-binding protein  (ChREBP) and 3) by stimulating the pancreatic 

production/secretion of insulin instead of glucagon (Kersten, 2001).  

The recent identification of transcription factor ChREBP shed some light on the 

potential mechanism whereby glucose controls lipogenic gene transcription. Under low 

glucose concentrations, ChREBP is phosphorylated and localized in the cytosol of 

hepatocytes. Although under elevated glucose levels, ChREBP is rapidly translocated 

into the nucleus (Dentin et al., 2005; Uyeda et al., 2002). This nuclear translocation is 

regulated by dephosphorylation and phosphorylation events (Dentin et al., 2006; Postic 

et al., 2004). Once in the nucleus, ChREBP binds to glucose- or carbohydrate-response 

element (ChoRE) and activates glycolytic (like liver-type pyruvate kinase, [L-PK]) and 

lipogenic (as FAS and ACC) gene expression (Dentin et al., 2005; Kawaguchi et al., 

2001). 
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An additional pathway for the transcriptional activation of genes related with 

glucose and lipid metabolism has been proposed: the SREBP pathway. The SREBP 

family comprises three members in mammals with distinct tissue distribution: SREBP-

1a, SREBP-1c (both encoded from a single gene) and SREBP-2 (encoded by a different 

gene) (Amemiya-Kudo et al., 2002; Desvergne et al., 2006; Osborne, 2000). SREBP-1a 

is predominantly expressed in cultured cell lines, while SREBP-1c and SREBP-2 are 

predominant expressed in several tissues such as the liver (Desvergne et al., 2006; 

Horton et al., 2002; Shimomura et al., 1997). SREBP-1c regulates the expression of 

genes involved in fatty acids, triglycerides and phospholipids synthesis (such as ACC 

and FAS), whereas SREBP-2 controls the transcription of cholesterolgenic genes (like 

the 3-hydroxy-3-methylglutaryl coenzyme A reductase [HMGCR] and the LDLR) 

(Brown and Goldstein, 1997; Horton et al., 2002). SREBP-1a isoform appears to 

activate the transcription of genes involved in both pathways (Amemiya-Kudo et al., 

2002; Eberle et al., 2004; Inoue et al., 2005). 

After translation, SREBPs remained anchored to ER membranes. They are 

associated to SREBP cleavage activating protein (SCAP) that in turns binds to the 

insulin-inducible gene (Insig), which retains SCAP/SREBP complexes within the ER 

compartment (Figure 10). Upon stimulation, such as a decrease in sterol levels, the 

affinity of SCAP and Insig decrease, leading to protein dissociation and SREBP is 

escorted by SCAP into the Golgi apparatus (Goldstein et al., 2002). In this organelle, 

SREBP is proteolytically cleaved by the action of two distinct proteases (site 1 protease, 

[S1P] and site 2 protease, [S2P]), releasing the N-terminal of SREBP that migrates to 

the nucleus (Horton et al., 2002; Hughes et al., 2005; Yang et al., 2002) (Figure 10). 

After released, the SCAP-free Insig fragment is rapidly degraded by ubiquitination 

(Raghow et al., 2008). Once in the nucleus, the N-terminal of SREBP (also called 

nuclear SREBP) binds to the sterol response elements (SREs) in the promoter region of 

target genes and induces their transcription (Raghow et al., 2008) (Figure 10). As 

intracellular sterol levels increase, SCAP/SREBP triggers a conformational change that 

allows the complex to bind to Insig, maintaining the stable complex in ER (Osborne, 

2000; Yang et al., 2002).     
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Figure 10. SREBPs activation throught proteolytic cleavage. Inactive precursors of SREBPs are retained 

in ER, tightly associated with SCAP protein, which interacts with Insig proteins (1). Under stimulation, 

SREBPs are escorting to the Golgi apparatus by SCAP protein, and cleaved by S1P at the luminal site (2). 

S2P promotes a second cleavage which leads to SREBPs release (3) and consequent translocation to the 

nucleus, where SREBPs bind on the SREs in the promoter region of their target genes (4). This pathway 

is repressed by elevated sterol levels. SREBP: sterol regulatory element binding protein; NH2: amino-

terminal; COOH: carboxyl-terminal; SCAP: SREBP cleavage activating protein; Insig: insulin-inducible 

gene; ER: endoplasmic reticulum; SRE: sterol regulatory element; S1P/S2P: site proteases. 

 

In addition to proteolytic cleavage, SREBPs are also regulated by transcriptional 

events. SREBP-1c expression is regulated by the LXRα, which is activated by 

oxysterols and other derivates of cholesterol metabolism (Desvergne et al., 2006; 

Janowski et al., 1999; Lehmann et al., 1997). LXRα attaches and activates to the 

SREBP-1c promoter region, inducing gene transcription (Repa et al., 2000a; Wong and 

Sul, 2010). LXRα
-/-

 animals showed reduced basal levels of SREBP-1c, FAS and ACC 

(Repa et al., 2000a; Schultz et al., 2000).   

The transcriptional activation of SREBP-1c by insulin has been demonstrated in 

hepatocytes, adipocytes and skeletal muscle (Ducluzeau et al., 2001; Foretz et al., 

1999a; Hegarty et al., 2005; Kim et al., 1998). The metabolic effects of insulin in 

SREBP-1c expression are mediated by the activation of multiple downstream effectors 

of the insulin signalling pathway. The insulin-induced activation of PI3K pathway leads 

to stimulation of both Akt and atypical PKC, which in turns increase SREBP-1c 

expression (Farese et al., 2005; Matsumoto et al., 2003; Taniguchi et al., 2006). This 

insulin-induced SREBP-1c expression is counteracted by glucagon as well as by AMPK 

activation (Foretz et al., 1999b; Zhou et al., 2001). Studies performed mainly in cultured 

cells, demonstrated that insulin also stimulates the transcriptional activity of nuclear 
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SREBP-2 and SREBP-1a, by the activation of the MAPK pathway (Kotzka et al., 2004; 

Roth et al., 2000).  

SREBP-1c and SREBP-2 have been associated with fatty liver and insulin 

resistance. Obese mice with insulin resistance and hyperinsulinemia revealed increased 

SREBP-1c levels in their fatty livers (Shimomura et al., 1999). Insulin resistant obese 

mice showed a reduction on hepatic nuclear SREBP-1c and lipid storage, after 

metformin treatment (Lin et al., 2000; Zhou et al., 2001).   

Thereby, the knowledge of the transcriptional and posttranscriptional mechanisms 

that regulates SREBP constitutes an important issue for disease prevention.  

 

1.4.2.1. Fatty acid metabolism and regulation 

 

The biosynthesis of fatty acids, also called de novo synthesis, is a process 

managed by two key enzymes, the ACC and FAS that among other factors, are 

regulated by SREBP-1.  

ACC comprises two major isoenzymes in humans and other animals that are 

encoded by distinct genes and display different functions, regulation and subcellular 

distributions (Abu-Elheiga et al., 2000; Cronan and Waldrop, 2002; Tong and Harwood, 

2006). Although ubiquitous expressed, ACC1 (ACCα, 265 kDa) is highly found in 

lipogenic tissues such as the liver and adipose tissues. On the other hand, the ACC2 

(ACCβ, 280 kDa) is found in oxidative tissues such the liver, heart and skeletal muscle 

(Abu-Elheiga et al., 2000; Iverson et al., 1990; Kim, 1997). ACC1 is responsible for the 

hepatic production of malonyl-CoA that will be shuttled for fatty acid synthesis and 

elongation, resulting in triglyceride and VLDL synthesis. The conversion of acetyl-CoA 

and malonyl-CoA substrates into palmitate is conducted by FAS, a complex 

multifunctional enzyme. FAS is found in lipogenic tissues such as the liver and adipose 

tissue (Latasa et al., 2000; Liu et al., 2010).  

ACC2 also produced malonyl-CoA, which will regulate fatty acid oxidation by 

modulating the activity of carnitine palmitoyltransferase 1 (CPT1) (Brownsey et al., 

2006; McGarry and Brown, 1997; Tong and Harwood, 2006). CPT1 is located on the 

outer mitochondrial membrane and regulates the transport of long chain fatty acyl-CoAs 

into the mitochondria to be oxidized (Kerner and Hoppel, 2000; Stanley et al., 2005). 

CPT1 catalyzes the production of acylcarnintine, which is transported by carnitine 

translocase across the inner mitochondrial membrane. Acylcarnintine is then 
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reconverted to long chain fatty acyl-CoAs via carnitine palmitoyltransferase 2 (CPT2), 

which enters in the β-oxidation pathway for energy production (McGarry and Brown, 

1997; Zhang et al., 2010). This shuttle system is inhibited by malonyl-CoA substrate. 

Thus, malonyl-CoA is a key substrate in fatty acid metabolism, since it controls the 

switch between fatty acid synthesis and oxidation. 

Both ACC isoforms are regulated by dietary and hormonal states. ACC1 and 

ACC2 expression and activity is upregulated in animals submitted to a carbohydrate-

rich, low-fat diet and dowregulated in starvation and diabetes (Abu-Elheiga et al., 2000; 

Kim, 1997). The later effects on ACC1 can be reverted by submitting these animals to 

treatment with insulin (Abu-Elheiga et al., 2000; Kim, 1997). In fact, insulin and 

glucose reduces ACC1 phosphorylation and stimulates its activity, contrarily to 

glucagon (Kim, 1997; Saha and Ruderman, 2003; Witters et al., 1988). Upon activation, 

AMPK phosphorylates and inactivates both ACC isoforms, which reduces malonyl-

CoA intracellular levels. This decreases fatty acid synthesis and activates fatty acid 

oxidation via stimulation of CPT1 (Kahn et al., 2005; López et al., 2008; Winder et al., 

1997; Wolfgang and Lane, 2006). As afore mentioned, ACC and FAS expression is 

regulated by SREBP-1, LXR and ChREBP transcription factors (Barber et al., 2005; 

Brownsey et al., 2006; Shimano, 2000).  

FAS expression is also regulated by dietary and hormonal status: it is stimulated 

by carbohydrate ingestion, thyroid hormone and insulin and inhibited by unsaturated 

fatty acids, cAMP and glucagon (Lakshmanan et al., 1972; Paulauskis and Sul, 1989; 

Soncini et al., 1995; Sul and Wang, 1998). Treatment with pu-erh tea, a post-fermented 

tea produced in China, reduced the hepatic expression of FAS in rats and HepG2 cells 

through downregulation of the JNK and PI3K/Akt signaling cascades (Chiang et al., 

2005).  

CPT1 expression is highly regulated by a member of the peroxisome proliferator 

activated-receptor family, the PPARα (Minnich et al., 2001). PPARα induces fatty acid 

consumption, cholesterol catabolism and controls lipoprotein assembly (Lefebvre et al., 

2006; Reddy and Hashimoto, 2001; Staels et al., 1995). In addition, PPARα also 

attenuates inflammation and decreases plasma triglyceride levels and adiposity, which 

prevents CVDs and insulin resistance (Berger et al., 2005; Guerre-Millo et al., 2000; 

Lefebvre et al., 2006). Numerous molecules are described to act as PPARs activators 

such as the dietary fatty acids (especially the unsaturated fatty acids) and oxidized 
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phospholipids (Chinetti-Gbaguidi et al., 2005). In clinical practice, PPARα is activated 

by fibrates (Gervois et al., 2007; Lee et al., 1995; Lehmann et al., 1995).  

Thereby, modified fatty acid metabolism contributes to dyslipidemia and insulin 

resistance, features of several metabolic disorders. The modulation of fatty acid 

metabolism may provide a feasible therapeutical approach for preventing disease 

progression and associated morbidities. 

 

1.4.2.2. The hepatic cholesterol de novo synthesis 

 

As afore mentioned (see section 1.3.2), mammalian cells obtain cholesterol 

mainly from two sources: the diet and the endogenous synthesis. Despite roughly all 

cells possess the ability to synthesize cholesterol, the liver arises as the major 

manufacturer of cholesterol since it produces as much cholesterol as the extrahepatic 

tissues jointed (Dietschy et al., 1993). The hepatic cholesterol biosynthesis is a process 

tightly regulated by the amount of dietary cholesterol that reaches the liver from the 

intestine through the chylomicron remnant pathway (Dietschy et al., 1993). The rate 

limiting enzyme in the cholesterol synthetic pathway is the HMGCR, which catalyzes 

the conversion of HMG CoA into mevalonate and is a target of statins (Jasinska et al., 

2007). Cholesterol is master regulator of HMGCR enzyme. High cholesterol levels lead 

to either a decrease in HMGCR activity, by directly inducing ubiquitination and 

degradation of the enzyme and to a blockade of the SREBP-2 activation that results in 

decreased HMGCR gene expression. Cholesterol abundance is also a repressor of 

transcriptional LDLR activation-mediated by SREBP-2, leading to a blockage in 

cholesterol uptake from plasma LDL (Berg et al., 2002). Thus, the hepatic cholesterol 

de novo synthesis and LDL uptake are rapidly down-regulated when relatively large 

amounts of cholesterol reach the liver. 

Conversely, cholesterol-lowering treatments with statins, competitive inhibitors of 

HMGCR, reduced the amount of cholesterol produced by the liver, leading to SREBP-2 

processing, which increases the number of LDLR displayed on liver surface (Endo et 

al., 1977; Goldstein and Brown, 2009; Tobert, 2003). These receptors promote LDL and 

LDL precursor’s clearance from the circulation and consequently reduce the associated 

health risks of high cholesterol circulating levels (Brown and Goldstein, 1986; Twisk et 

al., 2000).  
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The healthy liver is prepared for managing large amounts of cholesterol by 1) 

converting cholesterol into cholesterol esters (CEs) via ACAT2, which are stored in 

cytosolic lipid droplets to be used when occasion may require (Kruit et al., 2006); 2) by 

producing and secreting VLDL particles (Kruit et al., 2006) and 3) by converting 

cholesterol into bile acids that enters the small intestine where it is further reabsorbed 

(enterohepatic circulation) or excreted into feces (Ikonen, 2008).        

 

1.4.2.2.1. Cholesterol efflux 

 

Like the small intestine, the liver is capable to produce and secrete another class 

of lipoproteins, the VLDL particles. The hepatic free cholesterol is packaged with 

triglycerides and apolipoproteins (apo B100, E and C) to form the nascent VLDL, 

which are released directly into bloodstream. Similar to chylomicrons, nascent VLDL 

particles are converted into mature VLDL after achieving additional apo E and apo C II 

from HDL (Costet, 2010; Nestruck and Rubinstein, 1976; Swift et al., 1980).  

Following hydrolysis of the triglyceride content, the released fatty acids are 

absorbed in the extrahepatic tissues and apo C particles are transferred to HDL (Mahley 

et al., 1984; Patsch et al., 1978; Wang and Eckel, 2009). This result in a progressive 

shrinkage of mature VLDL to form remnant particles quite enriched in apo B100 and 

apo E, the intermediate-density lipoprotein (IDL) (Figure 11). Some of these particles 

can be directly removed from circulation through interaction with hepatic lipoprotein 

receptors (LDLR and LRP), a process that requires apo E (Kita et al., 1982; Masson et 

al., 2009; Stalenhoef et al., 1986). The remaining IDL particles that are not removed 

from circulation are further hydrolyzed by the hepatic lipase (HL) to form small dense 

LDL (Chappell and Medh, 1998; Mudd et al., 2007). LDL is frequently considered the 

“bad cholesterol”, due to its positive association with atherosclerosis. LDL has 

relatively little triglyceride but high cholesterol content, holding only apo B100 from 

the “delipidation cascade” of VLDL to LDL (Avramoglu et al., 2006; Scott et al., 1987). 

The cellular uptake and catabolism of LDL requires the interaction of its apo B100 and 

the LDLR on plasma membranes of hepatocytes and extrahepatic cells (such as vascular 

smooth muscles and lymphocytes) (Goldstein et al., 1983; Twisk et al., 2000). 

Afterwards, LDL particles are internalized, degraded by lysosomal enzymes, and 

cholesterol esters are transformed in cholesterol and fatty acids (Figure 11). This 
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cholesterol can be further used for 1) membrane synthesis or steroid hormone synthesis; 

2) repressing the de novo cholesterol synthesis, by inhibiting the activity of the 

HMGCR; 3) activating the intracellular ACAT enzyme, for cholesterol esterification 

and 4) decreasing LDLR in the cellular surface, which increase cholesterol content in 

bloodstream (Avramoglu et al., 2006; Goldstein and Brown, 1977).  

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Schematic diagram of the endogenous route for lipid transport. VLDL: very low-density 

lipoprotein; apo: apolipoproteins (AI, C and E); LPL: lipoprotein lipase; FFA: free fatty acid; IDL: 

intermediate-density lipoprotein; HL; hepatic lipase; LDL: low-density lipoprotein; HDL: high-density 

lipoprotein; hepatic receptors: LDL receptor (LDLR) or LDL receptor-related protein (LRP); SR-BI: 

scavenger receptor class B type I; LCAT: lecithin-cholesterol acyltransferase; CETP: cholesterol transfer 

protein. 

 

 

The last class of lipoproteins are the well reputed HDL. These lipoproteins serve 

an important scavenger function in removing the excess of cholesterol from the 

extrahepatic tissues back to the liver for excretion, the usually called reverse cholesterol 

transport (Ohashi et al., 2005). The apolipoproteins that compose HDL are mainly 

secreted by the intestine and the liver. Once released into the bloodstream, these 

apolipoproteins contact with phospholipids, cholesterol and other apopolipoproteins 

released from chylomicrons and VLDL, originating nascent disk shaped HDL (Marshall 

and Bangert, 2004). Nascent HDL collects free cholesterol from cellular membranes or 

from macrophages and foam cells. The absorbed cholesterol is then esterified by the 

enzyme lecithin-cholesterol acyltransferase (LCAT), which is activated by apo AI 

(Patsch et al., 1978; Rye et al., 1999; Santamarina-Fojo et al., 2000). As the produced 

cholesteryl esters occupy the lipid core of the particle, discoidal HDL is converted into 

spherical small dense HDL3 (Figure 11). Further supply of free cholesterol followed by 
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cholesterol esterification converts HDL3 into larger and less dense particles, HDL2 

(Hamilton et al., 1976; Tabet and Rye, 2009; Warnick et al., 2001). An amount of the 

HDL-cholesteryl esters may also be transferred to other apo B-containing lipoproteins 

in exchange for triglyceride, a process mediated by cholesterol transfer protein (CETP). 

HDL-cholesteryl esters enter the liver through a mechanism mediated by the scavenger 

receptor class B type I (SR-BI), which involves HDL dissociation at the surface of 

hepatocytes (van der Velde, 2010). The lipid-depleted HDL particles return to 

circulation, where it continues to attract cholesterol from cellular membranes, 

macrophages and foam cells (Byers, 1964; Tabet and Rye, 2009). Thus, through 

reducing the accumulation of cholesterol in the artery wall, HDL prevents the incidence 

of atherosclerosis, reason why they are often considered “the good cholesterol”. 

Imbalances between circulating levels of LDL relatively to those of HDL lead to 

atherogenesis development. Circulating LDL are highly susceptible to undergo 

oxidation in the arterial wall through several mechanisms that include free-radical 

generation and enzymatic activity (Heinecke, 1998; Mertens and Holvoet, 2001). Once 

oxidized, LDL are retained in the artery wall and induce an inflammatory response that 

ultimately leads to atherosclerotic plaque formation (Carmena et al., 2004; Lusis, 2000). 

Unstable atherosclerotic plaques block blood arteries, causing strokes and heart attacks, 

the leading lethal CVD (Heinecke, 1998; Lusis, 2000).    

 

Since CVDs are associated with multiple metabolic disorders, including T2DM 

and MetS, pronounced changes in lifestyle in combination with new therapeutic 

interventions are required to prevent pathological events.  

 

1.5. Therapeutical approaches in T2DM 

 

1.5.1. Pharmacological interventions 

 

The increased number of diabetic people demands urgent action on early 

treatment and prevention. Several studies reported that individuals at high risk to 

develop diabetes can delay or prevent disease progression through lifestyle changes 

(intensive diet and increased physical activity) and pharmacological interventions 

(Chiasson et al., 2002; Knowler et al., 2002; Tuomilehto et al., 2001). 
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Although nonpharmacologic therapy remains a critical component in prevention 

and management of T2DM, pharmacological therapy is often required to achieve 

optimal glycaemic control. The number of available oral pharmacological agents has 

increased significantly in the last years and several new others are being tested for 

further approval (Table 2). Each class of oral agent has advantages and disadvantages 

and their proper selection requires a full understanding of their mechanisms of action, 

associated side effects and patient-specific characteristics.  

 

Table 2. Oral agents used to improve glycaemic control. Adapted from [Cheng and Fantus, 2005; Ripsin 

et al., 2009]. 

 

 

    Since T2DM is a progressive disease, most of the times patients will require 

combination therapy with a second oral agent to assure better glycaemic control 

Drug class Outcome 
Target 

site 

Mechanisms of 

action 
Side effects 

Specific 

agent 

Sulfonylureas 

Insulin 

secretion 

enhancement 

β-cells 

(sulfonylurea 

receptor) 

β-cell membrane 

depolarization 

Hypoglycaemia 

Weight gain 

Glicazide 

Glimepiride 

Glibenclamide 

(Glyburide) 

Non-sulfonylureas 

Insulin 

secretion (brief) 

stimulation 

β-cells 

(sulfonylurea 

receptor) 

β-cell membrane  

depolarization 

 

Hypoglycaemia 

(lower risk than 

sulfonylureas) 

Weight gain 

Nateglinide 

Repaglinide 

Biguanidines 

Insulin 

sensitivity 

improvement 

Hepatic/ 

peripheral tissues 

(muscle) 

Lipid and glucose 

metabolism 

regulation (via AMPK 

activation) 

 

Hexokinase 

expression 

stimulation 

Bloating 

Abdominal 

discomfort 

Diarrhoea 

Lactic acidosis 

(rare) 

Metformin 

α-Glucosidase 

inhibithors 

Carbohydrate 

absorption 

prevention 

Gastrointestinal 

tract 

Digestive brush-

border enzymes  

inhibition 

Bloating 

Abdominal 

discomfort 

Diarrhoea 

Flatulence 

Acarbose  

Miglitol 

Thiazolidinediones 

Insulin 

sensitivity 

improvement 

Hepatic/ 

peripheral tissues 

(muscle, adipocytes) 

Lipid and 

carbohydrate 

metabolism  

regulation (PPARγ 

agonist) 

Weight gain 

Edema 

Anemia 

Troglitazone 

Pioglitazone 

Rosiglitazone 

Intestinal lipase 

inhibitors 

Intestinal fat 

absorption 

decline 

Intestine 

Gastric and 

pancreatic  lipases 

inhibition 

Weight loss 

Flatulence 

Increased 

defecation 

Orlistat 
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(DeFronzo, 1999; United Kingdom Prospective Diabetes Group, 1998). Although, if 

these approaches fail, insulin therapy must be initiated immediately in order to achieve 

satisfactory control (DeFronzo, 1999). 

