
U
M

in
ho

|2
01

2

Universidade do Minho

Juliana Cabral Oliveira

Maio de 2012

Characterisation of Arabidopsis thaliana Heat-
Responsive RNA-Binding Protein (HRR) Gene:
Molecular Roles in Plant Thermotolerance and
Development

Escola de Ciências

Ju
lia

na
 C

ab
ra

l O
liv

ei
ra

C
h

a
ra

ct
e

ri
sa

ti
o

n
 o

f 
A

ra
bi

do
ps

is
 t

h
al

ia
n

a 
H

e
a

t-
R

e
sp

o
n

si
ve

 R
N

A
-B

in
d

in
g

 P
ro

te
in

 (
H

R
R

) 
G

e
n

e
:

M
o

le
cu

la
r 

R
o

le
s 

in
 P

la
n

t 
T

h
e

rm
o

to
le

ra
n

ce
 a

n
d

 D
ev

e
lo

p
m

e
n

t





Tese de Doutoramento em Ciências
Especialidade em Biologia

Trabalho realizado sob a orientação da
Prof. Doutora Teresa Lino-Neto

Universidade do Minho

Juliana Cabral Oliveira

Maio de 2012

Escola de Ciências

Characterisation of Arabidopsis thaliana Heat-
Responsive RNA-Binding Protein (HRR) Gene:
Molecular Roles in Plant Thermotolerance and
Development





CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

iii 
 

AGRADECIMENTOS 

A realização desta dissertação só foi possível graças ao contributo que, de uma forma direta ou indireta, 

envolveu várias pessoas. A este grupo de pessoas que abaixo cito, gostaria de dedicar algumas palavras de 

agradecimento, as quais se revelaram ser cruciais na obtenção de conhecimento e no meu crescimento, não 

só científico, mas também pessoal. O meu perdão se entretanto me esquecer de alguém…porque também 

foi importante neste percurso.  

À Professora Doutora Teresa Lino Neto um muito obrigada pelo apoio e encorajamento no decorrer de 

todo o trabalho, desde o primeiro dia até a finalização desta tese. Obrigado pela motivação, pela imposição 

de espírito crítico durante as discussões de ideias e pela confiança depositada no decorrer do 

desenvolvimento do trabalho, fundamentais para o desenvolvimento deste trabalho.  

Gostaria de endereçar algumas palavras de agradecimento à Doutora Luísa Romão (INSA, Lisboa) 

pela ajuda e disponibilidade prestadas na estruturação dos ensaios experimentais, bem como na discussão 

dos resultados obtidos na análise de decaimento do mRNA. 

Agradeço ainda a Doutora Rita Abranches (ITQB, Lisboa) que carinhosamente cedeu as células e calli 

de Nicotiana tabacum BY2. 

As minhas palavras de agradecimento ao departamento de Biologia pelas condições e acolhimento do 

meu projeto de doutoramento durante estes quatro anos. Agradeço imenso o apoio prestado pelos técnicos 

do departamento, pois sem eles o desenvolvimento do meu trabalho não seria de todo possível: Magda, 

Manuela R, Manuela T, Dona Isabel, Sr. Armindo, Dona Sameiro (…até me ajudou a curar os joelhos 

rompidos depois de uma queda aparatosa à porta do pavilhão…), Cristina Ribeiro (és de facto uma grande 

profissional, uma grande amiga…Obrigada pelo apoio que me deste, desde sempre!) 

Para mim é importante não esquecer o trabalho dos agentes da PROSEGUR… agradeço muito a 

paciência que tiveram comigo, por quase todos os dias da semana permitirem a minha entrada no 

departamento a horas indecentes de se começar a trabalhar… (na perspetiva do cidadão comum!) 

Gostaria de deixar um muito Obrigada a todos os meus colegas/investigadores de laboratório 

BFMP/BioFiG, não só os presentes, como também aqueles que por lá passaram e que relembro com muito 

carinho: Humberto, Vítor, Herlânder, Prof. Rui, Daniel, Eva, João, Francisca, Sara F., Helena, Marta, Mafalda, 

Paulo, Natacha, Cátia, Cristiana, Daniela, Sandra, Tânia, Manuela Costa, Sara L*, Rómulo*… 

Alice Agasse… bem me parecia que deveria ter-te dado ouvidos na altura certa!!!...Embora tenhas 

seguido um caminho diferente, lembro-me de ti muitas vezes, como sendo a minha inspiração e uma das 

melhoras investigadoras que até agora conheci…pela tua dinâmica de trabalho, pela preocupação do 

próximo…a melhor sorte do mundo para ti! 