In addition, the management of diabetic dyslipidemia becomes a pivotal approach 

for the cardiovascular prevention of T2DM patients. The avaiable lipid-lowering 

therapy comprises several pharmacological drugs that act to maintain lipid homeostasis 

(Table 3).  

 

Table 3. Pharmacologic agents used in the management of dyslipidemias. Adapted from [Hachem and 

Mooradian, 2006; Manninen et al., 1988; Mooradian, 2009; Toth, 2005]. 

 

Drug class 
Mechanism 

of action 
Outcome Efficacy 

Side  

effect 

Specific  

agents 

Contra-

indications 

Statins 
HMGCR 
inhibition 

 

 Cholesterol 
synthesis 

 

Hepatic 
LDL 

clearance 

 LDL (18-55%) 

 HDL (5-15%) 

TG (7-30%) 

Hepatotoxicity 
Myophaty 

Lovastin 

Pravastatin 

Fluvastatin 
Simvastatin 

Atorvastatin 

Rosuvastatin 

Liver disease 
Pregnancy 

Breast-

feeding, 
Certain drugs1 

Cholesterol 

absorption 

inhibitors 

NPC1L1 

inhibition 

 Sterol 

transport 
across BBM 

 LDL (15-20%) 

 HDL (1%) 
TG (8%) 

 

No major 
adverse  

effects 

 
 

Ezetimibe None 

Nicotinic acid 

(niacin) 

Cholesterol 
reduction 

 

HDL 
induction 

 

 Hepatic TG 

formation 
 

 LDL 

synthesis 
 

 HDL 

synthesis 

 LDL (5-25%) 

 HDL (15-35%) 

TG (20-50%) 

Hot flashes 

Hyperglycaemia, 
Hyperuricemia, 

Hepatotoxicity 

Niaspan 

Slo-niacin 

Enduracin 

Liver disease 

Peptic ulcer  
disease 

 

Fibrates 
PPARα 
activation 

 

 VLDL 

formation 

 
 TG 

synthesis 

 
 Fatty acid 

catabolism 

 
HDL levels 

 LDL (5-20%) 

 HDL (10-15%) 

TG (20-30%) 

Dyspepsia, 

Gallstones, 
Hepatotoxicity, 

Myopathy 

Clofibrate 
Fenofibrate 

Gemfibrozil 

Benzafibrate 
Ciprofibrate 

Several renal/ 
 hepatic 

disease 

 
Diabetic 

 nephopathy  

Breast-
feeding2 

Bile-acid 

sequestrants 

(resins) 

Plasma 
cholesterol  

reduction 

 

 

Disruption of 

enterohepatic 
recycling 

 

Stool 
elimination of 

bile acids 

 
 Serum 

cholesterol 

 LDL (10-20%) 

 HDL (1-2%) 
TG (possible) 

Gastrointestinal 

distress, 
Constipation 

Cholestyramine 

Colestipol 
Colesevelarm 

Complete 

biliary 
obstruction 

 
1 Including cytochrome P450 inhibithors, cyclosporine (an immunosuppressant drug) and several antifungal agents.  
2 Relative contraindication. Myopathy: muscular dysfunction; Hyperuricemia: abnormal elevated levels of uric acid 

in blood; Dyspepsia: impaired digestion. : Increase; : decrease; TG: triglyceride. 
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Statins are used to suppress cholesterol biosynthesis and improve the hepatic LDL 

clearance through the inhibition of HMGCR enzyme (Hebert et al., 1997; Krukemyer 

and Talbert, 1987). While bile acid sequestrants reduces serum cholesterol levels by 

promoting the elimination of bile acids, niacin induces HDL synthesis and represses the 

hepatic VLDL synthesis (Handelsman, 2010; Kamanna and Kashyap, 2008; Vasudevan 

and Jones, 2006). The regulation of cholesterol absorption through ezetimibe as well as 

the stimulation of fatty acid oxidation through fibrates, are also important goals in lipid 

homeostasis management (Enjoji et al., 2010; Garcia-Calvo et al., 2005; van Raalte et 

al., 2004) 

As in T2DM, combination therapy is also inevitable in many cases to achieve 

lipid goals. Although, to avoid adverse drug reactions and drug-drug interactions, 

special considerations need to be taken into account before starting this kind of therapy. 

Gemfibrozil (fibrate)-statin combined therapy increases the risk of myophathy 

(muscular disease), than other fibrate-statin combinations (Prueksaritanont et al., 2002; 

Shek and Ferrill, 2001). In fact, when coadministrated with a statin, fenofibrate showed 

to be more effective in maintaining lipid homeostasis (Grundy et al., 2005; Koh et al., 

2005). In addition, antioxidant supplements in combination therapy with simvastatin 

(statin) and nicotinic acid can block the HDL response to this drug regimen (Cheung et 

al., 2001). 

 

The side effects and the cost-effectiveness of the current pharmacological 

interventions are worrying and elevated, which enhance the needed of more effective 

and less costly approaches than the available ones.  

 

1.5.2. Medicinal plants: the genus Salvia  

 

Since earliest times that plants have been used for a large range of purposes 

including medicine, nutrition, flavourings and cosmetics, and their beneficial properties 

have been well reported. Nowadays, there is a resurgent interest in herbal remedies for 

diabetes mellitus prevention. 

Derived from the Latin salvere that means “to heal”, the genus Salvia (family 

Laminaceae) comprises several species which have been known for their medicinal 

properties (Dweck, 2000; Miura et al., 2002; Wang et al., 2000). The dialect “sage” is 

attributed to several aromatic plants of the genus Salvia that have been described to 
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possesses, among others, anti-inflammatory, antioxidant and hypoglycaemic properties 

(Lima et al., 2006b; Lima et al., 2007). In ancient times, Salvia species were used to 

treat various illnesses such as epilepsy, colds, haemorrhage and tuberculosis (Topcu, 

2006). Therefore, sage plants’ reputation gave rise to popular sayings like the one found 

in 11
th

 and 12
th

 centuries “why should a man die, if sage grows in his garden?” 

(Salerno Medical School) or like an English maxim “He that would live for aye, must 

eat sage in May?” (Dweck, 2000). About 900 species from the genus Salvia are 

identified and despite their Mediterranean nature, they are found as naturalized plants in 

numerous and distinct parts of the globe (Karousou R et al., 2000; Topcu, 2006). 

Several Salvia species have long been used by folk medicine to treat diabetes, including 

Salvia officinalis, Salvia fruticosa, Salvia lavandulifolia and Salvia plebeia (Alarcon-

Aguilar et al., 2002). 

The small and evergreen perennial Salvia officinalis L. (Figure 12) is also known 

as common sage, garden sage or Dalmatian sage. S. officinalis have been reported to 

possess beneficial effects on glycaemic control (Alarcon-Aguilar et al., 2002). Eidi and 

Eidi (2009) confirmed the antidiabetic effect of S. officinalis ethanolic extract in normal 

and streptozotocin-induced diabetic rats. According to these authors, the sage extract 

not only significantly decreased serum glucose, triglycerides and cholesterol levels, but 

also increased serum insulin levels in treated diabetic animals (Eidi and Eidi, 2009). 

Treatment of rats with common sage extract (prepared as a tea) had shown decreased 

hepatocytes’ response to glucagon and increased insulin sensitivity of hepatocyte 

primary cultures (Lima et al., 2006a). Moreover, the same study revealed that 14 days 

treatment of mice with S. officinalis tea decreased fasting glucose levels without 

changing glucose clearance after an intraperitoneal glucose tolerance test (Lima et al., 

2006a). A recent study showed that sage may be used to treat diabetic-associated lipid 

abnormalities, through improving lipid profile in patients with primary hyperlipidemia 

(Kianbakht et al., 2011). 

Salvia triloba L. or Greek sage are both synonyms for Salvia fruticosa Mill. 

(Figure 12), a medicinal plant that contains leaves with three (tri) lobes (loba). The 

hypoglycaemic potential of this plant was demonstrated in both normoglycaemic and 

alloxan-hyperglycaemic rabbits. The authors concluded that this potential was due to a 

reduction of the intestinal glucose absorption, since no modifications on plasma insulin 

levels were detected (Perfumi et al., 1991). More recently, S. fruticosa tea demonstrated 
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to be effective in stabilising fasting blood glucose levels in streptozotocin-diabetic rats. 

This effect was accompanied with a decrease of SGLT1 levels in BBM (Azevedo et al., 

2011).  

 

 

 

 

 

 

 

 

 

 

Figure 12. Some species of the genus Salvia.  

 

Salvia lavandulifolia Vahl. (Figure 12) (Spanish sage) is among those that have 

been studied in normal and alloxan- or streptozotocin-diabetic animals, the plant to 

which the best results were observed (Alarcon-Aguilar et al., 2002; Zarzuelo et al., 

1990). Zarzuelo et al. (1990) demonstrated that the hypoglycaemic potential of S. 

lavandulifolia extract results from a decrease on intestinal glucose uptake and to the 

increase of peripheral glucose uptake. S. lavandulifolia is, however, still poorly studied 

(Baricevic D and Bartol T, 2000; Zarzuelo et al., 1990).  

The wide range of medicinal properties and the increasing number of scientific 

reports that confirm the health benefits of these sage species, highlight the advantage of 

considering them good candidates to be included in pharmaceutical and food industries. 

However, it is crucial to continue the efforts to elucidate the active principles and the 

mechanisms of action, which in long term may be accountable for the general health 

improving properties reported to sage species.  

 

1.5.2.1 The bioactive compounds of sage species 

 

Since antiquity that Salvia species have been extensively used as pharmaceutical 

and therapeutical plants by folk medicine. This fact had rouse interest in investigating 

the medicinal properties of individual compounds that constitute extracts prepared from 
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aerial parts and/or roots of the herb (Panagiotopoulos E et al., 2000). Only the active 

compounds are worthy of investigation and designed as secondary metabolites since 

apparently, they are not involved directly in plant growth or development 

(Panagiotopoulos E et al., 2000). 

The well acceptance by the consumers as well as the fewer reported side effects 

associated to normal dosages, makes the natural compounds reliable alternatives to 

synthetic drugs available in the market. However, only small amounts can be extracted 

from large amounts of the plant fraction and so, at the end of the process the product 

yield is very low. New strategies are being applied in order to face this disadvantage 

and potentiate massive production of plant secondary metabolites (Panagiotopoulos E et 

al., 2000).  Salvia species contain a complex mixture of secondary metabolites, such as 

phenolic compounds, which can be grouped in two classes: phenolic acids and 

flavonoids (Table 4).  

 

Table 4. Phytochemical characterization of the phenolic compounds (µg/ml) present in water extracts 

(WE) of some Salvia species. Adapted from [Azevedo, 2008; Lima et al., 2006b]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tr: Trace amounts (compounds present in concentration below than 0.1 μg/ml). 

*Quantified as apigenin-7-glucoside. 

 

 

Component 
S. officinalis 

(µg/ml WE) 

S. fruticosa 

(µg/ml WE) 

S. lavandulifolia 

(µg/ml WE) 

 

PPhheennoolliicc  ccoommppoouunnddss    
 

Phenolic acids 

  
rosmarinic acid 
caffeic acid 

ferulic acid 

3-caffeoylquinic acid 

5-caffeoylquinic acid 

 

Flavonoids  

 
6-hydroxyluteolin-7-glucoside 

not identified flavone* 

apigenin-7-glucoside 

luteolin-7-glucoside 

4’,5,7,8-tetrahydroxyflavone      

 

 

 

 

 

518.5 

8.2 

5.2 

tr 

tr 

 

 
 

- 

- 

4.3 

196.3 

9.0 

 

 

 

 

 

577.3 

8.7 

3.5 

tr 

tr 

 

 
 

104.8 

99.1 

6.7 

tr 

- 

 

 

 

 

 

146.4 

- 

6.5 

tr 

tr 

 

 
 

- 

- 

- 

29.6 

- 
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Among the non-flavonoids, phenolic 

acids assume a relevant position. Rosmarinic 

acid (RA; Figure 13), originally identified in 

Rosmarinus officinalis L. (rosemary), is the 

major phenolic compound of S. fruticosa, S. 

officinalis and S. lavandulifolia aqueous 

extracts (Table 4). A plethora of biological 

properties have been attributed to RA 

ranging from antibacterial and antiviral to antioxidant and anti-inflammatory (Huang 

and Zheng, 2006). RA showed promising evidences in preventing the progression of 

diabetic nephropathy through decreasing the glomerular hypertrophy and reducing lipid 

peroxidation in diabetic rats (Tavafi et al., 2010). The antioxidant properties of RA may 

explain the observed improvement in insulin sensitivity in fructose-fed mice 

(Vanithadevi and Anuradha, 2008). In addition, RA also inhibited porcine pancreatic α-

amylase activity (McCue and Shetty, 2004). More recently, Azevedo and colleagues 

(2011) reported that 4 days treatment with RA decreased blood glucose levels and 

significantly inhibited the carbohydrate-stimulated adaptive increase of SGLT1 in rat 

BBM. 

 Luteolin-7-glucoside (L7G, Figure 14A) is the most abundant flavonoid present 

in both S. officinalis and S. lavandulifolia extracts (Table 4). Although, S. fruticosa 

extracts contains only trace amounts of L7G (Table 4). Dietary supplementation with 

L7G showed to improve plasma glucose and decrease total and LDL cholesterol levels 

in healthy rats (Azevedo et al., 2010).  

Dietary L7G is biotransformed in the intestine by microorganisms and hydrolases 

into its aglucone luteolin (3’,4’,5,7-tetrahydroxyflavone; Figure 14B). Luteolin has a 

variety of biological activities including anti-inflammatory, antimutagenic, and 

antitumorigenic properties (Jang et al., 2008; Ross and Kasum, 2002). In a study 

performed with 21 flavonoids, luteolin possessed the strongest inhibitory effect on α-

glucosidase and α-amylase enzymes activities (Kim et al., 2000). In 3T3-L1 and mouse 

primary adipose cells, luteolin induced glucose uptake and Akt2 phosphorylation, under 

insulin stimulation and decreased gene expression of the inflammatory markers TNF-α 

and interleukin-6. The same study showed a luteolin-mediated induction of PPARγ 

expression  (Ding et al., 2010).  

 

Figure 13. Structure of rosmarinic acid 
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The ability for luteolin to restrain atherosclerosis onset is based on several 

evidences ranging from the inhibition of cholesterol and fatty acid synthesis to 

prevention of LDL oxidation (Ashokkumar and Sudhandiran, 2008; Lee et al., 2010; 

Tuansulong et al., 2011). Finally the antioxidant activity of luteolin showed to protect 

against the development of diabetic nephropaty (Wang et al., 2011).  

 

Therefore, some natural products seemed to be good candidates for being used 

as functional foods and/or food supplements. Nevertheless, in regard to health 

improving effects and mechanism of action, much yet remains to be investigated, which 

highlight the need of further studies.         
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2.1. Chapter overview 

 

Among all the beneficial properties attributed to Salvia officinalis, its reported 

antidiabetic potential engaged our interest. The work presented in this chapter comprises 

the results from a pilot study in which the beneficial effects of S. officinalis water 

extract (prepared as a tea) were evaluated in healthy female volunteers that, according to 

their age, constitute a group of risk for developing T2DM.  

Our results showed that drinking sage tea does not cause hepatotoxicity or other 

adverse effects such as changes in blood pressure, body weight and heart rate at rest, 

therefore it is safe. The risk of hypoglycaemia events associated with sage tea drinking 

was also excluded since no effects on fasting/postprandial blood glucose levels were 

detected. An improvement in lipid profile was also observed by increasing plasma HDL 

levels and gradually decreasing total and LDL cholesterol levels, which contributes to 

positively control dyslipidemia and prevent CVDs, strongly related with T2DM. Sage 

tea drinking showed to be valuable in improving the antioxidant status of the volunteers, 

since it increased the activity of the erythrocytes’ antioxidant enzymes (SOD and CAT). 

The observed results not only point out the acclaimed antidiabetic potential of S. 

officinalis tea but also denote/highlight the harmless nature of this plant.     
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2.2. Publication 

 

This chapter comprises the following publication: 

Carla M. Sá, Alice A. Ramos, Marisa F. Azevedo, Cristovao F. Lima, Manuel 

Fernandes-Ferreira and Cristina Pereira-Wilson (2009). Sage Tea Drinking Improves 

Lipid Profile and Antioxidant Defences in Humans. Int J Mol Sci 10, 3937-3950.  
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Abstract 

 

Salvia officinalis (common sage) is a plant with antidiabetic properties. A pilot 

trial (non-randomized crossover trial) with six healthy female volunteers (aged 40-50) 

was designed to evaluate the beneficial properties of sage tea consumption on blood 

glucose regulation, lipid profile and transaminase activity in humans. Effects of sage 

consumption on erythrocytes’ SOD and CAT activities and on Hsp70 expression in 

lymphocytes were also evaluated. Four weeks sage tea treatment had no effects on 

plasma glucose. An improvement in lipid profile was observed with lower plasma LDL 

cholesterol and total cholesterol levels as well as higher plasma HDL cholesterol levels 

during and two weeks after treatment. Sage tea also increased lymphocyte Hsp70 

expression and erythrocyte SOD and CAT activities. No hepatotoxic effects or other 

adverse effects were observed. 

 

Keywords: Salvia officinalis L.; type 2 diabetes mellitus; lipid profile; human trial; 

antioxidant defences 

 

1. Introduction 

 

Diabetes mellitus is a serious public health problem characterized by deficient 

plasma glucose regulation due to tissue insulin resistance and/or β-cell failure which 

causes high morbidity and mortality rates. Type 2 diabetes mellitus (T2DM) accounts 

for the majority cases of diabetes (about 90%) and is  becoming  more  prevalent  due  

to  the  increasing  rates  of  obesity  in  youth  and  adulthood  and sedentary lifestyles 

(Williams and Pickup, 2004). 



                                  PhD THESIS | C a r l a  S á  

68 | P a g e   

Dyslipidemia is also common among diabetic patients and plays a critical role in 

the development of cardiovascular complications. Metabolic dyslipidemia is 

characterised by high levels of triglycerides, associated with low levels of high-density 

lipoprotein cholesterol–HDL-C with or without a raise in low-density lipoprotein 

cholesterol–LDL-C (Moller, 2001; Saxena et al., 2005; Toth, 2005; Veiraiah, 2005). 

These imbalances in the internal metabolic environment, combined with the 

characteristic low antioxidant defences of diabetics can lead to oxidative stress and 

cellular damage. Oxidative stress has been demonstrated to be a contributor to the 

progression of the disease, accelerating both β-cell failure and cardiovascular 

complications. Antioxidant enzymes, such as superoxide dismutase (SOD) and catalase 

(CAT) play crucial roles in the cellular protection against oxidative damage eliminating 

reactive oxygen species (ROS) (Celik and Isik, 2008; Mates et al., 1999). 

The increased expression of heat shock proteins (Hsp) is regarded as one of the 

most powerful means of cytoprotection against loss of cellular homeostasis and Hsp 

levels have been shown to be involved in tissue insulin responsiveness (Feder and 

Hofmann, 1999). The study of levels of cell protection in the most relevant insulin 

sensitive tissues is highly invasive and the easily accessible lymphocyte may provide 

valuable biomarkers of health status (Bonassi and Au, 2002; Jin et al., 2004). The 

Hsp70 levels of lymphocytes may therefore provide information on effects on insulin 

response. 

T2DM is preventable through lifestyles changes (including diet changes, physical 

exercise and weight loss) and pharmacological interventions with drugs such as 

metformin and acarbose (Costacou and Mayer-Davis, 2003; Gruber et al., 2006; 

Jermendy, 2005). Herbal teas with glucose-lowering properties may offer low-cost 

alternatives to pharmacological interventions to limit the progression of the disease 

while having good acceptance. In particular Momordica charantia has been shown to 

improve insulin secretion in β-cells, increase peripheral glucose uptake, significantly 

reduce serum cholesterol and triglycerides levels at the same time as increasing HDL-C 

levels (Fernandes et al., 2007); Coccinia indica improves antioxidant status by 

increasing antioxidant defences such as SOD, CAT and reduced glutathione levels and 

shows a significant hypoglycaemic action by decreasing blood glucose levels and 

increasing hepatic glycogen synthesis in animal models (Kumar et al., 1993; 

Venkateswaran and Pari, 2003) and Camellia sinensis, has been associated with weight 

reduction, decrease in blood pressure and blood glucose levels, protection against lipid 
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peroxidation and improvement of blood lipid profile which suggest beneficial effects 

against obesity, cardiovascular diseases (CVDs) and T2DM (Coimbra et al., 2006a; 

Coimbra et al., 2006b; Polychronopoulos et al., 2008). 

Common sage (Salvia officinalis) is among the plants to which antidiabetic 

properties have been attributed by popular medicine and its extracts showed to possess 

hypoglycaemic effects in normal and diabetic animals (Alarcon-Aguilar et al., 2002; 

Eidi et al., 2005). In a previous study we have shown that treatment with sage tea for 14 

days lowered fasting plasma glucose levels but had no effects on glucose clearance in 

response to an intraperitoneal glucose tolerance test (ipGTT) in rats (Lima et al., 2006a). 

Using hepatocyte primary cultures a decreased gluconeogenesic response to glucagon 

and a higher responsiveness to insulin were found after in vivo treatment with sage tea 

(Lima et al., 2006a). In vivo treatments with Salvia fruticosa tea also reduced plasma 

glucose in streptozotocin rats (unpublished observations). 

With the purpose of studying the effects of sage tea consumption on glucose 

regulation in humans, a pilot trial with human volunteers was carried out where a 

number of parameters relevant to diabetes were analysed such as fasting and 

postprandial blood glucose, response to an oral glucose tolerance test–OGTT, lipid 

profile, liver toxicity and antioxidant defences. Demonstration that there is no toxicity 

or adverse effects associated with sage consumption paves the way for future studies 

involving diabetic patients where the true antidiabetic potential of sage will have to be 

tested. 