Eduarda…revejo o futuro das bancadas deste laboratório na tua pessoa!...Espero que a partir daqui 

aproveites bem as oportunidades que te possam surgir e que te permitam crescer a nível científico e 



iv 
 

humano…és inteligente, tens uma forte componente crítica, muito competente e organizada… mais do 

que eu…graças a ti a minha tese ficou perfeita! Muito Obrigada pelo teu apoio, pelas conversas de café e 

por ouvires os meus desabafos… 

Óscar…”quando for grande, quero ser como tu!...”…gostaria de ter uma décima da tua energia! 

Obrigada por todas as dicas que me destes, pelos vectores que me cedeste, por me transmitires 

conhecimento nos protocolos de transformação transiente de Nicotiana benthamiana, produção e 

transformação de protoplastos de Arabidopsis, e pela revisão na minha tese! Antes dizia que deverias ser 

o post-doc do laboratório, mas neste momento vejo-te mais como editor-in-chief num futuro 

próximo…Muito Obrigada pelo teu apoio! 

Ainda durante o meu doutoramento, como apaixonada/viciada pelo desporto, diariamente renovava o 

meu estado físico/mental entre as atividades de ginásio e natação! O meu empenho e dedicação foram 

essenciais para permitir a minha participação nos CNUs e nos torneios inter-regionais de canoagem! Em 

cada um destes lugares convivi com imensas pessoas, importantes para a minha integração social, fora do 

ambiente das bancadas de laboratório e a todas elas deixo as minhas palavras de agradecimento…Um muito 

Obrigada à Nicole, Sónia, Carlos Ferreira, Ferreira, Silva, Chaves, Gabi, Dona Conceição e Dona Luísa pela 

boa disposição… 

Marisa*, inicialmente conheci-te no ginásio, depois convenceste-me em ir para a natação…e tudo deu 

certo...Mulher de carácter muito forte, muito rigorosa em tudo o que faz, foi muito bom conviver contigo! 

Agradeço muito a tua disponibilidade e amabilidade quando pedia a tua ajuda! Obrigada pelas tuas 

palavras de apoio, quer durante os treinos, quer durante esta dura fase de escrita! Desejo as maiores 

felicidades para ti e para os teus…és uma amiga de verdade! 

Na Natação…igualmente agradeço o apoio e boa disposição das pessoas que fui conhecendo: Carla, 

Mimosa, Jota, Márcia P, Duarte, Natália, Francisca, Alessandra A, Marta A, Rui, Sophia, João C, Catarina, 

Luís A, Joana O… 

João S…inicialmente como o meu ponto de referência a ser atingido, o nadador (não) federado que 

mais prezo!...De uma humildade irrepreensível, sincero, diamante bruto… a ti desejo-te a melhor sorte do 

mundo, ao lado de quem realmente te mereça, e o maior sucesso…não deixes de escrever, porque tens 

potencial, e um psicólogo também pode escrever livros …e já sabes, independentemente da minha 

distância física, podes sempre contar comigo! 

Pedro MM*, para ti …3+7+1= 3 palavras, 7 letras, 1 significado…para mim, o significado continua a 

ser válido!...Muita conversa, muito especial, a boa disposição, a descontração e convívio da pista 4! 

Agradeço imenso a tua disponibilidade nesta reta final da escrita, porque se não fosses tu, não sei se 

teria PC para acabar de escrever/corrigir a tese…Muito Obrigada, de Coração! 

Paula Matos*… uma das marias…um muito Obrigada por me teres tornado a melhor atleta que hoje 

sou, pela paciência e confiança que depositas-te em mim…além disto, foste uma das melhores pessoas 

que conheci até agora e fizeste-me ver que existe vida para além das micropipetas…através de ti conheci 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

v 
 

outras tantas pessoas de excelente carácter (Anália, Miriam, Fábio, Luís, Pedro, Zé Luis (o conterrâneo), 

Lu, São…)…lá está…só conheces mulheres independentes e homens sensíveis (a maioria da minoria…)! 

Aos meus colegas de departamento e extra-departamento, um obrigada pelas palavras de apoio e convívio: 

Dina S, Jorge P, Marta P, António P, Fábio R, Joana R, Flávio, Filipe M, Diana B, Rose Marie, André, 

Florença, Viviana…  

Fábio …o karaoke será a nossa próxima forma de ocupação, num futuro mais próximo… 

Monção…a tua paz abala-me o ego! Conversas às 5 da manhã no meio da rua, em sentidos inversos, 

uma para ir trabalhar, o outro vindo de trabalhar…e as conversas nas escadas de serviço, entre canecas 

de café…muito pró! 