 

2. Experimental Section 

 

2.1. Subjects and study design 

 

Six healthy female volunteers (aged 40-50) participated in this trial after signing 

an informed consent form. The whole study was carried out in accordance with the 

principles of the Declaration of Helsinki. Smokers and subjects on regular medication 

were excluded from the study. Effects of sage tea drinking on body weight, blood 

pressure and heart rate at rest were recorded at first week of baseline and the end of each 

of the eight weeks of the trial. Weekly records of perceived negative events and 

concomitant medication were also kept. All the volunteers completed the study and 

reported no side effects. A non-randomized crossover study, where individuals serve as 
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their own controls, was carried out in three phases: two weeks of baseline, four weeks of 

sage tea treatment and two weeks of wash-out (Figure 1). The two-week baseline phase 

was included in order to obtain control values for all the volunteers. During this phase, 

all the parameters were measured and values are presented in figures and tables as basal 

levels. A treatment phase with sage tea followed, where 300 ml of tea were taken twice 

daily for four weeks. Sampling was carried out at the end of second and fourth week of 

sage treatment. A two-week wash-out phase was included after treatment with the aim 

to assess the duration of sage tea effects beyond the treatment period. 

 

 

 

 

 

Figure 1. Experimental outline of the pilot study. Blood samples were taken at the times indicated by the 

arrows. Oral glucose tolerance test were performed at the times indicated by the circles. 

 

2.2. Plant material and preparation of S. officinalis tea 

 

Salvia officinalis L. plants were grown in an experimental farm located in Arouca, 

Portugal, and were collected in April, 2001. The aerial parts of plants were lyophilized 

and kept at -20°C. The sage tea was routinely prepared by pouring 300 ml of boiling 

water onto 4 g dried plant material and allowing to steep for 5 min (Lima et al., 2005). 

This infusion yielded about 3.5 ± 0.1 mg lyophilized extract dry weight per ml, where 

rosmarinic acid (362 mg/ml infusion) and luteolin-7-glucoside (115.3 mg/ml infusion) 

were the major phenolic compounds, and 1,8-cineole, cis-thujone, trans-thujone, 

camphor and borneol the major volatile components (4.8 mg/ml infusion). For full 

extract characterization see (Lima et al., 2005). 

 

2.3 Blood samples, erythrocytes’ hemolysates and lymphocytes lysates 

 

At the different sampling points (baseline–B, second week of treatment–T2, fourth 

week of treatment–T4 and at the end of wash-out–W), venous blood samples were 

collected postprandially in EDTA vacutainers (Vacuett®, Greiner Bio-one GmbH, 

Austria). An aliquot of blood was used for measuring glucose levels. Immediately after 

sampling, about 3 ml of blood were centrifuged at 200 × g (KUBOTA 2100, Tokyo, 

Japan) for 10 min to separate the plasma. Plasma aliquots were stored at -80°C for later 
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measurements of transaminases, total cholesterol, HDL-C and LDL-C levels. The 

remaining erythrocyte enriched fraction was haemolysed to analyse SOD and CAT 

activity. About 10 ml of blood were used to separate peripheral blood lymphocytes 

(PBLs) by a Ficoll density gradient centrifugation following the procedure provided by 

the Ficoll manufacturer (Ficoll Paque- Plus, GE Healthcare, Piscataway, NJ, USA). The 

resultant PBL fraction was collected, washed with PBS and the cell pellet was 

homogenised with lysis buffer (25 mM KH2PO4, pH 7.5, 2 mM MgCl2, 5 mM KCl, 1 

mM EDTA, 1 mM EGTA, with 0.1 mM PMSF and 2 mM DTT added fresh). Protein 

concentration from lymphocyte lysates was measured with the Bradford reagent 

(Sigma-Aldrich, Inc., St. Louis, MO, USA) and aliquots kept at -80°C for later 

quantification of Hsp70. 

 

2.4. Measurement of blood and plasma parameters 

 

3.4.1. Quantification of glucose levels and oral glucose tolerance test (OGTT) 

 

Fasting and postprandial glycaemia were  measured  with the Accutrend® GCT 

device (Roche Diagnostics GmbH, Mannheim, Germany)  using  Accutrend®  test  

strips  for  glucose  (Roche Diagnostics GmbH). Two OGTTs were performed after an 

overnight fast one at baseline and the other at week four of sage tea treatment. For that, 

1 g of glucose per kg body weight of each volunteer was given in up to 300 ml of warm 

water, which was consumed within 5 min of start. The OGTT started when the subjects 

began drinking with blood sampling taken before as well as at 45 min and 165 min after 

the oral glucose load. Blood glucose concentration was measured as above. 

 

2.4.2. Characterization of lipid profile 

 

Total plasma cholesterol, LDL-C and HDL-C levels were measured in plasma 

using spectrophotometric commercial kits from Spinreact (Girona, Spain), according to 

the manufacturer’s specifications.  

 

2.4.3. Quantification of plasma aminotransferases 

 

The alanine aminotransferase (ALT) and aspartate aminotransferase (AST)  

activities were measured spectrophotometrically in plasma following the NADH 
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oxidation method at 340 nm on a plate reader (Spectra Max 340 pc, Molecular  Devices,  

Sunnyvale,  CA,  USA),  as  previously described (Lima et al., 2005). 

 

2.4.4. Quantification of erythrocytes’ antioxidant defences 

 

The haemolysate fraction was used to determine SOD activity using the Ransod 

kit (Randox, Crumlin, UK) following the manufacturer’s specifications. The SOD 

activity in haemolysates was expressed as U/ml, with 1U corresponding to 50% of 

inhibition of 2-(4-iodophenyl)-3-(4-nitro-phenol)-5-phenyltetrazolium chloride (INT) 

reduction under assay conditions. The same haemolysates were used to measure CAT 

activity as described elsewhere (Aebi, 1984). In brief, the decomposition of H2O2 was 

followed at 240 nm in a spectrophotometer (Cary IE, UV-Visible Spectrophotometer 

Varian, Australia) and the activity expressed as U/ml (U being μmol of H2O2 

decomposed per minute) using the molar extinction coefficient of 0.0394 ml μmol
-1

 cm
-

1
. 

 

2.4.5. Western blot analyses 

 

The quantification of Hsp70 protein in lymphocyte lysates was assessed by 

Western Blot in which proteins (20 µg per sample) were separated by SDS-PAGE using 

the mini-PROTEAN 3 electrophoresis cell (Bio-Rad Laboratories, Inc., Hercules, CA, 

USA). Proteins were then transferred onto Hybond-P polyvinylidene difluoride 

membrane (GE Healthcare, UK) and membranes blocked in 5% (w/v) non-fat dry milk 

in TPBS (0.05% (v/v) Tween 20 in PBS, pH 7.4). Blotted membranes were probed with 

mouse monoclonal antibodies against Hsp72 (StressGen, Assay Designs, Inc., Ann 

Arbor, MI, USA) and β-Actin (Sigma-Aldrich; used as loading control). Bound 

antibodies were then detected by chemiluminescence using appropriate secondary 

antibodies and the reactive bands acquired with a ChemiDoc XRS (Bio-Rad) imaging 

densitometer. Band intensity was quantified using the Quantity One image analysis 

software (Bio-Rad). 

 

2.5. Statistical analysis 

 

Data are expressed as means ± SEM (n=6). For statistical analysis the different 

parameters were analysed  by  repeated  one-way  ANOVA  measurements  followed  

by  the  Student-Newman-Keuls post-test (GraphPad Prism, version 4.03; GraphPad 
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Software Inc., San Diego, CA, USA) to identify differences between studied time 

points. P values ≤ 0.05 were considered statistically significant (with a confidence 

interval of 95%). 

 

3. Results and Discussion 

 

3.1 Effects of Salvia officinalis on blood glucose regulation, plasma aminotransferase 

activity, blood pressure, heart rate at rest and body weight 

 

In this study we evaluated in healthy women volunteers the effects of Salvia 

officinalis (sage) tea drinking (300 ml, twice a day) on parameters relevant to diabetes 

and its associated cardiovascular complications. In spite of its claimed antidiabetic 

potential and traditional use, no effects on blood glucose were observed in healthy 

humans (Table 1). In our previous work, sage tea drinking decreased fasting blood 

glucose in normoglycaemic mice (Lima et al., 2006a). Since no such effects on fasting 

blood glucose were found in the present study (Table 1), the risk of hypoglycaemia is 

excluded. Sage tea drinking improved lipid profile and increased antioxidant defences 

(see below) which may indirectly improve the diabetic condition. 

 
 

Table 1. Physiological and biochemical parameters during the different phases of the trial: baseline (B), 

second (T2) and fourth (T4) week of sage tea treatment and wash-out (W). 

  

Parameters  
Phases of the trial 

B T2 T4 W 

Weight (kg) 56.2 ± 7.1 56.2 ± 6.1 55.6 ± 6.1 55.9 ± 5.9 

Systolic blood pressure (mmHg)  116.1 ± 10.3 110.3 ± 14.5 110.7 ± 15.5 107.7 ± 13.2 

Diastolic blood pressure (mmHg) 68.2 ± 9.4 64.5 ± 14.0 63.6 ± 11.7 59.5 ± 9.1 

Heart rate at rest (beats/min) 65.9 ± 10.7 67.2 ± 10.9 66.6 ± 8.2 68.7 ± 9.9 

ALT (IU/l) 7.3 ± 1.0 6.8 ± 1.4 8.4 ± 1.6 7.6 ± 1.5 

AST (IU/l) 8.1 ± 1.1 10.0 ± 2.0 10.6 ± 1.8 * 9.8 ± 1.2 

Fasting glucose levels 
a
 (mM) 4.31 ± 1.18 4.60 ± 0.92 4.21 ± 1.54 --- 

Postprandial glucose levels 
a 
(mM) 5.33 ± 1.64 4.35 ± 0.53 4.88 ± 0.94 4.58 ± 0.90 

 

Values are mean ± SEM (n=6). *P ≤ 0.05 when compared with baseline values. a Glucose concentration in blood. 
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Plasma aminotransferase AST and ALT activities were determined in order to 

evaluate the safety of S. officinalis tea drinking in humans. Although a significant increase 

in plasma AST enzyme activity was observed at the fourth week of sage tea treatment 

(Table 1), toxicity did not occur, since the results are well below reference values (40 IU/l) 

(Jamal et al., 1999; Kim et al., 2004). Thus, drinking sage tea does not cause hepatotoxicity 

nor does it induce other adverse effects, such as changes in blood pressure, heart rate at rest 

and body weight (Table 1). 

In order to assess the effects of sage tea on glucose clearance, two OGTTs were 

performed, at baseline and at the end of sage tea treatment (four weeks after the first one), 

and no changes were observed (Table 2). Although all the volunteers were non-diabetic, 

they belong to an age group at risk of developing impaired glucose tolerance (IGT) (a pre-

diabetic stage). All subjects showed no glucose intolerance. Although no effects on glucose 

regulation were observed in healthy humans, it remains to be established whether sage tea 

drinking helps to regulate blood glucose in hyperglycaemic patients. 

 

Table 2. Blood glucose concentration in response to an oral glucose tolerance test (OGTT).  

 

 

 

 Blood glucose levels (mM) 

Time 0 min 45 min 165 min 

Baseline 4.3 ± 1.2 5.5 ± 1.2 4.3 ± 0.4 

Treatment (4 weeks) 4.2 ± 1.5 6.9 ± 1.4 4.5 ± 0.9 

 

Values are mean ± SEM (n=6). The reference values for a non-diabetic individual to the standard OGTT (75 g 

glucose/300 ml water) are: 3.33–5.56 mM (before glucose loading); < 10 mM (0.5–1.5 h after glucose loading) 

and 3.33–5.56 mM (3 h after glucose loading) (Ravel, 1989). 

 

3.2. Effects of Salvia officinalis on lipid profile 

 

Sage tea treatment reduced slightly plasma total cholesterol levels during 

treatment phase (by 4.5% at T2 and by 5.3% at T4), achieving a significant reduction 

two weeks after the end of the treatment (values 16% lower than the baseline; Figure 

2A). A beneficial effect on lipoprotein levels, with a gradual reduction of LDL-C (of 

12.4% at the end of the treatment and 19.6% after 2 weeks wash-out; Figure 2C) and a 

gradual increase of HDL-C levels (50.6% at the end of the treatment and 37.6% after 

two weeks wash-out; Figure 2B) were observed. The LDL-C/HDL-C ratio contributes 

to assess the risk of cardiovascular complications due to dyslipidemia (Sullivan, 2002). 

As shown in Figure 2D, sage tea gradually decreased LDL-C/HDL-C ratio from 
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baseline until the end of four weeks of tea treatment. This ratio remained significantly 

reduced even after the two week wash-out period (Figure 2D). These results suggest 

that S. officinalis tea consumption is accountable for the improvement of the lipid 

profile inducing a decrease on the highly atherogenic LDL-C particles (which are easily 

oxidable and less readily cleared (Nesto, 2005) and an increase in the HDL-C particles, 

contributing, therefore, positively to the control of the dyslipidemia frequently observed 

in T2DM but also related to other diseases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Total cholesterol [A], LDL cholesterol [B] and HDL cholesterol [C] levels as well as LDL-

C/HDL-C ratio [D] in plasma measured at different points during the study: baseline (B), second (T2) and 

fourth week of treatment (T4), and wash-out (W). Values are mean ± SEM (n=6). Groups with the same 

letter notation are not significantly different from each other (P > 0.05). 

 

A variety of pharmaceutical approaches have been developed in order to achieve 

both decrease of LDL-C and rise of HDL-C levels, with the aim to reduce the risk of 

CVDs (Toth, 2005). Despite the available therapies based on statins, niacin and fibrates 

(pharmacological agents used to lower plasma LDL-C and increase HDL-C levels), the 

need for more effective drugs drives the search for alternative compounds. Several 

natural compounds have been shown to act on cholesterol metabolism (by reducing its 
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absorption or its synthesis), such as phytosterols and catechins (Plana et al., 2008; 

Raederstorff et al., 2003). Extracts from some sage species have been shown to be 

effective in the prevention of cardiovascular diseases due to, at least in part, prevention 

of LDL-C oxidation (Chen et al., 2001). Sage tea drinking had no significant effects on 

post-prandial triglycerides (data not shown). 

 

3.3. Effects of Salvia officinalis on antioxidant defences and heat-shock protein 70 

(Hsp70) expression 

 

Sage tea drinking improved human erythrocyte antioxidant status by significantly 

increasing SOD and  CAT  activities  after  two  weeks  of  sage  treatment,  returning  

afterwards  to  normal  values (Figure 3A and 3B). The antioxidant properties of sage 

tea, in addition to preventing lipoprotein oxidation, may also protect cells from diabetes’ 

related gluco- and lipotoxicity and prevent progressive β-cell destruction, which could 

provide long term protection of these insulin-producing cells. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Antioxidant activities of SOD [A] and 

CAT [B] measured in haemolysed erythrocytes. 

Samples were taken at different time points during 

the study: baseline (B), second (T2) and fourth 

week of treatment (T4) and wash-out (W). Values 

are mean ± SEM (n=6). Groups with the same letter 

notation are not significantly different from each 

other (P > 0.05). 
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The antioxidant activity of phenolic compounds has been widely studied and it is 

known that these compounds can either stimulate endogenous antioxidant defence 

systems or scavenge reactive species (Scalbert et al., 2005). Rosmarinic acid and 

luteolin-7-glucoside are the two most representative phenolic compounds present in our 

S. officinalis extracts (tea) (Lima et al., 2005). These phenolic compounds showed 

protective effects against oxidative damage in hepatocytes, and limited GSH depletion 

induced by tert-butyl hydroperoxyde in HepG2, preserving cell viability (Lima et al., 

2006b). The same happened for sage extracts in HepG2 cells (Lima et al., 2007b). In 

animals, sage tea drinking also stimulated several antioxidant enzymes in the liver 

(Lima et al., 2005; Lima et al., 2007a), corroborating the effects of this tea in human 

erythrocytes observed in the present study 

Since lymphocytes may provide valuable and easily accessible biomarkers of the 

health status of individuals (Bonassi and Au, 2002; Jin et al., 2004) and heat shock 

proteins have been involved in tissue insulin responsiveness (Feder and Hofmann, 

1999), the expression of Hsp70 in human lymphocyte lysates was evaluated. The 

lymphocyte’s inducible Hsp72 protein not only significantly increased at the second 

week of S. officinalis tea treatment (about 2.8-fold) but also remained elevated in the 

wash-out period (Figure 4). These findings suggest a beneficial potential of sage tea 

drinking on Hsp72 protein induction, an endogenous stress modulator, which plays a 

crucial role in cellular homeostasis decreasing the risk of development of T2DM by 

blocking inflammatory signalling molecules including c-Jun N-terminal kinase (JNK), 

inhibitor of kB kinase (IKK) and tumor necrosis factor-α (TNF-α) in insulin responsive 

tissues (Gabai et al., 1997; McCarty, 2006; Meldrum et al., 2003; Park et al., 2001). 

These molecules phosphorylate insulin receptor substrate-1 (IRS-1) in specific serine 

sites and determine decreased insulin sensitivity. Indeed, Hsp72 gene and protein 

expression has been shown to be significantly reduced in T2DM patients and correlated 

with reduced insulin sensitivity (Bruce et al., 2003; Chung et al., 2008; Kurucz et al., 

2002). The antioxidant alpha-lipoic acid showed recently to improve insulin action in 

high-fat-fed rats by increasing the expression of Hsp72 and consequently inhibiting JNK 

and IKK (Gupte et al., 2009). Therefore, an increase  in  inducible  Hsp70  protein  

expression  by  sage  tea  would  represent  an  amelioration  of whole-body  insulin  

sensitivity  although  the  assumption  that  lymphocyte  Hsp  levels  mimic  other 

tissues Hsp levels requires further demonstration. 
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Figure 4. Western blot analysis of the 

inducible form of Hsp70 (Hsp72) in human 

lymphocytes  at  the  different  points  

during  the  study:  baseline  (B),  second  

week  of treatment (T2) and wash-out (W). 

[A] Values are mean ± SEM (n=6). Groups 

with the same letter notation are not 

significantly different from each other (P > 

0.05). [B] Representative immunoblots of 

three subjects (β-Actin was used as loading 

control). 

 

 

Heat shock proteins confer also cytoprotection and assure survival after 

environmental stresses, being therefore implicated in infection, immunity and aging, as 

well as in ischemic and neurodegenerative diseases (Putics et al., 2008). Thus, induction 

of Hsp72 by sage tea could also be useful by conferring stress tolerance and 

cytoprotection against several environmental-induced injury conditions helping increase 

lifespan and prevent age-related diseases such as diabetes, cancer and 

neurodegeneration. Natural compounds such as resveratrol have been shown recently to 

induce the heat-shock response and to protect human cells from severe heat stress 

(Putics et al., 2008). As well, paeoniflorin isolated from Paeonia lactifora showed to 

induce heat shock proteins expression and to afford termotolerance in cultured cells 

(Yan et al., 2004). 

 

4. Conclusions 

 

In conclusion, a four week treatment with sage tea was effective in the 

improvement of lipid profile, antioxidant defences and lymphocyte Hsp70 protein 

expression of human volunteers, which in the long term may be responsible for the 

general health improving properties attributed to sage. Our results support the popular 

believe that S. officinalis tea is beneficial and although not demonstrating effects on 

glucose regulation in healthy individuals, they show that sage tea drinking is safe and 

pave the way for sage’s effects to be tested in diabetic patients.    
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3.1. Chapter overview 

 

It is undeniable that lipids are crucial molecules in many biological processes and 

that disturbances in lipid homeostasis leads to dyslipidemia, a feature of the MetS and 

an underlying contributor to disease progression such as T2DM and CVDs. In this 

chapter, we reported the effects of Salvia fruticosa (SFT) and RA aqueous extracts on 

hepatic lipid metabolism, intestinal cholesterol absorption as well as on lipid profile in 

response to changes in dietary carbohydrate levels.  

In this study, rats were fed with a low carbohydrate (Lc) diet for 7 days and then 

returned to a normal (referred as high carbohydrate, [Hc]) diet but only for 4 days 

(different groups drinking water or SFT or RA). Plasma total, LDL and HDL cholesterol 

levels were reduced in animals fed the Lc diet for 7 days. SFT treatment during the 4 

days of Hc diet reintroduction, showed to increase plasma HDL levels although, neither 

SFT nor RA modified plasma total and LDL cholesterol levels. SFT and particularly RA 

prevented the return of plasma insulin to control levels, an effect that was accompanied 

by a decrease on the hepatic FAS protein expression. These effects on fatty acid 

synthesis seemed to be distinctly regulated: while RA showed to downregulate SREBP-

1 gene expression, SFT showed to regulate the transcriptional activation of ChREBP. A 

significant inhibition of the HMGCR gene expression was mediated by both SFT and 

RA treatments. RA increased the mRNA levels of PPARα and its target gene CPT1, 

suggesting a potential role of this phenolic acid in stimulating fatty acid oxidation in the 

liver. Interesting was the finding that RA prevented the carbohydrate-associated raise of 

intestinal cholesterol absorption through decreasing the protein levels of BBM NPC1L1 

transporter. The previous demonstration that both SFT and RA reduced the diet-induced 

boost of SGLT1 expression at the rat intestinal BBM
1
, might point out an effect of these 

natural products on glucose and lipid metabolism.  

Although further work must be conducted, the evidences here reported 

demonstrate that both SFT and RA may represent promising alternatives for preventing 

or delaying disease progression.   

 

 

 

1 Azevedo MF, Lima CF, Fernandes-Ferreira M, Almeida MJ, Wilson JM and Pereira-Wilson C (2011) Rosmarinic acid, major 

phenolic constituent of Greek sage herbal tea, modulates rat intestinal SGLT1 levels with effects on blood glucose. Mol Nutr Food 

Res 55 Suppl 1:S15-25. 
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3.2. Manuscript 1 

 

This chapter comprises the following manuscript: 

Carla M Sá, Marisa Azevedo, Manuel Fernandes-Ferreira and Cristina Pereira-Wilson 

(2012). Sage tea drinking increases plasma HDL levels while its main phenolic rosmarinic acid 

stimulates PPARα, both affecting hepatic lipid metabolism (in preparation). 
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Abstract 

 

We have recently confirmed that Salvia officinalis (family Laminaceae) water 

extract improves the lipid profile of normolipidemic subjects, suggesting the potential of 

this plant in preventing cardiovascular diseases (CVDs) progression, highly associated 

with type 2 diabetes mellitus (T2DM), and a feature of the metabolic syndrome (MetS). 

In addition, aqueous extracts of Salvia fruticosa (SFT) and particularly rosmarinic acid 

(RA), the main phenolic compound of both Salvia extracts, repressed the carbohydrate-

induced increase of intestinal sodium-glucose cotransporter 1 (SGLT1). Since dietary 

carbohydrates are known to affect lipid metabolism, the present work aims to 

characterize the in vivo effects of SFT and RA in a number of parameters relevant to 

lipid metabolism, under dietary carbohydrate manipulation. Plasma HDL levels were 

improved in animals drinking SFT however, neither SFT nor RA drinking modified 

plasma total and LDL cholesterol levels. Both treatments significantly prevented the 

return of plasma insulin to control levels, and lead to a decrease in fatty acid synthase 

(FAS) protein in liver homogenates apparently by two distinct pathways: while SFT led 

to a downregulation of carbohydrate responsive element-binding protein (ChREBP) 

transcription, RA downregulated the sterol regulatory element-binding protein-

1 (SREBP-1) mRNA levels. Moreover, both SFT and RA treatments decreased the 

HMG CoA reductase (HMGCR) mRNA levels in the liver, while RA-stimulated the 

mRNA levels of peroxisome proliferator-activated receptor alpha (PPARα) and its 

target gene carnitine palmitoyltransferase 1 (CPT1), suggesting that this phytochemical 

may act as a PPARα agonist that promotes fatty acid oxidation. Also interesting was the 
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finding that the carbohydrate-induced raise of intestinal cholesterol uptake was 

prevented by RA via downregulation of Niemann-Pick C1-Like 1 (NPC1L1) in brush-

border membrane (BBM). Our study shows that SFT and RA are promising agents for 

regulating lipid metabolism in response to dietary carbohydrates and may contribute to 

maintaining lipid homeostasis and prevent MetS and related disease progression. 

 

Key words: Salvia fruticosa – rosmarinic acid – lipid profile – PPARα - NPC1L1 

 

 

1. Introduction 

 

De novo lipogenesis links carbohydrate and lipid metabolism, the two energy 

reserves for the human body (Shiota and Magnuson, 2008). Any disruption in those 

metabolic processes results in serious changes in carbohydrate and lipid metabolism that 

may ultimately lead to disease development. The metabolic syndrome (MetS) is a 

cluster of metabolic abnormalities characterized by the coexistence of insulin resistance, 

visceral obesity, hyperglycaemia, hypertension and dyslipidemia (Laakso, 2001, Alberti 

and Zimmet, 2006, Mazzone et al., 2008). Visceral obesity and insulin resistance have 

been considered the major underlying contributors to MetS progression and this 

syndrome is associated with increased risk of developing cardiovascular diseases 

(CVDs) and type 2 diabetes mellitus (T2DM) (Balkau et al., 2007, Fulop et al., 2006). 

High-fat diets are well-known to promote insulin resistance, increase body weight 

and body fat, hepatic steatosis and also impair repression of hepatic gluconeogenesis in 

rodent animals, while humans administrated with hypocaloric, low-fat diets showed to 

reduce lipid content in the liver (Petersen et al., 2005, Buettner et al., 2006, Marra et al., 

2008). In addition, general increases in the consumption of carbohydrates are also 

correlated with metabolic disturbances leading to hyperlipidemia and hypertension in 

rodents (Hwang et al., 1987, Kasim-Karakas et al., 1996). When delivered to the liver in 

large quantities, glucose can be converted into fatty acids, which are then stored as 

triglycerides within the hepatocytes and/or exported into the blood as very low-density 

lipoprotein (VLDL). Thus, increased fat depots in the liver are highly related with 

increased serum low-density lipoprotein (LDL) and triglycerides, in combination with 

decreased high-density lipoprotein (HDL). 
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Dietary carbohydrates are also involved on the regulation of multiple lipogenic 

genes through the activation of transcription factors such as the carbohydrate responsive 

element-binding protein (ChREBP), a key moderator of glucose action in the regulation 

of lipogenic genes. In fact, inhibition of the hepatic ChREBP improved insulin 

resistance in ob/ob mice (Dentin et al., 2006, Iizuka et al., 2006) and prevented the 

transcriptional activation of glycolitic enzymes, such as Liver-type pyruvate kinase (L-

PK) and lipogenic enzymes, like acetyl-CoA carboxylase (ACC) and fatty acid synthase 

(FAS) (Dentin et al., 2004, Connor and Connor, 1997, Katan et al., 1997).  

Additionally, the absorption of dietary carbohydrates also leads to changes in the 

pancreatic hormone insulin, which is known to stimulate lipogenesis (lipid synthesis) 

through a pathway that involve members of the family of transcription factors called the 

sterol regulatory element binding proteins (SREBPs), namely the SREBP-1c  (Foretz et 

al., 1999, Azzout-Marniche et al., 2000, Shimomura et al., 1999b, Osborne, 2000). To 

date, three SREBP isoforms have been identified: SREBP-1a (more commonly found in 

cultured cells) and SREBP-1c, both protein products from a single gene, and SREBP-2. 

SREBPs isoforms are regulated by nutritional signals and intracellular cholesterol 

content. Under low-sterol levels, SREBP precursor is escorted from the endoplasmic 

reticulum (ER), where they are retained after translation, to the Golgi apparatus to be 

activated by proteolitic cleavage. Afterwards, the mature SREBP migrates to the 

nucleus where it targets the transcription of lipogenic and cholesterolgenic genes 

(Anderson, 2003, Rawson, 2003). While SREBP-1a isoform seems to be implicated in 

both lipogenic and cholesterogenic pathways (Eberle et al., 2004, Inoue et al., 2005, 

Amemiya-Kudo et al., 2002), SREBP-1c controls the transcriptional expression of genes 

involved in de novo fatty acid synthesis (like ACC and FAS) (Shimomura et al., 1997, 

Horton et al., 2002, Eberle et al., 2004). In contrast, SREBP-2 is a major regulator of the 

transcription of genes required for cholesterol uptake and synthesis (such as the 3-

hydroxy-3-methylglutaryl coenzyme A reductase [HMGCR] and the low-density 

lipoprotein receptor [LDLR]) (Wong et al., 2006). HMGCR is responsible for 

converting HMG CoA into mevalonate, the rate-limiting step in the hepatic and 

intestinal de novo cholesterol pathway (Endo, 1992). Hepatic cholesterol synthesis is 

controlled by the quantity of dietary cholesterol that enters the liver, through hepatic 

surface receptors (like LDLR), via the chylomicron remnant pathway (Dietschy et al., 

1993). Hence, alterations in intestinal cholesterol metabolism will be reflected in the 

hepatic cholesterol synthesis. SREBP-2 is also a regulator of the intestinal Niemann-
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Pick C1-Like 1 (NPC1L1) cholesterol transporter, the molecular target of the intestinal 

cholesterol absorption inhibitor ezetimibe, that plays a crucial role in the maintenance of 

cholesterol homeostasis (Turley, 2008, Pramfalk et al., 2010). Through inhibiting the 

activity of intestinal NPC1L1, ezetimibe decreases sterol uptake and depresses plasma 

LDL cholesterol levels (Altmann et al., 2004, Davis et al., 2004, Goldberg et al., 2006). 

Thus, knowledge of whether lipid metabolism can be modified by diet composition, 

namely by carbohydrates, becomes pivotal to better understand the molecular 

mechanisms behind metabolic disorders and find new and more reliable therapeutical 

approaches. 

In recent decades we have seen a renewed interest in traditional plant as new 

complementary and natural types of medicine, for the prevention and treatment of 

several diseases. Traditional medicine has empirically identified plants with lipid-

lowering properties that provide good source material for the search of novel active 

compounds. We have recently reported that Salvia officinallis extract (prepared as a tea, 

[SOT]) consumption improves the lipid profile of normolipidemic subjects, by 

promoting a decrease in plasma total and LDL cholesterol and an increase in HDL 

cholesterol (Sa et al., 2009). These findings were recently corroborated in a randomized 

double-blind placebo-controlled clinical trial (Kianbakht et al., 2011). Although several 

reports documented the anti-inflammatory (El-Sayed et al., 2006, Kaileh et al., 2007), 

antioxidant (Exarchou et al., 2002) and hypoglycaemic (Karousou R et al., 2000) 

properties of Salvia fruticosa (Greek sage), its effects on lipid metabolism remains to be 

elucidated. The main phenolic compound of S. officinalis and S. fruticosa (sage) plants 

is rosmarinic acid, RA (contributing to 70% and 72% of all phenolic compounds present 

in both sages, respectively), which is also a common constituent of culinary herbs such 

as rosemary (Rosmarinus officinalis L.) (Al-Sereiti et al., 1999) and mint (Mentha 

arvense L.) (Ellis and Towers, 1970). A recent finding showed that both S. fruticosa 

(SFT) and RA aqueous extracts may modulate the trafficking of the intestinal sodium-

glucose cotransporter 1 (SGLT1) and contribute to the control of plasma glucose levels 

(Azevedo et al., 2011). These evidences conduced us to the study present herein, where 

the effects of both SFT and RA drinking on several mediators of the lipid metabolism 

were evaluated, in response to dietary carbohydrates. 
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2. Materials and Methods  

 

2.1 Reagents and antibodies 

 

Rosmarinic acid, anti-β-Actin antibody, Bradford reagent, HMGCR assay kit, Tri 

Reagent (Trizol eq.) as well as all other reagents were from Sigma-Aldrich (St. Louis, 

MO, USA), unless otherwise specified. Commercial kits to quantify total cholesterol, 

LDL and HDL cholesterol and triglycerides were purchased from Spinreact (Girona, 

Spain). The commercial Rat Insulin ELISA Kit was acquired from Shibayagi Co., Ltd, 

(Gunma, Japan). Antibodies against phospho-ACC, total ACC, FAS and phospho-

AMPK were purchased from Cell signalling (Danvers, MA, USA). The anti-AMPK 

total, anti-NPC1L1 and anti-PEPCK antibodies were purchased from Santa Cruz 

Biotechnology, Inc. (Santa Cruz, CA, USA). Antibody against PCNA was obtained 

from Abcam (Abcam, Cambridge, UK). Secondary antibody HRP goat anti-mouse was 

obtained from Santa Cruz Biotechnology, Inc. and the goat anti-rabbit was purchased to 

Cell signalling. All others reagents were of analytical grade.  

 

2.2. Plant material and preparation of SFT 

 

Salvia fruticosa plants, grown in an experimental farm located in Merelim, Braga, 

Portugal, were collected in June, 2004. The aerial parts of plants were air-dried and kept 

at -20°C with the accession number SF062004, under the responsibility of the Centre for 

the Research and Technology of Agro-Environmental and Biological Sciences 

(CITAB), University of Minho. Voucher specimen is also kept in an active bank in 

Braga, Portugal, also under the accountability of CITAB.  

SFT was routinely prepared as formerly described (Lima et al., 2005) by pouring 

150 ml of boiling water onto 2 g of the dried plant material and allowing it to steep for 5 

min. The preparation produced a 2.8 ± 0.1 mg of extract dry weight per ml of infusion 

(0.28% w/v) and a yield of 19.1% w/v in terms of initial crude plant material of SF. 

Subsamples of freeze-dried extract (0.01 g) were redissolved in 1 ml of ultrapure Milli 

Q water and aliquots of 20 ml were injected into the HPLC/DAD system and analyzed 

as previously described (Santos-Gomes et al., 2002). RA (577.29 µg/ml), 6-

hydroxyluteolin-7-glucoside (104.78 µg/ml) and a heteroside of unidentified flavones 

(99.13 µg/ml) were the most representative phenolic compounds (Azevedo et al., 2011). 
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2.3. Animals 

 

Male Wistar rats (6 weeks old) were acquired from Charles River Laboratories 

(Barcelona, Spain) and kept in the authorized animal facilities of the Life and Health 

Sciences Research Institute (ICVS) from University of Minho. The animals were 

maintained under controlled temperature (20 ± 2ºC) and humidity (55 ± 10%) with a 12 

h light/12 h dark cycle, and given food and tap water ad libitum. Animals were kept and 

handled in accordance with the NIH guidelines for the experimental use and care of 

laboratory animals by authorized investigators by the Direcção Geral de Veterinária 

(DGV), Portugal, and the experiment approved by the university’s ethics committee that 

follows NIH guidelines (NIH Publication No.80-23; revised 1978) for the experimental 

use and care of laboratory animals. 

 

2.4. Experimental outline 

 

The experiment was conducted with thirty male rats that were subjected to dietary 

carbohydrate manipulation. Diet composition is presented in Table 1, where the normal 

rat chow (UAR-A04 chow diet, Reus, Spain) with 60.3% carbohydrates was considered 

the high carbohydrate (Hc) diet and the soybean diet with 28.0% of carbohydrates was 

referred as low carbohydrate (Lc) diet (soybean meal 47.5, Cargill S.A.C.I., Buenos 

Aires, Argentina, kindly supplied by NANTA, Fábricas de Moagem do Marco S.A., 

Marco de Canaveses, Portugal).  

Animals were divided into five groups of six animals each: group 1 - rats fed with 

water and food (normal rat chow – referred as Hc diet) ad libitum for 14 days; group 2 – 

rats fed with water and food (Hc) ad libitum for 7 days, which followed a soybean diet 

(Lc diet) replacing the normal rat chow ad libitum for 7 additional days; group 3 – rats 

treated as the group 2, and afterwards fed for additional 4 days with water and Hc diet 

ad libitum (HcW group); group 4 – rats were treated as in group 2, followed by 4 

additional days feeding with daily fresh SFT (replacing the water drinking) and Hc diet 

ad libitum (HcSFT group) and finally group 5 – rats treated as the group 4, with daily 

fresh RA solution replacing the SFT drinking (HcRA group). 
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Table 1. Composition of the different diets used in the study (approximately values in %). 

 

 
Hc diet Lc diet 

Carbohydrate 60.3 28.0 

Protein 15.4 47.5 

Fibre 4.1 4.2 

Fat 2.9 2.0 

Ash 5.3 6.3 

Water 12 12 

 

 

The RA solution was prepared by diluting RA in tap water to the same 

concentration found in the SFT (577 µg/ml). Food and beverage consumption, or animal 

body weight were not modified by the replacement of water by SFT or RA. The 

experimental outline is represented in Figure 1. At the end of the treatment, animals 

were sacrificed by decapitation and liver and intestinal mucosa samples were collected, 

frozen in liquid nitrogen and kept at -80ºC for further analyses. Blood samples were also 

collected to measure plasma insulin and lipid profile (total cholesterol, LDL cholesterol, 

HDL cholesterol and triglycerides). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Experimental outline of the study. Animals were fed a high-carbohydrate (Hc) and/or a low-

carbohydrate (Lc) diets and given either water (W), Salvia fruticosa extract (SFT) or rosmarinic acid (RA) to 

drink according to the figure. 
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2.5. Characterization of lipid profile and hepatic triglyceride content 

 

Total cholesterol, LDL and HDL cholesterol and triglycerides levels were 

measured in rat plasma using spectrophotometric commercial kits (Spinreact), according 

to the manufacturer’s specifications. Hepatic triglycerides were also measured by the 

same spectrophotometric procedure.  

 

2.6. Plasma insulin measurement 

 

Rat plasma insulin levels were measured using an ELISA-based commercial kit 

(Shibayagi Co.), following the manufacturer’s specifications. 

 

2.7. RNA extraction and quantitative real-time PCR (qPCR) 

 

Total RNA was isolated from liver samples using Tri Reagent (Sigma-Aldrich), 

according to the manufacturer’s recommended procedures. Concentrations and purity were 

verified by measuring optical density at 260 and 280 nm and 1 µg RNA was reversed 

transcribed into cDNA using iScript cDNA Synthesis Kit (Bio-Rad Laboratories, Inc., 

Hercules, CA, USA) according to the manufacturer’s protocol. cDNA integrity was checked 

by agarose gel electrophoresis. Quantitative gene expression analysis was performed using 

SYBR Green technology (SsoFast EvaGreen supermix) and the CFX96 Real-Time system 

(both from Bio-Rad). All samples were amplified as duplicates using the following 

conditions: an initial denaturation step (3 min at 95°C) followed by 40 cycles of 10 s at 

95°C and 30 s at 60°C. Specific primers used were designed using Nucleotide BLAST tool 

of the National Center for Biotechnology Information (NCBI) and were manufactured by 

STAB VIDA (Portugal). Their sequences are described in Table 2. Each assay included a 

relative standard curve constructed from serial dilutions of cDNA from control samples. 

Target genes' transcript levels were all normalized to β-Actin mRNA levels and relative 

expression values of the control (Hc group) were set to 1. 

 

2.8. Liver homogenates  

 

A small amount of liver was homogenized in cold lysis buffer (0.5% NP-40 in 50 

mM Na2HPO4, pH 7.4, 150 mM NaCl2, 2 mM EDTA,) containing protease (1 mM 

phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin) and phosphatase (20 mM NaF, 20 
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mM Na3VO4) inhibitors, added just before use. The homogenate was then centrifuged at 

10,000 × g at 4°C for 10 min and the supernatant collected. The amount of protein was 

measured by the Bio-Rad DC protein assay, following manufacturer instructions, using 

BSA as a standard. 

 

Table 2. Primers used in this study for qPCR. 

Gene Sequences 
Product 

size (bp) 
Efficiency 

SREBP-1 

 

Sense: AGCGCTACCGTTCCTCTAT 

Antisense: GCGCAAGACAGCAGATTTAT 

 

 

95 2.10 

SREBP-2 

 

Sense: ATTCCCTTGTTTTGACCACGC 

Antisense: TGTCCGCCTCTCTCCTTCTTTG 

 

 

248 2.10 

PPARα 

 

Sense: GATTCGGAAACTGCAGACCTC 

Antisense: TAGGAACTCTCGGGTGATGA 

 

 

444 2.01 

CPT1 

 

Sense: CAGGATTTTGCTGTCAACCTC 

Antisense: GAGCATCTCCATGGCGTAG 

 

162 2.10 

LDLR 

 

Sense: GCATCAGCTTGGACAAGGTGT 

Antisense: GGGAACAGCCACCATTGTTG 

 

 

114 2.05 

HMGCR 

 

Sense: AGTGATTGTGTCAGTATTATTGTGGAAG 

Antisense: GGTACTGGCTGAAAAGTCACAA 

 

 

91 2.00 

ChREBP 

 

Sense: CTGGTGTCTCCCAAGTGGAA 

Antisense: CACCGCTGAAGAGGGAGTCAACCA 

 

 

700 2.42 

β-Actin 

 

Sense: AGAGGGAAATCGTGCGTGAC 

Antisense: CAATAGTGATGACCTGGCCGT 

 

 

138 2.04 
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2.9. Isolation of brush-border membranes (BBMs)  

 

BBMs were isolated from frozen jejunal mucosal scrapings using a combination 

of cation precipitation and differential centrifugation as previously reported (Azevedo et 

al., 2011). BBMs were then frozen in liquid nitrogen and stored at -80ºC until use. 

Protein content was measured with the Bradford Reagent (Sigma-Aldrich), with BSA as 

a protein standard. 

 

2.10. Western blot analysis 

 

Twenty five to forty micrograms of protein of each sample were resolved in SDS-

polyacrylamide gel and then transferred onto Hybond-P polyvinylidene difluoride 

membranes (GE Healthcare, Buckinghamshire, UK). Membranes were blocked in 5% 

(w/v) non-fat dry milk in TPBS (0.05% (v/v) Tween 20 in PBS, pH 7.4), washed in 

TPBS and then incubated overnight with primary antibody. After washing, membranes 

were incubated with secondary antibody and immunoreactive bands were detected using 

the Immobilon solutions (Millipore, Billerica, MA, USA) under an imaging 

densitometer, the ChemiDoc XRS (Bio-Rad). Band area intensity was quantified using 

the Quantity One software from Bio-Rad. β–Actin was used as loading control. 

 

2.11. HMGCR activity in vitro assay 

 

The effects of SFT and RA in the in vitro activity of the HMGCR enzyme were 

determined using a commercial kit from Sigma-Aldrich, following the manufacturer’s 

specifications. RA was dissolved in DMSO (final concentration in the assays of 0.5% 

(v/v)), whereas SFT powder was prepared in water. To exclude possible effects, DMSO 

and water were used in the assay as controls. A statin (pravastatin, 0.5 μM) was used as 

an inhibitor control of the enzyme activity. 

 

2.12. Statistical Analysis  

 

Data are presented as means ± SEM. For statistical analysis, GraphPad Prism 4.0 

software (San Diego, CA, USA) was used. Student’s t-test was used to compare 

differences within the different carbohydrate groups (Hc-Hc, Hc-Lc and Hc-Lc-HcW 

groups) and to compare differences between the in vitro activity of HMGCR and the 
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compounds tested. One-way ANOVA followed by the Newman–Keuls multiple 

comparison test was employed to compare different drinking treatments (Hc-Lc-HcW, 

Hc-Lc-HcSFT and Hc-Lc-HcRA groups). Statistical significance was assumed for P 

values ≤ 0.05. 

 

3. Results 

 

3.1. SFT drinking but not RA increases plasma HDL cholesterol levels in rats fed a Hc 

diet 

 

As shown in Figure 2 feeding the Lc diet for 7 days produced a significant 

reduction in plasma total cholesterol (16%), LDL (19%) and HDL cholesterol (16%) 

levels, whereas the reintroduction of the Hc diet returned all parameters, except the LDL 

cholesterol, to the control levels. SFT and RA treatment did not modify total cholesterol 

(Figure 2A) neither LDL cholesterol levels (Figure 2B). However, SFT significantly 

induced a significant enhancement of plasma HDL cholesterol levels (by 21%), 

compared to the control (Figure 2C). A slight decrease in LDL/HDL ratio was also 

observed in SFT group (Figure 2D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Effects of dietary carbohydrates, SFT and RA on rat plasma total cholesterol [A], LDL 

cholesterol [B], HDL cholesterol [C] and LDL/HDL ratio [D]. Values are means ± SEM of at least six 

animals. Effect of carbohydrate diet: groups with the same letter notation are not significantly different 

from each other (P > 0.05). Effect of beverage: *P ≤ 0.05 when compared to HcW group and 
#
P ≤ 0.05 

when compared HcSFT and HcRA group.   
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Hepatic and plasma triglyceride levels were also measured in the rat liver 

homogenates. As depicted in Figure 3A, neither the carbohydrate composition of the 

diet nor the drinking of SFT or RA modified the hepatic triglyceride content of the 

studied animals. Conversely, plasma triglyceride levels increased significantly in 

animals submitted to the Lc diet (Figure 3B), while the reintroduction of the Hc diet 

reduced plasma triglyceride to levels lower than the control. Four days of the 

reintroduction of the Hc diet with SFT or RA in replacement of water, did not alter 

significantly plasma triglyceride levels (Figure 3B). 

 

 

 

 

 

 

 

 

 

Figure 3. Hepatic [A] and plasma 

triglyceride [B] content of animals 

submitted to a dietary carbohydrate 

manipulation and to the drinking of SFT or 

RA. Values are means ± SEM of at least six 

animals. Effect of carbohydrate diet: groups 

with the same letter notation are not 

significantly different from each other (P > 

0.05).  

 

 

3.2. SFT and RA drinking significantly affect plasma insulin levels in rats fed a Hc diet 

 

The animals fed the Lc diet showed a 56% reduction in plasma insulin levels 

when compared with the Hc group (Figure 4). The reintroduction of the Hc diet 

returned plasma insulin to control levels. In SFT and particularly RA treated animals, 

plasma insulin levels remained significantly low compared to the control HcW group 

(30% and 73% decline, respectively), as showed in Figure 4. This result supports our 

previous observations in which RA showed to prevent the return of plasma glucose to 
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control levels (P ≤ 0.01), whereas SFT only showed to stabilize it (Azevedo et al., 

2011). 

 

 

 

 

 

 

 

 

Figure 4. Effects of dietary carbohydrates, SFT and RA on rat plasma insulin. Values are means ± SEM 

of at least six animals. Effect of carbohydrate diet: groups with the same letter notation are not 

significantly different from each other (P > 0.05). Effect of beverage: *P ≤ 0.05 and ***P ≤ 0.001 when 

compared to HcW group. 
# #

P ≤ 0.01 when compared HcSFT and HcRA group.    

 

 

3.3 RA significantly increases PPARα and CTP1 mRNA levels in rat hepatocytes 

 

In order to characterize the effects of both SFT and RA drinking in the animal’s 

response to dietary carbohydrates, mRNA expression of several genes involved in lipid 

metabolism was analysed by quantitative real-time PCR. The Lc diet significantly 

affected only the SREBP-1 mRNA levels, where a 60% decline on gene expression was 

observed (Figure 5A). RA treatment not only inhibited the recovery but it almost 

abolished SREBP-1 mRNA expression (96% decline). RA also increased the expression 

of PPARα and CPT1 (in 3.1 and 5.1 fold, respectively), strongly indicating a role of RA 

on cellular lipolytic processes (Figure 5B and C). Moreover, and despite only slightly 

decreasing SREBP-2 gene expression (Figure 5D), 4 days of RA drinking showed to 

significantly decrease the mRNA levels of both HMGCR and LDLR genes (65% and 

45% reduction, respectively) (Figure 5E and F). Four days of SFT drinking showed 

also to significantly reduce the HMGCR mRNA levels, by 39% (Figure 5E), but had no 

effects on PPARα, CPT1 and LDLR expression (Figure 5B, C and F). The ChREBP 

mRNA levels were however, significantly reduced by 4 days of SFT treatment (78% 

decline) (Figure 5G). 
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Figure 5. Effects of carbohydrate diet, SFT or RA treatment on  SREBP-1 [A], PPARα [B], CPT1 [C], 

SREBP-2 [D], LDLR [E], HMGCR [F] and ChREBP [G] mRNA expression levels. Values are means ± 

SEM of the studied animals. Effect of carbohydrate diet: groups with the same letter notation are not 

significantly different from each other (P > 0.05). Effect of beverage: *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 

0.001 when compared to HcW group. 
# #

P ≤ 0.01 and 
# # #

P ≤ 0.001 when compared HcSFT and HcRA 

group.    

 

 

3.4. SFT and RA affect differently the expression pattern of proteins involved in hepatic 

lipid and glucose metabolism  

 

To determine whether SFT or RA affect the expression of proteins involved in 

fatty acid metabolism, the hepatic levels of total and phosphorylated ACC, as well as 

FAS proteins were studied by western blot. Lc diet induced a significant decrease in 

phospho-ACC/total ACC ratio and in FAS (75%) protein expression levels (Figure 6A, 

B and D). Four days of the reintroduction of the Hc diet (HcW group) did not bring 

phospho-ACC/total ACC protein ratio to the control (Hc group) levels and also 

modifications in the SFT and RA groups were not observed (Figure 6A and D). 

However, the expression of FAS protein increased with the reintroduction of Hc diet to 

levels exceeding the control (Figure 6B and D). FAS protein expression was 
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significantly reduced with both SFT (26%) and particularly with RA treatments (42%) 

(Figure 6B and D). Since AMPK (AMP-activated protein kinase) is a modulator of 

ACC and FAS activity, total and phosphorylated AMPK expression levels were also 

assayed however, changes were not observed (data not shown). 

As expected, the Lc diet significantly increased the protein expression levels of 

the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK), and 4 days of 

the reintroduction of the Hc diet returned almost completely PEPCK to control levels 

(Fig. 6C and D). The effect was more pronounced in the SFT group (Figure 6C and D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Western blot analysis of phosphorylated and total ACC [A], FAS [B] and PEPCK [C] proteins 

in rat liver homogenates. Representative blots and corresponding loading control (β-Actin) of the 

experiments [D]. Values are means ± SEM of at least six animals. Effect of carbohydrate diet: groups 

with the same letter notation are not significantly different from each other (P > 0.05). Effect of beverage: 

*P ≤ 0.05 and **P ≤ 0.01, when compared to HcW group.    

 

3.5. RA affects the expression levels of the NPC1L1 transporter at BBM 

 

In order to determine the effects on intestinal cholesterol absorption, the BBM 

expression of NPC1L1 protein was assayed. RA significantly reduced the expression of 

NPC1L1 protein after the reintroduction of the Hc diet (Figure 7A and C). Both SFT 

and RA drinking as well as the dietary carbohydrate manipulation did not seem to affect 

the intestinal epithelial proliferation, since no effects on the expression of proliferating 
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cell nuclear antigen (PCNA) in intestinal homogenates were observed (Figure 7B and 

D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Western blot analysis of NPC1L1 transporter [A] at the enterocytic BBM and PCNA [B] 

protein in intestinal whole cell homogenates. Representative blots and corresponding loading control (β-

Actin) of the experiments [C and D]. Values are means ± SEM of at least six animals. Effect of 

carbohydrate diet: groups with the same letter notation are not significantly different from each other (P > 

0.05). Effect of beverage: *P ≤ 0.05 when compared to HcW group and 
#
P ≤ 0.05 when compared HcSFT 

and HcRA group. 

 

 

3.6. RA reduces significantly the in vitro activity of HMGCR  

 

In order to determine the ability of SFT and RA to inhibit cholesterol endogenous 

synthesis, their effects on the in vitro activity of HMGCR were determined. A 

significant decrease of the enzyme’ activity was observed for 100 µM and particularly 

for 10 µM of RA (32% and 40% decline, respectively) (Figure 8). Although not 

significant, SFT showed a similar inhibition pattern to RA for the 10 and for 100 µM 

extract concentrations (with 28% and 24% reduction, respectively) (Figure 8). 

However, the pharmacological drug, pravastatin (0.5 μM), showed to be the most 

effective inhibitor of the in vitro activity of HMGCR (80% inhibition) (Figure 8). 
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Figure 8. Effects of RA and SFT on HMGCR in vitro activity. Concentrations are expressed in µM for 

RA and μg/ml for SFT. Pravatatin (0.5 μM) was used as an inhibitor of HMGCR activity. Values are 

means ± SEM, n=3. *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 when compared to the control. 
a
P = 0.06 

when compared with the control. 

 

Discussion  

 

The present study demonstrated that SFT drinking promote an enhancement on 

plasma HDL cholesterol levels in animals fed a Hc diet. The mechanism behind this 

beneficial effect still poorly understood and demand further investigations however, our 

data arises promising since there are limited available agents for increasing the levels of 

these lipoproteins (Greenfeder, 2009). In addition, the lack of effects of both SFT and 

RA drinking on plasma triglyceride, total and LDL cholesterol and hepatic triglyceride 

levels may suggest that treatment for longer periods of time may be required to verify 

changes at these levels.  

We have recently reported that two weeks of SFT drinking stabilized fasting blood 

glucose levels without affecting plasma insulin or liver glycogen content in 

streptozotocin-diabetic rats (Azevedo et al., 2011). This study also revealed that, while 

RA drinking reduced plasma glucose levels, SFT and particularly RA drinking 

significantly prevented the carbohydrate-induced adaptive increase of the BBM SGLT1 

protein (Azevedo et al., 2011). The study here presented showed that SFT and more 

particularly RA, prevented the return of plasma insulin to control levels, during 4 days 

of the reintroduction of the Hc diet. Fructose-fed hypertensive rats were recently used to 

demonstrate that RA may be an effective substance in preventing insulin resistance and 

consequently CVDs onset. The authors found that RA supplementation reduced 
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oxidative and myocardial injury, enhanced insulin sensitivity and diminished lipid levels 

in those animals (Karthik et al., 2011). RA also showed to improve insulin resistance by 

ameliorating the redox status of fructose-fed mice (Vanithadevi and Anuradha, 2008). 

Thus, the observed effects of both phytochemicals on insulin levels in response to 

dietary carbohydrates may prevent insulin resistance and thus delay or even repress 

several pathologies, including the MetS.  

A significant reduction of the hepatic FAS protein levels, the required enzyme for 

de novo lipogenesis was also mediated by both SFT and RA. Several reports showed 

that FAS expression is highly regulated at the transcriptional level through the 

combined action of ChREBP and SREBP-1 in response to glucose and insulin, 

respectively (Shimomura et al., 1999a, Dentin et al., 2005). In addition, 4 days of RA 

drinking showed to effectively decrease SREBP-1 gene expression, while 4 days of SFT 

treatment showed to diminish ChREBP mRNA levels. Considering these evidences, we 

suggest that fatty acid synthesis is prevented by two distinct mechanisms: through 

suppressing SREBP-1 expression (via RA) and by preventing ChREBP gene expression 

raises (via SFT) in response to dietary carbohydrates.  

Interestingly, RA significantly stimulated the mRNA levels of the peroxisome 

proliferator-activated receptor alpha (PPARα), a transcription factor highly expressed in 

tissues with high metabolic rates such as the liver, heart, skeletal muscle and the kidney 

(Mandard et al., 2004). Since PPARα plays a central role in the regulation of hepatic 

lipid metabolism by modulating fatty acid oxidation, lipoprotein metabolism, PPARα 

agonists are considered attractive potential therapeutic agents for preventing the 

development of lipid-related diseases (Kersten et al., 1999, Burri et al., 2010). In 

addition, RA also stimulated the hepatic mRNA levels of CPT1 suggesting that this 

phytochemical may act as a PPARα agonist and activates the transcription of lypolitic 

genes involved in fatty acid oxidation, and thus preventing fatty acid synthesis. 

The BBM cholesterol transporter NPC1L1 was significantly affected by RA 

drinking with the reintroduction of the Hc diet, indicating that this phenolic acid may 

inhibit the dietary cholesterol absorption, a similar outcome of the pharmacological drug 

ezetimibe. It has been reported that ezetimibe binds to intestinal BBM vesicles that 

contains NPC1L1 and does not bind to BBM vesicles from NPC1L1-deficient mice 

(Garcia-Calvo et al., 2005). Through suppressing the intestinal cholesterol absorption 

via NPC1L1 pathway RA, like ezetimibe, may not only reduce the delivery of fatty 

acids from the gut to extrahepatic tissues and cholesterol to the liver by the chylomicron 
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pathway and decrease the hepatic cholesterol secretion into bile (Wang et al., 2008), but 

also prevent intestinal fatty acid absorption (Labonte et al., 2008, de Bari et al., 2011). 

As showed in NPC1L1 knockout mice and in ezetimibe-treated animals, reduced 

cholesterol absorption leads to increased fecal cholesterol excretion and to endogenous 

cholesterol biosynthesis (Altmann et al., 2004, Davis et al., 2004). Patients under 

ezetimibe treatment prevented intestinal cholesterol absorption, an effect accompanied 

by a reduction on plasma LDL levels and a compensatory increase on hepatic 

cholesterol biosynthesis (Sudhop and von Bergmann, 2002). Therefore, the combined 

administration of ezetimibe and HMGCR inhibitors, like statins, offers a more efficient 

reduction in plasma total and LDL cholesterol and a powerful approach to prevent 

atherosclerosis onset (Gagne et al., 2002, Kerzner et al., 2003, Melani et al., 2003, 

Grigore et al., 2008). Both SFT and RA significantly decreased the hepatic HMGCR 

mRNA levels, whereas RA inhibited the hepatic in vitro activity of this enzyme. 

Additionally, RA also repressed the mRNA levels of the hepatic LDLR however, it only 

promoted a slight decrease on the SREBP-2 gene expression. The precise mechanism 

responsible for these evidences is under investigation however, our data suggests that 

RA is not the active principle responsible for the reported SFT-mediated effects since 

both natural products showed to differently affect de novo lipogenesis in response to 

dietary carbohydrates.  

The findings here reported not only proposed a link between glucose and lipid 

metabolism, but also demonstrated the beneficial effects of SFT and RA in preventing 

both intestinal glucose and cholesterol uptake and promoting fat oxidation in the liver, 

in response to dietary carbohydrates. Comparing the effects of these natural products 

with the lipid-lowering available drugs must be considered in further researches to 

evaluate their efficacy and safety, and may open the door to the finding of new 

pharmacological interventions that delay the onset of the MetS and its related 

pathologies and improve life quality. 
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Exploring the lipid-lowering effects of 
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4.1. Chapter overview 

 

Our recent findings demonstrated that L7G, a phytochemical particularly 

abundant in Salvia species, ameliorate the lipid profile of healthy animals by lowering 

plasma total and LDL cholesterol levels
1
. In this chapter we reported the potential 

mechanisms involved on the improvement of lipid profile and metabolism mediated by 

L7G. 

L7G treatment induced a significant increase on PPARα mRNA levels and its 

target gene CPT1, and showed a slight tendency to decrease SREBP-1 gene expression 

in the liver. Findings on protein levels of FAS, ACC and GRP78/BIP suggest the 

potential role of L7G in blocking SREBP-1 maturation and/or activity and ER stress 

activation in the liver, without activating proapoptotic signals. A significant reduction of 

HMGCR gene expression was mediated by L7G-supplemented diet. Moreover, the in 

vitro activity of the HMGCR enzyme was also repressed by L7G in a dose-dependent 

way however, pravastatin showed to be the most effective inhibitor of this enzyme 

activity.  

The potential lipid-lowering properties of L7G should be tested in further 

experiments however, the data here reported add promising evidences to this 

assumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Azevedo MF, Camsari C, Sa CM, Lima CF, Fernandes-Ferreira M and Pereira-Wilson C (2010) Ursolic acid and luteolin-7-
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4.2. Manuscript 2 
 

This chapter comprises the following manuscript: 

Carla M Sá, Marisa Azevedo and Cristina Pereira-Wilson (2012). The mechanisms 

behind the in vivo lipid-lowering effects of luteolin-7-glucoside (in preparation). 
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Abstract 

 

Lipids are crucial molecules for many biological processes in multicellular 

organisms. However, disruptions in whole-body lipid metabolism can lead to the onset 

of several pathologies such as cardiovascular diseases (CVDs) and type 2 diabetes 

mellitus (T2DM). The present work aimed to elucidate the molecular mechanisms 

behind the lipid-lowering effects of the flavonoide luteolin-7-glucoside (L7G) which 

showed to, further than a tendency to promote glycogen synthesis in the liver, reduce 

plasma glucose levels and improve plasma lipid profile in healthy rats. A potential role 

of L7G on regulating lipolytic processes such as fatty acid oxidation was suggested by 

the observed increase of PPARα and carnitine palmitoly transferase 1 (CPT1) gene 

expression. Dietary supplementation with L7G showed not only a tendency to decrease 

the hepatic gene expression of sterol regulatory element-binding protein-1 (SREBP-1), 

without affecting SREBP-2 mRNA levels, but also failed to induce the hepatic protein 

levels of FAS or ACC. A simultaneous upregulation of the 78 kDa glucose-regulated 

protein/immunoglobulin-binding protein (GRP78/BIP) chaperone was observed in 

animals submitted to L7G-supplemented diet, with no induction of proapoptotic signals 

through JNK or caspase-3 activation. Moreover, the HMG CoA reductase (HMGCR) 

gene expression was repressed by L7G, which was also able to inhibit the in vitro 

activity of this enzyme in a dose-dependent manner, albeit to a smaller extent than the 

conventional pravastatin. Convinced that more studies are required to the complete 

elucidation of the role of L7G on lipid metabolism, the work described herein added 

new evidences to our believe that including this phytochemical in diet may prevent 

T2DM and CVDs progression and contribute to general health improvement.  

   

Key words: Luteolin-7-glucoside – SREBP – PPARα – HMGCR 
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1. Introduction 

 

In multicellular organisms, lipids function as energy stores, are the major 

structural components of cellular membranes and precursors of vitamins, bile acids and 

steroid hormones (Desvergne et al., 2006; Eberle et al., 2004). Daily lipid requirements 

are obtained in diet or endogenously produced in a coordinated process that ensures 

lipid homeostasis. The endogenous synthesis of fatty acids and cholesterol in the liver is 

regulated by the sterol regulatory element-binding proteins (SREBPs) (Horton et al., 

2002). SREBPs are considered key regulators of lipogenesis since they are responsible 

for controlling fatty acid biosynthesis (SREBP-1) or regulating cellular cholesterol 

synthesis and uptake (SREBP-2) (Osborne, 2000; Peschel et al., 2007). When the 

intracellular sterol concentration is low, the inactive endoplasmatic reticulum (ER) 

membrane-bound SREBPs precursors are escorted to Golgi apparatus for proteolytical 

cleavage (Eberle et al., 2004). Once activated, SREBPs are translocated to the nucleus 

where it binds to sterol regulatory elements (SREs) and activates the transcription of 

several target genes including the 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR) and the LDL receptor (LDLR) (via SREBP-2) or the acetyl-CoA 

carboxylase (ACC) and fatty acid synthase (FAS) (via SREBP-1) (Amemiya-Kudo et 

al., 2002). SREBP-dependent lipogenesis is suppressed through AMP-activated protein 

kinase (AMPK)-dependent phosphorylation (Li et al., 2011). In addition, AMPK also 

increases the phosphorylation and consequent inactivation of ACC, leading to the 

inhibition of fatty acid synthesis and to the promotion of fatty acid oxidation through 

carnitine palmitolytransferase 1 (CPT1) activation (McGarry and Brown, 1997; Zhou et 

al., 2001). AMPK is also critical for the regulation of cholesterol synthesis since it 

phosphorylates and inactivates the rate-limiting enzyme of the process, the HMGCR 

(Clarke and Hardie, 1990; Corton et al., 1994; Henin et al., 1995; Steinberg and Kemp, 

2009). 

Despite all the crucial biological functions of lipids, imbalances in lipid 

homeostasis are strongly related to many pathological processes such as obesity, 

inflammation, cardiovascular diseases (CVDs), insulin resistance and type 2 diabetes 

mellitus (T2DM) (Pahan, 2006; Vergès, 2005). Diet is an important risk factor of these 

diseases but it may also contain constituents such as flavonoids, which have biological 
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properties, that can be used as potential therapeutic agents or to inspire the design of 

novel synthetic substances with improved pharmacological properties. 

We have recently demonstrated that the consumption of luteolin-7-glucoside 

(L7G), an abundant compound in plants of the genus Salvia (family Laminaceae) but 

also present in vegetables like celery, green pepper and lettuce (Arabbi et al., 2004; Kim 

et al., 2006b; Lin et al., 2007), ameliorates the lipid profile of healthy rats (Azevedo et 

al., 2010). Dietary L7G is normally biotransformed at the intestinal level in its aglycone 

luteolin (3’,4’,5,7-tetrahydroxyflavone), a widely spread flavonoide present in several 

plants ranging from edible to medicinal herbs (Lopez-Lazaro, 2009), to which 

antioxidant (Lima et al., 2006) and anticarcinogenic (Chang et al., 2005; Ko et al., 

2002) properties have been attributed. The in vitro lipid-lowering potential of luteolin 

has been recently demonstrated by the reduction of SREBP-1c and FAS gene 

expression and the increase of CPT1 expression in HepG2 probably owed to the 

activation of the AMPK pathway and its antioxidant properties (Liu et al., 2010). 

Despite being more abundant in diet, little is known about the effects of the 

glycosilated form on the regulation of lipid metabolism. Therefore, the present work 

aimed to explore the mechanisms behind the previous observed lipid-lowering effect of 

L7G-supplemented diet in healthy rats.  

 

2. Materials and Methods  

 

2.1 Reagents and antibodies 

 

Anti-β-Actin antibody, Bradford reagent, Tri Reagent (Trizol eq.), HMGCR assay 

kit as well as all other reagents were from Sigma-Aldrich (St. Louis, MO, USA), unless 

afore mentioned. Luteolin-7-O-glucoside was acquired from Extrasynthese (Genay, 

France). Antibodies against phospho-ACC, total ACC, phospho-Akt, total Akt, FAS and 

phospho-AMPK, were purchased from Cell signalling (Danvers, MA, USA). The anti-

AMPK total, anti-phospho-JNK, anti-JNK total and anti-caspase-3 antibodies were 

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA, USA). Secondary 

antibodies HRP goat anti-mouse was acquired from Santa Cruz Biotechnology, Inc. and 

the goat anti-rabbit was purchased to Cell signalling. All others reagents were of 

analytical grade.  
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2.2. Animals 

 

Male Wistar rats (6 weeks old) were acquired from Charles River Laboratories 

(Barcelona, Spain) and kept in the authorized animal facilities of the Life and Health 

Sciences Research Institute from University of Minho. The animals were maintained 

under controlled temperature (20 ± 2ºC) and humidity (55 ± 10%) with a 12 h light/12 h 

dark cycle, and given food and tap water ad libitum. Animals were kept and handled in 

accordance with the NIH guidelines for the experimental use and care of laboratory 

animals by authorized investigators by the Direcção Geral de Veterinária, Portugal, and 

the experiment approved by the university’s ethics committee that follows NIH 

guidelines (NIH Publication No.80-23; revised 1978) for the experimental use and care 

of laboratory animals. 

 

2.3. Experimental design 

 

Fifteen male rats were used and divided into two groups: control and L7G-

supplemented diet (Figure 1). The compound was mixed in a small piece of food and 

administered orally, once a day, for 7 consecutive days. Control group received vehicle 

only. The daily administrated dose (2 mg of L7G per kg of animal body weight) was 

based on estimations of physiological concentrations (Hertog et al., 1993). Water was 

given ad libitum to the animals during the experiment and the administration of L7G did 

not alter animal’s body weight (compared to control group) nor modified animal’s food 

and beverage consumption. Animals were sacrificed by decapitation and liver samples 

were collected, frozen in liquid nitrogen and kept at -80ºC for further analysis. 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of the experimental design of the study. 
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2.4. RNA extraction and quantitative real-time PCR (qPCR) 

 

Total RNA was extracted from liver samples using Tri Reagent (Sigma-Aldrich), 

following the manufacturer’s recommendations. RNA concentrations and purity were 

confirmed by measuring optical density (at 260 and 280 nm) and RNA was converted 

into cDNA using iScript cDNA Synthesis kit from Bio-Rad (Bio-Rad Laboratories, Inc., 

Hercules, CA, USA), according to the manufacturer’s recommended protocol. The 

integrity of cDNA was checked by agarose gel electrophoresis and the quantitative gene 

expression analysis was performed using SYBR Green technology (SsoFast EvaGreen 

supermix, Bio-Rad) and the CFX96 Real-Time system (Bio-Rad). The thermal cycler 

program was as follows: an initial denaturation step (3 min at 95°C) followed by 40 

cycles of 10 s at 95°C and 30 s at 60°C. The primers used, which sequences are 

described in Table 1, were designed using the Nucleotide BLAST tool of the National 

Center for Biotechnology Information (NCBI) and were manufactured by STAB VIDA 

(Portugal). Each assay included a relative standard curve constructed from serial 

dilutions of cDNA from control samples. Target genes' transcript levels were all 

normalized to β-Actin mRNA levels and expression values in the control were set to 1. 

 

2.5. Liver homogenates  

 

A small amount of liver was homogenized in cold lysis buffer (0.5% NP-40 in 50 

mM Na2HPO4, pH 7.4, 150 mM NaCl2, 2 mM EDTA,) containing protease (1 mM 

phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin) and phosphatase (20 mM NaF, 20 

mM Na3VO4) inhibitors added just before use. The homogenate was then centrifuged at 

10,000 × g at 4°C for 10 min and the supernatant collected. The amount of protein was 

measured using DC protein assay kit (Bio-Rad) following manufacturer instructions, 

using BSA as a standard. 

 

2.6. Western blot analysis 

 

Twenty five to forty micrograms of protein of each sample were resolved in SDS-

polyacrylamide gel and then transferred onto Hybond-P polyvinylidene difluoride 

membranes (GE Healthcare, Buckinghamshire, UK). Membranes were blocked in 5% 

(w/v) non-fat dry milk in TPBS (0.05% (v/v) Tween 20 in PBS, pH 7.4), washed in 

TPBS and then incubated overnight with primary antibody. After washing, membranes 
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were incubated with secondary antibody and immunoreactive bands were detected using 

the Immobilon solutions (Millipore, Billerica, MA, USA) under an imaging 

densitometer, the ChemiDoc XRS (Bio-Rad). Band area intensity was quantified using 

the Quantity One software from Bio-Rad. β–Actin was used as loading control. 

 

Table 1. Primers used in this study for qPCR analysis. 

 

Gene Sequences 
Product 

size (bp) 
Efficiency 

SREBP-1 

 

Sense: AGCGCTACCGTTCCTCTAT 

Antisense: GCGCAAGACAGCAGATTTAT 

 

 

95 2.10 

SREBP-2 

 

Sense: ATTCCCTTGTTTTGACCACGC 

Antisense: TGTCCGCCTCTCTCCTTCTTTG 

 

 

248 2.10 

PPARα 

 

Sense: GATTCGGAAACTGCAGACCTC 

Antisense: TAGGAACTCTCGGGTGATGA 

 

 

444 2.01 

CPT1 

 

Sense: CAGGATTTTGCTGTCAACCTC 

Antisense: GAGCATCTCCATGGCGTAG 

 

162 2.10 

LDLR 

 

Sense: GCATCAGCTTGGACAAGGTGT 

Antisense: GGGAACAGCCACCATTGTTG 

 

 

114 2.05 

HMGCR 

 

Sense: AGTGATTGTGTCAGTATTATTGTGGAAG 

Antisense: GGTACTGGCTGAAAAGTCACAA 

 

 

91 2.00 

β-Actin 

 

Sense: AGAGGGAAATCGTGCGTGAC 

Antisense: CAATAGTGATGACCTGGCCGT 

 

 

138 2.04 

 

2.7. HMGCR activity in vitro assay 

 

In order to determine the potential for L7G affecting the endogenous cholesterol 

synthesis, we measured the in vitro activity of HMGCR enzyme, using a commercial kit 

from Sigma-Aldrich, following the manufacturer’s specifications. L7G was dissolved in 

DMSO (final concentration in the assays of 0.5% (v/v)) and DMSO was used in the assay 

as control. A commercial statin (pravastatin, 0.5 μM) was used, as a negative control.  



CHAPTER 4 | E x p l o r i n g  t h e  l i p i d - l o w e r i n g  e f f e c t s  o f  l u t e o l i n - 7 -

g l u c o s i d e  

 119 | P a g e  

2.8. Statistical Analysis  

 

Data are presented as means ± SEM. For statistical analysis, GraphPad Prism 4.0 

software (San Diego, CA, USA) was used. Student’s t-test was used to compare 

differences between control and L7G treatment. P values ≤ 0.05 were considered 

statistically significant. 

 

3. Results 

 

3.1. L7G significantly increased liver PPARα and CPT1 gene expression, while 

decreasing HMGCR mRNA levels  

 

Quantitative real-time PCR was performed to evaluate the effects of L7G-

supplemented diet on some genes involved in lipid metabolism. Although it showed a 

slight tendency to decrease SREBP-1 mRNA levels (Figure 2A), L7G significantly 

increased the hepatic mRNA levels of PPARα (Figure 2B) and its target gene CPT1 

(Figure 2C) by 1.9 and 1.8 fold, respectively. Moreover, L7G reduced the hepatic 

HMGCR gene expression (Figure 2F), without significantly changing SREBP-2 and 

LDLR mRNA levels (Figure 2D and E, respectively).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The effects of L7G-supplemented diet on SREBP-1 [A], PPARα [B], CPT1 [C], SREBP-2 [D], 

LDLR [E] and HMGCR [F] gene expression.Values are means ± SEM, n=5. *P ≤ 0.05 when compared 

with the control group. 
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3.2. L7G modified differently the hepatic expression of proteins involved in lipid 

metabolism 

 

As illustrated in Figure 3A and D, L7G significantly decreased the hepatic 

phospho-ACC/total ACC ratio (17% decline), without affecting the protein levels of 

FAS (Figure 3B and D). This decline results not from a decrease on AMPK activation 

mediated by L7G (data not shown), but from an increase on total ACC protein (Figure 

3D), which may be explained by the potential role of this phytochemical to decrease the 

proteolytic cascade or to stimulate the synthesis of this protein. 

The hepatic protein levels of 78 kDa glucose-regulated protein/immunoglobulin 

binding  protein (GRP78/BIP), a Hsp70 chaperone located in the lumen of the ER, 

increased 1.53 fold with L7G treatment (Figure 3C and D). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Western blot analysis of the hepatic phosphorylated and total ACC [A)], FAS [B] and 

GRP78/BIP chaperone [C] in animals treated with L7G-supplemented diet, with representative 

immunoblots and corresponding loading control (β-Actin) [D]. Values are means ± SEM, n=5. *P ≤ 0.05 

and **P ≤ 0.01 when compared with the control group. 

 

 

Diet-supplemented with L7G did not change Akt expression nor did lead to JNK 

or caspase-3 activation (data not shown), withdrawing a possible induction of insulin-

resistance and/or proapototic signals in healthy rats.   
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3.3. L7G significantly inhibited the in vitro activity of HMGCR enzyme 

 

The in vitro activity of the HMGCR enzyme was significantly inhibited by L7G 

treatment in a dose-dependent way, achieving the maximal inhibitory potential with the 

100 μM concentration (**P ≤ 0.01) (Figure 4). However, the most effective inhibitor of 

HMGCR in vitro activity was pravastatin (***P ≤ 0.001) (Figure 4).       

 

 

 

 

 

 

 

 

 

Figure 4. Effect of L7G on the HMGCR in vitro activity. Pravastatin was used as an inhibitor of the 

enzyme activity. Concentrations of L7G and the inhibitor are expressed in µM. Values are means ± SEM, 

n=3. *P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 when compared to the control.  

 

Discussion  

 

The present work aimed to clarify the precise mechanism behind the previously 

observed lipid-lowering and health-improvement properties of L7G, which showed to 

decrease plasma total and LDL cholesterol levels and plasma glucose levels, while 

demonstrating a tendency to promote hepatic glycogen deposition possibly through 

glycogen synthase kinase-3 (GSK3) inhibition (Azevedo et al., 2010). 

Diet supplemented with L7G showed to significantly increase the mRNA 

expression of PPARα, a major regulator of the hepatic lipid metabolism, and its target 

gene CPT1. More than a promoter of fatty acid catabolism, ketogenesis, lipid transport 

and gluconeogenesis (Bernal-Mizrachi et al., 2003; Reddy and Hashimoto, 2001), 

PPARα also regulates the metabolism of lipoproteins through increasing HDL and 

decreasing LDL and VLDL levels (Fruchart et al., 1999). Thereby, this induction of 

PPARα expression may not only explain the previously observed decrease of plasma 

LDL cholesterol in these animals, but also suggest a potential role for L7G promoting 

fatty acid oxidation instead of fatty acid synthesis. 
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It has been recently demonstrated that fibrates and thiazolidinediones, agonists of 

PPARα and PPARγ respectively, reduced triglyceride synthesis in rat hepatoma through 

repressing SREBP-1 activation via up-regulation of Insig, a membrane protein of the 

ER that retains SCAP-SREBP complexes within this organelle (Konig et al., 2009). In 

addition, the up-regulation of GRP78/BIP, a major cellular target of the unfolded 

protein response (UPR) of the ER, also showed to reduce ER stress markers and repress 

SREBP-1c cleavage and the expression of SREBP-1c and SREBP-2 target genes in 

mice (Kammoun et al., 2009). The UPR is a biological adaptive response, activated 

through the accumulation of unfolded or misfolded proteins in the ER, which aims to 1) 

restore protein folding, through increasing ER chaperones and 2) decrease general 

protein translation and thus reducing the accumulation of unfolded proteins (Ron and 

Walter, 2007). Weber and colleagues (2004) demonstrated that PPARγ ligands induced 

ER stress activation through the expression of genes regulated by the UPR, such as 

Hsp70 and GRP78/BIP. The authors also found that ER stress activation protected β-

cells from harmfull effects of cytokines signalling suggesting a new protective potential 

for UPR activation (Weber et al., 2004). However, when the adaptation fails and/or 

under extreme/prolonged ER stress, the UPR prosurvival signals become proapoptotic 

(Kim et al., 2006a; Szegezdi et al., 2006; Xu et al., 2005). Taking this finds into 

account, we decide to analyse the effects of L7G on the hepatic GRP78/BIP protein 

expression and the results demonstrated that, this phytochemical, up-regulated this 

chaperone levels, without inducing proapoptotic signals through JNK or caspase-3 

activation. Moreover, L7G treatment not only failed to induce the hepatic protein levels 

of FAS or ACC, but also showed a tendency to decrease SREBP-1 mRNA levels, which 

may indicate a potential role for this phytochemical preventing SREBP-1 proteolytic 

cleavage and/or gene expression. Further research must be conducted in order to better 

clarify this potential role of L7G on SREBP-1 regulation although, the involvement of 

PPARα and/or GRP78/BIP activation should also be considered. 

SREBP-2 mRNA levels were not significantly modified by dietary 

supplementation with L7G. However, the expression levels of SREBP-2 target genes, 

LDLR and HMGCR, disclose an interesting pattern: while the former was not 

significantly modified under L7G treatment, the later may reflect a potential role for 

L7G reduce cholesterol endogenous synthesis. In fact, L7G significantly inhibited, in a 

dose-dependent way, the in vitro activity of the HMGCR, although in a less extent than 
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pravastin (statin).  These data may indicate a distinct transcriptional regulation for both 

LDLR and HMGCR genes that requires further investigation.  

The study reported herein added new insights on the lipid-lowering potential of 

L7G, a phytochemical highly abundant in several fruits and vegetables. Taken together, 

these evidences may assist our belief that L7G may activate or act as potential PPARα 

agonist and stimulate the expression of genes responsible for the previous lipid-

lowering effects. Additionally, L7G may exerts its effects by blocking the SREBP-1 

processing and/or expression and thus, inhibiting the consequent lipogenic action of this 

transcription factor. Studies are undergoing to elucidate the unanswered questions 

emerged with this work and to compare the effects of L7G here reported with the 

aglycone luteolin. 
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5.1. Chapter overview 

 

In a preceding study performed in our laboratory it was observed that SFT and 

particularly RA, significantly repressed the diet-induced boost of SGLT1 expression at 

the rat intestinal BBM
1
. However, no effects on the BLM levels of Na

+
/K

+
-ATPase and 

GLUT2 in whole cell homogenates were detected
1
. Based on these evidences and 

conscious that little is known about the molecular mechanisms of SGLT1 regulation and 

translocation from intracellular pools to the BBM in the enterocytes, we performed the 

work presented in this chapter.  

Butyrate (NaBu)-induced differentiated HT-29 cells and spontaneously 

differentiated Caco-2 cells were used, in order to choose the best in vitro model for 

study the intestinal cellular adaptations in response to glucose concentration and 

phytochemicals, like RA. The cellular growth and differentiation status of both cell 

lines seemed to be affected differently by glucose. NaBu increased the total expression 

of SGLT1 and GLUT2 proteins in HT-29 cells, especially grown under high glucose 

levels. A subcellular fractionation procedure revealed that NaBu increased the 

expression of SGLT1 at the BBM, whereas GLUT2 expression increased in the 

remaining membrane fraction. Nonetheless, RA did not inhibit the glucose-associated 

increase of BBM SGLT1 expression as demonstrated in vivo, under dietary 

carbohydrate manipulation. In addition, SGLT1 protein location and expression in HT-

29 cells did not seem to be modified by insulin. In Caco-2 cells, both SGLT1 and 

GLUT2 transporters seem to have the same intracellular location as observed in HT-29 

cells thought, no changes in their protein expression was observed after glucose and/or 

insulin exposure. Thus, glucose in medium was able to induce SGLT1 levels in the 

BBM of NaBu-differentiated HT-29 cells, but RA was unable to modulate it. 

Consequently and despite the value of HT-29 and Caco-2 cells for drug absorption 

studies, further work needs to be developed to clarify the regulation of SGLT1 by 

dietary constituents by using alternative experimental models and/or approaches than 

the ones already used. 

 

 

 

1 Azevedo MF, Lima CF, Fernandes-Ferreira M, Almeida MJ, Wilson JM and Pereira-Wilson C (2011) Rosmarinic acid, major 

phenolic constituent of Greek sage herbal tea, modulates rat intestinal SGLT1 levels with effects on blood glucose. Mol Nutr Food 

Res 55 Suppl 1:S15-25. 
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 5.2. Manuscript 3 
 

This chapter comprises the following manuscript: 

Carla M Sá, Cristovao F. Lima and Cristina Pereira-Wilson (2012). Glucose induces the 

levels of SGLT1 in the brush-border membrane of butyrate-induced enterocyte differentiation 

from HT-29 cells (in preparation). 
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Abstract  

 

 

Type 2 diabetes mellitus (T2DM) is assuming global alarming proportions. The 

need of novel interventions for controlling and preventing diabetes is rising, renewing 

the interest to search for new active compounds. In recent in vivo experiments, we 

confirmed the glucose lowering properties attributed by popular medicine to Salvia 

fruticosa plants (family Laminaceae) and its main phenolic compound rosmarinic acid 

(RA). In the present study, we aimed to establish an in vitro model to study mechanisms 

of regulation of sodium-glucose cotransporter 1 (SGLT1) response to dietary 

constituents, such as glucose, phytochemicals and insulin. For this purpose 

differentiated Caco-2 cells and butyrate (NaBu)-induced differentiated HT-29 cells were 

used, since they are often considered good in vitro models of the intestinal absorptive 

cells. Glucose seems to affect differently the cellular growth and differentiation patterns 

of both cell lines. In HT-29 cells, butyrate increased the levels of SGLT1 and GLUT2 

transporters, to a higher extent in the presence of high concentration of glucose in the 

medium. By subcellular fractionation, the increase of SGLT1 and GLUT2 by NaBu was 

at the apical (BBM) and on the remaining membrane fraction, respectively. Contrarily 

to previous in vivo experiments, RA did not prevent the increase of SGLT1 levels at 

BBM fraction. Insulin did not seem to affect SGLT1 protein location and expression in 

HT-29 cells. The same pattern of intracellular distribution of SGLT1 and GLUT2 was 

observed in Caco-2 cells, however, their protein expression was not affected by glucose 

nor insulin. Notwithstanding the general acceptance of Caco-2 and HT-29 cells for drug 

absorption studies, further work must be conducted in order to elucidate the previous 

observed RA-mediated effects on BBM SGLT1 expression.  
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Key words: Type 2 diabetes mellitus - sodium butyrate - SGLT1 - rosmarinic acid - 

glucose. 

 

1. Introduction 

 

Type 2 diabetes mellitus (T2DM) is a metabolic disorder strongly related to 

sedentary lifestyle and obesity, which is caused by defects in both insulin production 

and/or action (Curtis and Wilson, 2005; Hanhineva et al., 2010). The impact of diabetes 

and its associated complications are achieving massive medical and socioeconomic 

proportions owing to the economic burden but also to the lost of productivity as a result 

of diabetes-related premature morbidity and mortality (Stumvoll et al., 2005).  

Therefore, the search and implementation of new strategies to prevent or delay T2DM 

onset becomes pivotal. 

The maintenance of glucose homeostasis is of great physiological importance and 

also dependent on intestinal mechanisms. At the intestinal level, luminal glucose 

derived from digestible carbohydrates is absorbed by the sodium-glucose cotransporter 

1 (SGLT1), a high affinity glucose transporter that drives sugar transport across the 

brush-border membrane (BBM) of the enterocyte, using the electrochemical gradient of 

sodium (Wright et al., 2007). Sugar accumulation within the enterocytes is transported 

into the blood by facilitated diffusion through GLUT2, which is expressed at the 

basolateral membrane (BLM) (Wright et al., 2007). Intestinal sugar absorption is 

modulated by dietary carbohydrates since increasing digestible carbohydrates leads to a 

boost in SGLT1 and GLUT2 expression (Cheeseman and Harley, 1991). This increase 

in BBM SGLT1 is also observed in diabetes, where higher levels of intestinal glucose 

transporters, particularly SGLT1 at BBM, leads to an increase in intestinal glucose 

absorption and contributes negatively to increase blood glucose (Diamond et al., 1984; 

Dyer et al., 2002; Ferraris, 2001).  

Several medicinal plants have been reported to possess antidiabetic properties 

(Alarcon-Aguilar et al., 2002; Lima et al., 2006). Among them, species from the genus 

Salvia (family Laminaceae), including S. officinalis and S. fruticosa, have been 

empirically used since ancient times to treat diabetes. This popular belief has been 

corroborated by our previous experiments: 1) fourteen days treatment S. officinalis 

extract (SOT) enhances the hepatocyte responsiveness to insulin by decreasing hepatic 
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gluconeogenesis (Lima et al., 2006); 2) a pilot trial with non-diabetic female volunteers 

showed that SOT improves lipid profile, lymphocyte Hsp70 protein expression and 

SOD and CAT antioxidant activities (Sa et al., 2009), 3) streptozotocin-induced diabetic 

rats showed that S. fruticosa extract (SFT) reduces the diabetes-associated raise of the 

SGLT1 protein expression in BBM without affecting GLUT2 and Na
+
/K

+
-ATPase 

protein expression (Azevedo et al., 2011) and finally 4) diet-induced increase on BBM 

SGLT1 levels was remarkably inhibited by SFT drinking (Azevedo et al., 2011). 

Both Salvia species are rich sources of active compounds that confer its claimed 

medicinal and aromatic properties. Rosmarinic acid (RA) is the major phenolic 

compound present in SFT and SOT where it comprises around 72% and 70% of all 

phenolic compounds, respectively (Azevedo, 2008; Lima, 2006; Lima et al., 2007). 

Among the multiple biological activities described for RA (Petersen and Simmonds, 

2003), we have recently demonstrated that, this compound, seems to be an active 

constituent of Salvia species since it repressed the in vivo carbohydrate-induced 

adaptive increase of BBM SGLT1, an effect accompanied by a reduction in plasma 

glucose levels (Azevedo et al., 2011). 

Cellular in vitro approaches are usually used to explore the molecular mechanisms 

of phytochemicals. Regarding the human carbohydrate intestinal absorption, Caco-2 and 

HT-29 human colonocyte cell lines are often considered good in vitro models due to 

their ability to undergo differentiation into polarized epithelial cells in culture, and 

expressing distinctive brush-border enterocyte markers such as alkaline phosphatase, 

sucrase-isomaltase and aminopepetidase (Huet et al., 1987; Simon-Assmann et al., 

2007; Thomson and Wild, 1995). Babia and colleagues (1989) demonstrated that insulin 

stimulates glucose uptake and lactate production in a dose-dependent way in HT-29 

cells cultured in high glucose medium. In this condition, the authors also observed an 

increase in the levels of fructose 2,6-biphosphate which was followed by an increase in 

the glycolytic rate of these cells (Babia et al., 1989). Furthermore, it has been reported 

that, in Caco-2 cells, SGLT1 resides in microtubule-associated vesicles and responds 

rapidly and efficiently to mechanisms of vesicle trafficking (Khoursandi et al., 2004; 

Kipp et al., 2003). However, Khoursandi and colleagues (2004) suggested that 

additional mechanisms for SGLT1 regulation may coexist since they found that the 

subcellular distribution of SGLT1 was not altered in Caco-2 cells after exposure to 

either free or high D-glucose medium. 
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The present work aims to establish an in vitro model to study the mechanism of 

regulation of glucose transporters, particularly SGLT1 in response to dietary 

constituents, such as glucose and also insulin, to then test in vitro the effects of RA on 

SGLT1 expression. To study the mechanisms that regulate SGLT1 translocation from 

intracellular pools to the BBM, a subcellular fractionation approach was performed in 

sodium butyrate (NaBu)-induced differentiated HT-29 cells and spontaneously 

differentiated Caco-2 cells. 

 

2. Materials and Methods  

 

2.1 Reagents and antibodies 

 

Rosmarinic acid (RA), sodium butyrate (NaBu), RPMI medium, DMEM medium, 

antibiotic/antimicotic solution, Trypsin-EDTA solution (0.25%), MEM non-essential 

aminoacids solution (100x), insulin, D-mannitol, D-glucose, Bradford reagent and anti-

β-Actin antibody were acquired from Sigma-Aldrich (St. Louis, MO, USA). Fetal 

bovine serum (FBS) was obtained from Lonza (Verviers, Belgium). PNGase F was 

purchased from New England BioLabs Inc. (Herts, UK). Antibodies against p21, p27 

and the secondary antibody HRP anti-mouse were purchased from Santa Cruz 

Biotechnology (Santa Cruz, CA, USA). Two different antibodies raised against residues 

603-623 or to amino acids 402-422 of human SGLT1 (SGLT1a and SGLT1b, 

respectively) were bought from Abcam (Cambridge, UK). GLUT2 antibody was 

purchased from Chemicon/Millipore (Billerica, MA, USA). Phosphorylated Akt and 

total Akt were acquired from Cell signalling (Danvers, MA, USA). The secondary 

antibody HRP anti-rabbit was obtained from Cell Signaling (Danvers, MA, USA). All 

other chemicals or solvents were of analytical grade. 

 

2.2. Cell culture maintenance 

 

Caco-2 and HT-29 human colon carcinoma cells were kindly provided by Dr. 

Karsten Kristiansen (University of Copenhagen, Denmark). The cells were routinely 

maintained at 37ºC in a humidified 5% CO2 atmosphere and grown in DMEM 

supplemented with 10% FBS, 10 mM Hepes and 100 IU/ml antibiotic/antimicotic 
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solution. Caco-2 medium was supplemented with 1% non-essential aminoacids solution. 

The medium was renewed every 2 days. 

 

2.3. Differentiation to enterocytes 

 

Differentiation of Caco-2 and HT-29 cells to enterocytes were done by elsewhere 

published protocols (Chang et al., 2007; Engle et al., 1998; Hodin et al., 1996; Wang et 

al., 2001). In brief, Caco-2 cells were differentiated by growing cells at confluency 

continuously for at least 15 days. For HT-29 cell line, after cells reached confluence, 

differentiation was induced with 5 mM of NaBu for 2 days. In order to study the 

metabolic response of enterocytes to glucose using differentiated HT-29 cells, 

undifferentiated cells were routinely grown in RPMI medium containing 5.56 mM 

glucose (normoglycaemic medium) or 25 mM (hyperglycaemic medium) to resemble a 

physiological and a diabetic condition, respectively. The 5.56 mM glucose medium was 

adjusted with D-mannitol to maintain osmolarity of the hyperglycaemic condition. 

 

2.4. Cell counting 

 

During the exponential phase of cell growth, cell counting was performed in cells 

growing in the two different glucose concentration media. For that, cells were washed 

with PBS, harvested following trypsin-EDTA treatment, resuspended in culture media 

and then counted using a hemocytometer. Counts were performed after 48 and 72 h in 

culture. For the 72 h time point, culture medium was renewed after 48 h of culture. 

 

2.5. Alkaline phosphatase activity 

 

Alkaline phosphatase (ALP) activity was measured by using disodium p-

nitrophenyl phosphate as substrate as elsewhere (Pekarthy et al., 1972; Wright, 1977). 

In brief, cells were lysed in ice-cold 0.25% Triton X-100 with a brief sonication, and 

homogenate centrifuged at 10,000 x g, at 4ºC and during 10 min. The ALP activity of 

the cells was assessed spectrophotometrically following the formation of p-nitrophenol 

at 420 nm along the time on a plate reader (Spectra Max 340 pc, Molecular  Devices,  

Sunnyvale,  CA,  USA). Protein was quantified by the Bradford method (Sigma-

Aldrich). Enzyme activity was expressed in μmol p-nitrophenyl phosphate/min/mg 

protein. 
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2.6. Total protein extraction 

 

To prepare total cell homogenates, HT-29 cells were washed with PBS and lysed 

in ice-cold RIPA buffer (1% NP-40 in 150 mM NaCl, 50 mM Tris, pH 7.5, 2 mM 

EDTA), supplemented with 20 mM NaF, 20 mM Na3VO4, 1 mM phenylmethylsulfonyl 

flouride (PMSF) and protease inhibitor cocktail (Roche, Mannheim, Germany). Protein 

concentration was quantified using Bio-Rad DC protein assay (Bio-Rad Laboratories, 

Inc., Hercules, CA) with BSA as a protein standard. Equal amount of protein cell 

lysates (20 μg) were separated by SDS-PAGE.  

 

2.7. Deglycosylation assays 

 

N-linked deglycosilation of SGLT1 in Caco-2 and HT-29 cells was accomplished by 

treating the total cell homogenates with peptide-N
4
-(Nacetyl-β-glucosaminyl) asparagine 

amidase F, also known as PNGase F, from Flavobacterium meningosepticum, following 

manufacturer’s specifications. Cell lysates samples (corresponding to 20-30 μg protein) 

were solubilised, boiled for 5 min at 100ºC and  incubated for 2 h at 37ºC with 2,500 units 

of PNGase. Equal amount (20 μg) of these samples was separated by SDS-PAGE.  BBM 

rat protein sample was used as a positive control. 

 

2.8. Subcellular fractionation 

 

BBMs were isolated from the remaining membrane fraction (basolateral plasma 

membrane and internal membrane fraction) by MgCl2-induced membrane precipitation 

as elsewhere (Navas et al., 1989). In brief, cells grown in 10 cm petri-dishes until 

differentiation were washed and scraped with ice-cold PBS and left for 10 min in ice-

cold homogenisation buffer A (10 mM Hepes, pH 7.4, 15 mM KCl and 15 mM MgCl2, 

supplemented with 1 mM PMSF and 1 mM DTT) and subsequently homogenised with 

40 strokes of a Dounce-homogeniser using a tight-fitting pestle. Nuclei and entire cells 

were pelleted by centrifugation at 700 x g for 10 min at 4ºC. Then, supernatant 

(designated as whole cell homogenate fraction - WCHF), was centrifuged at 10,000 x g 

for 30 min at 4ºC to collect the supernatant (designated as brush-border membrane plus 

cytosolic fraction – BBMF + CF) and the pellet. This resultant pellet was then 

resuspended in 0.25% Triton X-100 and was designated as basolateral and internal 
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membrane fraction – BIMF. All fractions were subjected to SDS-PAGE after protein 

quantification using Bradford reagent. The loading of protein amount for each 

subcellular fraction was: WCHF (30 μg); BBMF + CF (20 μg) and BIMF (20 μg). This 

procedure outline is shown on Figure 1.    

 

 

 

 

 

 

Figure 1. Schematic representation of the outline used in the subcellular fractionation procedure. The 

cellular fractions used are indicated in the scheme: whole cell homogenate fraction (WCHF); brush-

border membrane and cytosolic fraction (BBMF + CF); basolateral and internal membrane fraction 

(BIMF). 

 

2.9. Western blotting 

 

Proteins were separated by SDS-PAGE and then transblotted onto to Hybond-P 

polyvinylidene difluoride membrane (GE Healthcare, UK). Membranes were then 

blocked in 5% (w/v) non-fat dry milk in TPBS (0.05% (v/v) Tween 20 in PBS, pH 7.4). 

Blotted membranes were probed with primary antibody and then detected by 

chemiluminescence using appropriate secondary antibodies and the reactive bands 

acquired with a ChemiDoc XRS (Bio-Rad) imaging densitometer. Band area intensity 

was quantified using the Quantity One image analysis software from Bio-Rad. β-Actin 

was used as a loading control.   

 

2.10. Statistical Analysis 

 

Data are presented as means ± SEM of at least 3 independent experiments. For 

statistical analysis, the different parameters were analysed by the Student’s t-test, by 

one-way ANOVA or by two-way ANOVA (both followed by the Bonferroni test), as 

appropriate, using GraphPad Prism 4.0 software (San Diego, CA, USA).  P values ≤ 

0.05 were considered statistically significant. 

 

 

 



                                  PhD THESIS | C a r l a  S á  

 136 | P a g e  

3. Results 

 

3.1. Glucose affects differently the cellular growth and differentiation status of both 

Caco-2 and HT-29 cells 

 

To study the effect of glucose concentration on SGLT1 maturation in BBM of 

differentiated Caco-2 and HT-29 cells, first we investigated the effects of glucose on 

cell growth and differentiation. As observed in Figure 2, cell number increased 

significantly in both cell lines until 72 h (P ≤ 0.001), with no significant changes 

between the lower and higher concentration of glucose in Caco-2 cells (Figure 2B). 

However, glucose concentration in culture medium affected differentially HT-29 cells 

(Figure 2A). Even changing the medium at 48 h, growth of HT-29 cells decreased 

significantly at 72 h in 5.56 mM glucose medium when compared with that of cells 

grown in 25 mM glucose medium. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Cell growth curve of HT-29 [A] and Caco-2 [B] cells cultured in RPMI medium containing 

different glucose concentrations (5.56 and 25 mM). Values are means ± SEM of at least three 

independent experiments. ***P ≤ 0.001 when compared with the respective control by the one-way 

ANOVA. 
 #

P ≤ 0.05 and 
# # #

P ≤ 0.001 when compared the same condition in 25 mM glucose medium by 

the two-way ANOVA. 

 

 

To follow cell differentiation, the activity of ALP was used. As expected, after 

addition of NaBu, the activity of ALP increased in HT-29 cells, however, this increase 

was much more significant in cells grown in 25 mM glucose medium (Figure  3A). 

Similar to HT-29, Caco-2 cells presented a higher activity of ALP in 25 mM glucose 

medium compared to that of 5.56 mM medium (Figure 3B). According to the ALP 

results, Caco-2 cells spontaneously differentiated after 21 days in culture in 25mM 

glucose, whereas for 5.56 mM glucose the maximal differentiation status was already 
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reached after 14 days, having into account the plateau observed. In the following 

experiments with Caco-2 cells, 15 days of cell differentiation was used for both culture 

media. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Alkaline phosphatase activity of HT-29 [A] and Caco-2 [B] cells cultured in 5.56 and 25 mM 

glucose media. In HT-29 cells, after adhesion and cell confluency, differentiation was induced by the 

incubation of cells with 5 mM NaBu for 24 and 48 h. Before NaBu treatment, a sample of cells was taken 

to serve as control (time 0 h). In Caco-2 cells, spontaneous differentiation was induced by growing the 

culture at confluency during 24 days. Values are means ± SEM, of at least three independent experiments. 

*P ≤ 0.05, **P ≤ 0.01 and ***P ≤ 0.001 when compared with the respective control by the one-way 

ANOVA. Two-way ANOVA indicates differences between the same condition in different glucose media 

(
#
P ≤ 0.05; 

# # #
P ≤ 0.001). 

 

 

To confirm differentiated status of HT-29 cells just after 48 h of NaBu addition, 

the expression levels of cell cycle inhibitor markers p21 and p27 proteins were followed 

by western blot. As shown in Figure 4 A, B and E, the levels of p21 and p27 increased 

significantly in both glucose media, with a tendency of higher expression in the 25 mM 

glucose medium. Therefore, based on ALP and western blot results, treatment of HT-29 

cells with NaBu for 48 h was used to differentiate these cells in the following 

experiments. 

 

3.2. Butyrate induces the levels of intestinal glucose transporters SGLT1 and GLUT2 in 

total homogenates of HT-29 cells 

 

The effect of NaBu-induced differentiation of HT-29 cells cultured in two glucose 

concentrations in the levels of intestinal glucose transporters were studied by western 

blot. As shown in Figure 4E, HT-29 cells exhibit two immunoreactive bands when 
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membranes were probed against both SGLT1 antibodies. The same result was obtained 

whether the SGLT1a (raised against residues 603-662) or SGLT1b (raised against the 

residues 402-422) antibodies were used. The upper band has a molecular weight of 

approximately 80 kDa (the same size than the one found for Caco-2 cells) and the lower 

band has approximately 75 kDa (Figure 4E). Butyrate treatment particularly increased 

the levels of the 80 kDa SGLT1 band (Figure 4C and E), but not the 75kDa band 

(Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 4. Effect of 5 mM NaBu and 50 µM RA for 48 h in the levels of differentiation markers p21 [A] 

and p27 [B], as well as the glucose transporters SGLT1 [C] and GLUT2 [D], in whole cell homogenates 

of HT-29, as assessed by western blot. White and grey bars represent cells grown in culture medium 

containing 5.56 mM and 25 mM glucose, respectively. SGLT1 levels (C) are from the 80 kDa band (for 

other bands see Table 1). Values are means ± SEM of three independent experiments. *P ≤ 0.05, **P ≤ 

0.01 and ***P ≤ 0.001 when compared with the respective control; 
# # #

P ≤ 0.001when compared with 

each other by the Student’s t-test. If nothing specified, there are no differences between the same 

condition in different glucose media. Representative blots and corresponding loading control (β-Actin) 

are present in [E]. 
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Nevertheless, this effect is still observed if the sum of both SGLT1 bands (80 kDa 

+ 75 kDa band) is used (Table 1). Interestingly, mimetizing the phenomenon in vivo, 

such as the effect of diabetes or dietary carbohydrate manipulation (Azevedo et al., 

2011), total levels of SGLT1 in differentiated cells increased more significantly in the 

25 mM glucose medium (Figure 4C and E, Table 1). To verify if the two bands pattern 

could disclose a process of protein maturation, since SGLT1 is usually glycosylated in 

vivo, cell lysates were treated with PNGase F. As shown in Figure 5A and 5B, after 

PNGase F treatment, the original bands did not disappear and no new band with lower 

molecular weight appeared, indicating that SGLT1 are deglycosylated in vitro in both 

HT-29 and Caco-2 cells. As expected, PNGase F treatment decreased the molecular 

weight of SGLT1 protein bands from rat BBM protein fraction from approximately 87 

to 70 kDa (Figure 5B). The appearance of a band at 40 kDa for Caco-2 cells was 

observed (Figure 5), probably due to unspecific imunocrossreactivity. 

 

Table 1. Effect of 5 mM NaBu and 50 µM RA for 48 h in the protein levels of SGLT1 in whole cell 

homogenates of HT-29, as assessed by western blot. Values are in % relative to 80 kDa SGLT1 band 

from untreated HT-29 cells grown in 25 mM glucose medium (see Figure 4C). 

 

 
75 kDa 

(Lower band) 

Band sum 

(80 + 75 kDa band) 

 25 mM 5.56 mM 25 mM 5.56 mM 

Control 

 
165.4 ± 49.5 124.8 ± 31.5 265.4 ± 60.1 202.2 ± 27.5 

5 mM NaBu 

 
147.6 ± 30.2 100.6 ± 11.1 

(#)
 360.9 ± 43.0 

(*)
 204.7 ± 15.2 

(# # #)
 

5 mM NaBu + 

50 μM RA 
149.4 ± 26.0 105.6 ± 32.6 373.9 ± 34.5 

(*)
 188.6 ± 36.1 

(# # #)
 

Values are means ± SEM of three independent experiments. *P ≤ 0.05 when compared to the respective control; #P ≤ 

0.05; # # #P  ≤ 0.001 when compared the same condition in 25 mM glucose medium by the Student’s t-test. If nothing 

specified, there are no differences between the same condition in different glucose media. 

 

A significant increase in GLUT2 levels was also observed after NaBu treatment in 

HT-29 cells grown in both glucose concentrations (Figure 4D and E). Treatment with 

NaBu seems also to interfere with cellular cytoskeleton structure/composition of HT-29 

cells, since β-Actin levels decreased after 48 h, as shown in Figure 4E. For this reason, 

β-Actin was not used as a loading control. Like in in vivo results (Azevedo et al., 2011), 

RA did not change total expression of SGLT1 and GLUT2 proteins, when compared 

with NaBu alone (Figure 4C, D and E). 
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Figure 5. Effect of treatment of cell lysates from HT-29 and Caco-2 cells with PNGase F enzyme in the 

molecular weight of imunoreactive bands detected by SGLT1 antibody. The blots were probed with 

different SGLT1 antibodies, SGLT1a [A] and SGLT1b [B], raised against different amino acids residues. 

BBM from a rat jejunum sample was used as a control for the deglycosilation reaction [B]. Input samples 

refer to the corresponding cell lysate that were not processed by the PNGase F method. β-Actin was used 

as a loading control.   

 

 

3.3 Glucose affects the expression of SGLT1 on BBM fractions of differentiated HT-29 

cells 

 

To clarify the intracellular distribution and levels of glucose transporters SGLT1 

and GLUT2 in response to glucose and RA, a subcellular fractionation procedure was 

carried out in HT-29 cells. As shown in Figure 6A and 6D, HT-29 cells grown in low 

glucose medium presented most of SGLT1 in the BBM fraction, before or after NaBu 

treatment, probably due to a higher glucose transport capacity in the presence of limited 

amounts of glucose in the medium. On the other hand, in cells grown in high glucose 

medium, a significant amount of SGLT1 was detected in the BIM fraction (Figure 6A 

and 6C), probably due to SGLT1 association with vesicles. However, when cells were 

differentiated with NaBu, a significant increase of SGLT1 levels (upper band) in the 

BBM fraction was observed with the corresponding decrease in the remaining 

membrane fraction (BIMF). The levels of the lower SGLT1 band (75 kDa) did not 

significantly change in the BBMF after NaBu treatment, but decreased remarkably in 

the BIMF in cells grown in high glucose medium (Table 2, Figure 6C). 

 

 

 



CHAPTER 5 | I n  v i t r o  r e g u l a t i o n  o f  i n t e s t i n a l  s o d i u m - g l u c o s e  

c o t r a n s p o r t e r  1 ( S G L T 1 )  i n  r e s p o n s e  t o  d i e t a r y  f a c t o r s  

 141 | P a g e  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Effect of 5 mM NaBu and 50 µM RA for 48 h in the levels of SGLT1 [A] and GLUT2 [B] 

glucose transporters in different subcelluar fractions (Fig. 1) of HT-29 cells grown in culture medium 

containing 5.56 mM (white bars) or 25 mM (grey bars) glucose, as assessed by western blot. SGLT1 

levels [A] are from the 80 kDa band (for other bands see Table 2). Values are means ± SEM of three 

independent experiments. *P ≤ 0.05 when compared with the respective control; 
#
P ≤ 0.05 when 

compared with each other by the Student’s t-test. If nothing specified, there are no differences between 

the same condition in different glucose media. Representative blots and corresponding loading control (β-

Actin) are present in [C] and [D] for cells grown in culture medium containing 25 mM and 5.56 mM 

glucose, respectively. 

 

 

In both glucose media, GLUT2 expression was remarkably higher in the BIMF as 

compared with other fractions (Figure 6B, 6C and 6D), and may represent its 

expression in the basolateral plasma membrane. In fact, the protein levels of the 

basolateral plasma membrane marker Na
+
/K

+
-ATPase was only detected in the BIMF 

(Figure 6C and 6D). Interestingly, its expression levels were increased with butyrate in 

cells grown in both glucose concentrations. β-Actin was not used as a loading control 

since its expression was affected by NaBu treatment (Figure 6C). Therefore, values 

were normalized according to the protein amount loaded for each subcellular fraction.  
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Table 2. Effect of 5 mM NaBu and 50 µM RA for 48 h in the levels of SGLT1 in different subcelluar 

fractions (Figure 1) of HT-29 cells grown in culture medium containing 5.56 mM or 25 mM glucose, as 

assessed by western blot. Values are in % relative to 80 kDa SGLT1 band from untreated HT-29 cells 

grown in 25 mM glucose medium (see Figure 6A). 

 

 

 25 mM 5.56 mM 

 75 kDa 

(Lower band) 

Band sum 

(80 + 75 kDa band) 

75 kDa 

(Lower band) 

Band sum 

(80 + 75 kDa band) 

 WFCH BIMF BBMF 

+ CF 

WFCH BIMF BBMF 

+ CF 

WFCH BIMF BBMF 

+ CF 

WFCH BIMF BBMF 

+ CF 

Control 

216.1 

±44.0 

295.1 

±98.4 

252.0 

±31.2 

316.1 

±32.4 

376.4 

±133.7 

362.8 

±29.9 

143.4 

±18.7 

45.8 

±23.3 

(#)
 

204.9 

±78.5 

200.7 

±31.0 

(#)
 

49.1 

±23.9 

(#)
 

286.3 

±123.3 

5 mM NaBu 

176.8 

±8.7 

93.9 

±29.7 

(*)
 

232.2 

±85.5 

318.5 

±47.7 

115.4 

±37.6 

(*)
 

430.2 

±131.1 

155.4 

±1.2  

(#)
 

32.1 

±19.5 

205.5 

±50.4 

262.3 

±12.9 

(*)
 

35.5 

±21.6 

(#)
 

354.3 

±80.6 

5 mM NaBu 

+ 

50 μM RA 

217.7 

±46.2 

88.5 

±41.3 

(*)
 

232.2 

±45.5 

379.2 

±47.2 

114.1 

±53.1 

(*)
 

444.2 

±70.5 

153.1 

±17.5 

29.4 

±18.8 

195.6 

±54.8 

256.8 

±18.2 

(#)
 

32.8 

±22.5 

(#)
 

342.8 

±85.9 

Values are means ± SEM of three independent experiments. *P ≤ 0.05 when compared with the respective control; #P 

≤ 0.05 when compared to the same condition in 25 mM glucose medium by the Student’s t-test. If nothing specified, 

there are no differences between the same condition in different glucose media. 

 

 

With the fractionating procedure, some different results were observed when 

comparing WCHF (Figure 6) with total expression on Figure 4. That may be due to the 

differences in the homogenization/lysis buffer, which lacks detergent in the 

fractionation procedure. 

Contrarily to the previous in vivo experiments (Azevedo et al., 2011), RA did not 

inhibited the glucose-induced increase of SGLT1 levels in the BBM of differentiated 

HT-29 cells (Figure 6A-D). 

 

3.4. Insulin did not affect SGLT1 expression in HT-29 cells 

 

In order to investigate the possible effect of insulin on SGLT1 regulation in 

differentiated HT-29 cells grown in 5.56 mM or 25 mM glucose, cells were pre-treated 

with NaBu and/or RA for 48 h and then incubated with 100 nM insulin for 30 min. The 
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incubation time of insulin was chosen based on activation of phosphorylated Akt, an 

indicator of insulin signalling pathway activation (Figure 7).  

 

 

 

 

 

 

 

 

 

 

Figure 7. Insulin signalling pathway activation in HT-29 cells, grown in culture medium containing 

different glucose concentrations in the presence or absence of 100 nM insulin (30 min of incubation). 

Representative blots and corresponding loading control (β-Actin) are also presented. 

 

Insulin did not alter the intracellular location nor the protein expression levels of 

both 80 kDa and 75 kDa SGLT1 bands in both glucose medium (data not shown). 

Furthermore, GLUT2 protein expression and intracellular location did not seem to be 

affected by insulin treatment (data not shown).  

 

3.5. Glucose and insulin did not affect SGLT1 expression in differentiated Caco-2 cells 

 

To investigate whether Caco-2 cells resemble a good in vitro model for studying 

the intestinal SGLT1 response to glucose and/or insulin, spontaneously differentiated 

Caco-2 cells were pre-incubated in a glucose-free solution (Krebs solution) for 30 min. 

Cells were then incubated for 30 min in Krebs solution (glucose-free or containing 25 

mM glucose) in presence or absence of 100 nM insulin. SGLT1 and GLUT2 proteins 

display a similar intracellular location to the one found in HT-29 cells. However, neither 

glucose nor insulin affected significantly the levels of protein and their intracellular 

location in Caco-2 cells (Figure 8). Despite the short time used in this assay, we 

expected to observe some changes at least on the intracellular location of SGLT1, since 

little time is needed to modify protein trafficking. 
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Figure 8. Effects of high levels (25 mM) of glucose and 100 nM insulin on SGLT1 and GLUT2 

expression in subcellular fractions of differentiated Caco-2 cells. Differentiated Caco-2 cells were pre-

incubated for 30 min in glucose-free Krebs solution followed by incubation with refreshed glucose-free or 

25 mM glucose Krebs solution in the presence or absence of 100 nM insulin, for other 30 min. β-Actin 

was used as loading control. 

 

Discussion  

 

Enterocyte’s maturation and differentiation is a complex process that begins with 

the proliferation and differentiation of stem cells in the crypts. These progenitors will 

then migrate and maturate towards the villus tip and extrusion of senescent cells will 

occur (Carethers, 1998; Ferraris, 2001).  

In recent years, human colonic Caco-2 and HT-29 cells have been widely used in 

many areas of pharmacology and toxicology research as an alternative to resource and 

time-consuming in vivo studies (Artursson et al., 2001). Once differentiated, both Caco-

2 and HT-29 cells exhibit high levels of enzymes characteristic of the enterocyte’s BBM 

such ALP. Whereas Caco-2 differentiate spontaneously in culture, forming polarized 

cell monolayers connected by tight junctions and expressing structural and functional 

characteristics of mature enterocytes (Pinto et al., 1983), HT-29 cells grow in standard 

conditions as unpolarized and undifferentiated cells, lacking the expression of 

enterocytic markers. However, this cell line is able to undergo differentiation following 

some modifications of culture medium (glucose deprivation and use of galactose as 

carbon source) or using differentiation agents (butyrate) (Simon-Assmann et al., 2007). 

Butyrate is a short-chain fatty acid produced in the colonic lumen by bacterial 

fermentation of dietary fibres and carbohydrates. Many reports have shown that butyrate 

inhibits cell proliferation and regulates cell cycle progression through inducing p21 



CHAPTER 5 | I n  v i t r o  r e g u l a t i o n  o f  i n t e s t i n a l  s o d i u m - g l u c o s e  

c o t r a n s p o r t e r  1 ( S G L T 1 )  i n  r e s p o n s e  t o  d i e t a r y  f a c t o r s  

 145 | P a g e  

expression that leads to cyclins and cdks inhibition and culminates with a blockage in 

G1 phase (Siavoshian et al., 1997). Downregulation of c-myc expression is also a 

feature of butyrate (Barnard and Warwick, 1993). With the present study, we aimed to 

characterize the response of differentiated Caco-2 and HT-29 cells to the concentration 

of glucose in the medium in terms of intracellular location and protein expression of 

glucose transporters, namely SGLT1 protein, in order to choose the best in vitro model 

for intestinal dietary adaptation studies. A low glucose concentration in the medium did 

not affect cell growth of Caco-2 cells but did for HT-29 cells. After 48h with low 

glucose medium, cell growth decreased dramatically, probably due to induction of 

differentiation by a low glucose concentration. NaBu treatment in HT-29 cells grown in 

low glucose did not increase so much the differentiation marker ALP, which agrees 

with the fact that cells growing in low glucose are probably already with some degree of 

differentiation. In high glucose concentration, as expected, NaBu increased ALP 

activity as well as p21 and p27 protein levels in HT-29 cells, confirming the ability of 

butyrate to induce cell cycle blockage and differentiation in this cell line. As reported by 

Pinto and colleagues (1983), Caco-2 cells achieved full differentiation within 20 days, 

as indicated by ALP activity, when grown in high glucose medium. However, when 

cells were growing in 5.56 mM glucose medium, no increase of ALP activity was 

observed after 14 days, which may indicate that differentiation in these conditions is 

faster, although the activity of ALP is lower when compared with that grown in high 

glucose levels. 

Enterocytes express proteins such as SGLT1 in matching amounts to the glucose 

freed by digestion of carbohydrates. Therefore, diets rich in digestible carbohydrates 

induce high SGLT1 protein expression on BBM of enterocyte than diets low in 

digestible carbohydrates (Diamond et al., 1984). In addition to the response to diet, 

disease processes such as diabetes mellitus are also characterized by higher than normal 

BBM SGLT1 expression (Burant et al., 1994; Dyer et al., 2002). Interestingly, the 

increase of SGLT1 levels after differentiation with NaBu was significantly higher in 

cells cultured in high glucose medium, which may reflect the well known effects of 

increasing amounts of digestible carbohydrates and also diabetes on this glucose 

cotransporter (Chang et al., 2007; Engle et al., 1998; Hodin et al., 1996; Wang et al., 

2001). These evidences suggest that HT-29 seem to respond to differentiation events 

that resembles enterocytes and to promote the in vivo glucose-induced intracellular 

SGLT1 redistribution. However, our SGLT1 data raised some doubts about the 
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maturation status of the protein in HT-29 cells since a peculiar pattern was observed, in 

which two bands with different molecular weight (80 kDa and 75 kDa) and intensity 

appeared even using different SGLT1 antibodies. It is known that maturated SGLT1 

contains 14 transmembrane α-helices with extracellular N and C terminus, a unique 

glycosilation site and two phosphorylation sites (Wright, 1998). Addressing the 

possibility that this pattern reflects a glycosilation state of SGLT1 in HT-29 cells, we 

performed a deglycosilation assay that revealed that neither HT-29 nor Caco-2 seem to 

have glycosilated SGLT1. Hence, this two-band pattern may reflect other post-

translational modifications or correspond to the matured SGLT1 protein of colonocytes. 

Only the 80 kDa SGLT1 band (upper band) was significantly modified by NaBu-

treatment, suggesting that this band is probably the one that mostly resemble the 

enterocytic response to dietary factors. NaBu-treatment modified the intracellular 

location of SGLT1 protein; it removed the glucose cotransporter from the BIMF (where 

it is probably associated with intracellular vesicles) and promoted the insertion of 

SGLT1 into the BBM fraction. GLUT2 protein expression in whole HT-29 cells lysates 

was induced by butyrate independently on glucose concentration. Additionally, our 

subcellular procedure revealed that GLUT2 was located preferably on the BIMF which 

contains basolateral membranes, even under prolonged exposure to high glucose 

conditions. These evidences seem to contradict Kellet and Laroche (2005) studies that 

showed an apical location of GLUT2 in enterocytes of several experimental models 

under increased luminal concentration of glucose or fructose. They also found that little 

GLUT2 is expressed in apical membranes under low luminal glucose (Kellett and Brot-

Laroche, 2005). As expected, RA did not alter the total protein expression levels of 

SGLT1 and GLUT2, however, no inhibition of the glucose-induced increase of SGLT1 

levels at BBMF in NaBu-differentiated HT-29 cells was observed, contrasting with our 

previous in vivo study (Azevedo et al., 2011). This may indicate that the ability of RA to 

decrease SGLT1 levels in BBM in vivo may not involve directly the modulation of 

SGLT1 trafficking but probably of the digestive enzymes that freely glucose from 

amido of the diet since RA was found to be a competitive inhibitor of yeast α-

glucosidase (Kwon et al., 2006; Lin et al., 2011) and to inhibit porcine pancreatic 

amylase in vitro (McCue and Shetty, 2004). Other hypothesis is that NaBu-induced 

differentiation in HT-29 cells does not resemble the physiologic and cellular 

mechanisms of enterocytes in vivo, and therefore is inappropriate to study the regulation 

of SGLT1 by dietary constituents. 
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Despite the pivotal role of insulin on peripheral glucose uptake, little is known 

about the involvement of insulin on the regulation of intestinal SGLT1 activity and 

expression. It has been reported that subcutaneous insulin treatment in diabetic rats, 

with increased BBM SGLT1 expression, significantly decreased SGLT1 levels without 

changes in mRNA levels, suggesting a mechanism involving vesicle trafficking 

(Kurokawa et al., 1995). A more recent experiment, performed both in rats and Caco-2 

cells, showed that insulin stimulates intestinal glucose transport through increasing the 

number of SGLT1 transporters and decreasing the activity and protein levels of Na
+
/K

+
-

ATPase (Serhan and Kreydiyyeh, 2010). Our results showed that in Caco-2 cells, 

SGLT1 and GLUT2 transporters had a similar intracellular location to the one found in 

HT-29 cells but neither glucose nor insulin seems to significantly alter the total 

expression and cellular distribution of both transporters, after 30 min exposure. 

Moreover, insulin did not alter the intracellular location nor protein expression levels of 

SGLT1 and GLUT2 in HT-29 cells. Since that, in polarized cells, sorting of proteins 

occurs in the trans-Golgi network and they are rapidly internalized in appropriate 

cellular compartment, short time incubations with possible regulators of this network 

should be effective. In this experiment, that was not the case. Our evidences are in 

concordance with the previous data reported that extracellular D-glucose exposure did 

not alter the cellular redistribution of SGLT1 in Caco-2 cells (Khoursandi et al., 2004).  

Our results showed that SGLT1 and GLUT2 transporters of NaBu-differentiated 

HT-29 cells respond to glucose stimulation, resembling the in vivo situation. However, 

we were not able to mimic in vitro effect of RA on SGLT1 expression that we find in 

vivo, which may indicate that it did not depend directly on the modulation by glucose 

levels in the luminal space. Despite the undeniable value of Caco-2 and HT-29 cells in 

delineating potential pathways related to enterocyte differentiation and predicting 

intestinal absorption of drugs, further work needs to be performed using alternative 

experimental models and/or approaches to clarify the previous observed effects of RA 

on BBM SGLT1 expression and blood glucose. 
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6.1. General discussion and conclusions 

 

The most pertinent results presented in detail in the course of this thesis will be 

briefly discussed in this section. 

Currently, there is a renewal interest in the use of natural compounds to treat and 

control diabetes and dyslipidemia. These natural products have been used since 

antiquity and are considered economical and safe alternatives than the currently 

available drugs. The work herein described meant to emphasise the value of Salvia 

fruticosa and Salvia officinalis water extracts (prepared as tea) and some of their 

isolated compounds as potential antidiabetic and lipid-lowering agents. 

Chapter 2 describes a pilot trial performed to elucidate the effects of S. officinalis 

tea (SOT) on glucose regulation in healthy female volunteers that belong to an age 

group at risk for developing T2DM. The results demonstrated that sage tea drinking did 

not induce hepatotoxicity or other side effects (such as on blood pressure and on body 

weight). In addition, hypoglycaemias may be also excluded since no effects on fasting 

and/or postpandrial blood glucose levels were observed. Sage treatment strengthened 

the erythrocytes’ antioxidant status through increasing SOD and CAT activities, which 

may indicate its potential to prevent against cellular oxidative damages and LDL 

cholesterol oxidation. This potential in preventing CVDs progression was reflected in 

the amelioration of the plasma lipid profile of the volunteers, where an increase in HDL 

levels (by 50.6% at the end of the treatment and 37.6% after two weeks wash-out) was 

observed. In addition, a gradual decrease on total and LDL cholesterol levels was also 

detected. Recently, a clinical trial corroborated our findings and added supplementary 

evidences, by demonstrating that S. officinalis tea decreased triglycerides and VLDL 

levels without inducing hepatic and renal toxicity (Kianbakht et al., 2011).  

Salvia fruticosa tea (SFT) also showed to increase plasma HDL cholesterol levels 

(by 21%) after the reintroduction of a normal (referred as high carbohydrate, [Hc]) diet 

(chapter 3). It has been reported that nicotinic acid (niacin), the most powerful agent 

presently available for correcting HDL cholesterol levels, induces a 15%-35% increase 

in HDL levels (Toth et al., 2005). In addition, other lipid-lowering agents such as 

fibrates and statins, caused only a 10%-15% and 5%-15% increase, respectively (Toth 

et al., 2005). In spite of this beneficial effect, several adverse effects and 

contraindications have been reported for these drugs (Mooradian, 2009). Thus, the 
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effects of SFT and particularly SOT on plasma lipid profile reveals promising in the 

search for more reliable and safe alternatives to these pharmacological therapies. 

Evidences from a previous in vivo work demonstrated that treating rats with SFT, 

during the four days of Hc diet reintroduction, significantly reduced the adaptive 

increase of SGLT1 expression in BBM (Azevedo et al., 2011). Rosmarinic acid (RA), 

the major phenolic compound of both sage extracts (representing 70% of all phenolic 

compounds present in SOT and 72% in SFT, see Table 4, chapter 1), was proposed to 

be the active principle behind those beneficial properties of SFT (Azevedo et al., 2011). 

However, the beneficial effects of both sage extracts on plasma lipoproteins did not 

seem to be due to RA, since its aqueous extract did not modify plasma lipid profile 

(chapter 3). This may be related with the observed RA-mediated downregulation of 

LDLR expression, the receptor responsible for cholesterol clearance from circulation, 

which was not affected by SFT drinking. Nevertheless, RA seems to potentially 1) 

regulate dietary cholesterol absorption, by preventing the carbohydrate-induced increase 

of BBM NPC1L1 transporter, a similar outcome to ezetimibe; 2) control hepatic 

cholesterol de novo synthesis, through downregulation of HMGCR mRNA levels; 3) 

promote hepatic fatty acid catabolism, through increasing the expression of PPARα, and 

its target gene CPT1 and 4) prevent fatty acid synthesis, through decreasing SREBP-1 

gene expression and FAS protein levels. SFT also showed a beneficial prevention of 

fatty acid synthesis by decreasing FAS expression in the liver as a probable 

consequence of the observed SFT-mediated reduction of ChREBP mRNA levels. The 

overall favourable properties of both SFT and RA drinking make them auspicious 

agents for maintaining lipid homoeostasis and prevent disease onset. However, the data 

here presented disclose that distinct mechanisms of action and pathways are modulated 

by these natural products. In addition, RA does not seem to be the active principle 

responsible for the beneficial effects of both sage plants in plasma lipoproteins.   

In addition to RA, the flavonoids luteolin-7-glucoside (L7G) and 6-

hydroxyluteolin-7-glucoside, are also present in sage extracts (representing 26% of all 

phenolic compounds present in SOT and 13% in SFT, see Table 4, chapter 1). A 

previous study performed in healthy rats demonstrated that dietary supplementation 

with L7G lowered plasma glucose (from 9.78 mM to 8.78 mM) and decreased plasma 

total and LDL cholesterol levels (by 29.2% and 39.5%, respectively) (Azevedo et al., 

2010). Intending to clarify the mechanism responsible for this improvement on lipid 

profile, L7G was assessed in vivo in healthy rats regarding effects on lipid metabolism 
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(chapter 4). L7G showed to significantly increase both PPARα and CPT1 gene 

expression in the liver (by 1.9 and 1.8 fold, respectively), in a similar but less prominent 

way than RA (which promoted a 3.1 and 5.1 fold increase, respectively). Moreover, 

L7G-supplemented diet was also effective in decreasing hepatic HMGCR gene 

expression without affecting SREBP-2 and LDLR mRNA levels, a similar outcome to 

SFT. These data seem to indicate that additional pathways may modulate LDLR and 

HMGCR transcriptional activation. The potential effect of L7G for blocking SREBP-1 

maturation and/or activity and activating ER stress-related pathways, by upregulating 

GRP78/BIP expression, require further investigation. Although, these data may suggest 

an effect of L7G in activating transient ER stress pathways aimed at restoring cellular 

homeostasis. Overall, the results seem to indicate an involvement of this phytochemical 

on the reported cholesterol-lowering effects of SOT (chapter 2). Moreover, the absence 

of L7G in S. fruticosa extract, may explain the lack of effects of SFT on total and LDL 

cholesterol levels (chapter 3). The presence of other compounds, even at lower 

concentrations, or the mixture of them in both sage extracts may contribute to the 

observed improvement on plasma lipid profile. 

Finally, aimed at establishing an in vitro model to study the molecular 

mechanisms behind the intestinal SGLT1 regulation in response to dietary constituents, 

such as glucose and phytochemicals, the experiment described in chapter 5 was 

performed. Among all the current available intestinal cell lines, butyrate (NaBu)-

induced differentiated HT-29 cells and spontaneously differentiated Caco-2 cells were 

selected due to their well recognized enterocyte-like characteristics. Glucose 

concentration in culture medium seemed to affect differently the cellular growth and 

differentiation status of both cell lines. While glucose levels in culture medium did not 

seem to affect Caco-2 cells growth, low glucose levels seemed to favour the cellular 

growth (within 48 h) and cellular differentiation (within 72 h) of HT-29 cells. Under 

high glucose levels, NaBu induced an increase in SGLT1 and GLUT2 protein 

expression levels in HT-29 whole cell homogenates. Moreover, this short-chain fatty 

acid promoted an enhancement on BBM SGLT1 levels and a simultaneous increase of 

GLUT2 expression in the remaining membrane fraction of HT-29 cells. These 

evidences suggest that HT-29 cells responds to differentiation events that resembles 

enterocytes and endorses the well reported effects of digestible carbohydrates on the 

intracellular redistribution of intestinal SGLT1 (Azevedo et al., 2011; Ferraris 2001). 

NaBu-differentiated HT-29 cells were treated with RA, in an attempt to confirm the 
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reported in vivo effects of this phytochemical on BBM SGLT1 expression (Azevedo et 

al., 2011). However, RA did not prevent the glucose-stimulated enhancement of SGLT1 

at the BBM of HT-29 cells. Furthermore, the protein levels and location of SGLT1 in 

these cells did not seem to be affected by insulin. A similar localization of SGLT1 and 

GLUT2 transporters was observed in spontaneously differentiated Caco-2 cells, but the 

protein levels of these transporters were not changed by either glucose or/and insulin 

exposure. Thus, the potential role of insulin on the regulation of intestinal SGLT1 still 

requires clarification. Taken together, these evidences seem to point out some 

limitations of employing HT-29 and Caco-2 cells as in vitro models for studying the 

regulation of SGLT1 by dietary constituents, namely RA, although both cell lines are 

recognized tools for drug absorption studies.  

In summary, this thesis is an important contribution to elucidate the biological 

properties of both sage species and some of their isolated natural compounds, in 

mechanisms related to glucose and lipid metabolism. Medicinal herbs are empirically 

used since ancient times to treated multiple disorders still, the easily access with limited 

information regarding potential side effects, makes them unattractive therapeutic tools 

for clinical practice. To assist the implementation of these sage products as safe and 

reliable therapeutical drugs for preventing diabetes and other related diseases, additional 

studies must be conducted.   
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6.2. Future perspectives 

  

The studies presented in this dissertation were conducted to characterize potential 

antidiabetic and lipid-lowering effects of selected sage species (Salvia fruticosa and 

Salvia officinalis), and to describe the molecular mechanisms of action that support 

those beneficial properties. The identification of new active compounds with therapeutic 

properties was an additional goal. Notwithstanding the contribution of this work to the 

elucidation of those topics, additional and complementary research must be conducted 

to clarify the unanswered questions.  

The efficacy of S. officinalis extract to improve antioxidant defences and lipid 

profile of healthy humans without causing toxicity, paves the way for testing sage’s 

effects in a population with predisposition to develop diabetes. These new experiments 

must also take into account the need of interrupted sage tea treatments, with short or 

long periods of time, to improve health condition. Interesting would be to carry out this 

experiment in diabetic patients, where the true antidiabetic potential of sage would be 

tested. However, multiple cautions would need to be considered to avoid unexpected 

side effects that aggravate their diabetic condition. 

Since CVDs constitute the leading cause of death worldwide and are the major 

cause of morbidity and mortality in diabetic patients, efforts must be made in order to 

strive against this reality. The molecular mechanisms behind the beneficial effect of S. 

fruticosa and particularly S. officinalis extracts on HLD cholesterol levels must be 

investigated concerning several potential targets, such as enzymes of the reverse 

cholesterol transport pathway. The potential for sage plants and their compounds 

modulates the expression of nuclear receptors and bile acid-regulated genes, involved in 

bile acid synthesis, transport and cholesterol metabolism, must also be explored. Since 

diet constitute an important risk factor in disease progression, it will be interesting to 

evaluate the effects of these phytochemicals in animals fed a high-fat diet, to better 

characterize their lipid-lowering potential. 

It will be also interesting to compare the effects of L7G and its aglycone luteolin 

in cultured hepatocytes (primary cultures and/or HepG2 cells), in several parameters 

relevant to lipid metabolism. Comparing the effects of those natural compounds with 

the available pharmacological lipid-lowering drugs, such as statins, ezetimibe and 
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fibrates should also be considered, in order to find more reliable and safe therapies than 

the ones currently used. 

As a final point and since the majority of human cell lines are derived from 

tumours and miss the physiological environment found in vivo, it was not surprising to 

find that differentiated HT-29 and Caco-2 cells offered some limitations for studying 

SGLT1 regulation in response to dietary constituents. Thus, new in vitro strategies 

(such as everted gut sac or primary cultures of enterocytes) must be considered in order 

to obtain more reliable data to the in vivo situation. The lack of relevant data concerning 

to the effects of insulin on the regulation of the intestinal SGLT1 expression should be 

explored by using both in vivo and in vitro models. However, it would not be surprising 

to find distinct insulin outcomes in the distinct models. Given the importance of 

intestinal SGLT1 on glucose absorption and the role of the small intestine in glucose 

and cholesterol homeostasis, this organ is an important target for antidiabetic and lipid-

lowering therapeutical interventions.   

In conclusion, the results presented in this thesis and the elucidation of the 

unanswered questions, will certainly contribute to the identification of new compounds 

that serves as therapeutic tools for diabetes and its associated complications.     
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