Teresinha…a migalhaça da colina de cima…agora que começas-te a escrever, desejo-te muita sorte e 

paciência…és muito inteligente, não te esqueças disso…apesar dos poucos encontros (pois…o trabalho 

ocupa muito)…foram muito bons para por a conversa de meses em dia… 

Estér Maria…mente empreendedora, sempre de boa disposição…não tinha ideia da tua 

grandiosidade…o teu apoio foi incessante, e peço perdão pelas vezes que não te deixava entrar...tinha 

de ser, porque tinha de ser enquanto tive energia para escrever o corpo da tese… Muito sucesso e 

felicidades!... 

Anália Maria…deste-me o click na altura certa, para começar a escrever a tese! Obrigada pelos 

conselhos, boa disposição e atividades extra-laborais (porque também precisas…)! Inovadora e com uma 

dinâmica e inteligência acima da média, a bioinformática torna-se muito simples nas tuas mãos! O maior 

sucesso na tua carreira, porque mereces… 

Todavia…existem algumas pessoas pelas quais se tem um carinho muito especial…são três, as quais 

fizeram diariamente parte deste meu percurso na escrita da tese…foram incansáveis no apoio, de uma 

sensibilidade e compreensão irrepreensíveis, sempre no sentido da construção, de nunca baixar os 

braços…as vossas palavras foram essenciais para me manterem acima da linha threshold da desistência… 

Sara L*…considero-te uma pessoa extraordinária, inteligente, elegante, de personalidade 

extremamente forte, sensata, sensível, de poder crítico irrefutável, a criadora da patente 

“Jules.Olive”…agradeço-te o apoio desde o meu primeiro dia neste laboratório! Desculpa as minhas 

ausências, quando éramos só as duas almas do lab e se algum dia fui menos correta contigo…fomos 

mútuas no apoio durante a escrita… tu na parte final, eu ainda na parte inicial…e até ao final!...mesmo 

não estando presente, só pelo facto de trocarmos algumas palavras no GTalk já eram suficientes para 

enfrentar mais um dia…o que mais quero é que tenhas muita sorte e sucesso, porque tens muita 

capacidade para prosseguir na ciência…e muitas felicidades, perto de quem mais amas… 

Rómulo*…já leva três anos que entraste neste laboratório, que te vi crescer cientificamente de uma 

forma vertiginosa…otimista, sensível, inteligente, um grande amigo…que sempre mostrou disponibilidade 

e determinação nos meus pedidos de auxílio, que sempre se sentou na cadeira da frente para me ouvir 



vi 
 

quando via que não chegava bem disposta da natação…(era muito previsível, não era?...porque já se 

sabia o porquê)… não me esqueço das tuas aparições diárias no gabinete, para ver como estava…dos 

poucos homens com H grande…prevejo um futuro melhor para ti e que sejas muito feliz…porque gosto 

muito de vocês e, merecem ;)…aos dois, Obrigada pela revisão da tese…  

Filipe Gonçalo*…mesmo não te vendo à sensivelmente quatro anos, desde as aulas de 

Inglês…através do GTalk, o teu apoio foi imprescindível durante esta etapa! Conversas muito 

interessantes e enriquecedoras, essenciais para as minhas tomadas de decisão!... Um muito Obrigada  

Para a minha grande amiga do coração…Joana Sofia* 

…a minha enfermeira preferida…ficamos separadas estes 4 anos, eu aqui e tu em Tenerife…mas nunca 

deixaste que o contacto se perdesse…Admiro a tua grandeza, o amor ao próximo, jovialidade, humildade, 

sinceridade….somos o oposto! Arrependo-me de nunca poder estado contigo mais vezes, pois poderia ser 

que me tornasse melhor pessoa…As tuas histórias sobre viagens e noitadas de Tenerife fascinavam-

me…mas já sabes como sou, resultado e reflexo das minhas experiências vividas! As maiores felicidades e 

mereces tudo de bom… 

Ao pessoal do Porto…Helena, Rui, Daniel…a vossa boa disposição e apoio, os bons momentos foram 

indispensáveis! 

À minha mãe Cidália e irmãos…Márcio (Marção) e Ana Claúdia (R…~, Claudiã)*…um Obrigado 

gigante pelo apoio e compreensão da minha distância durante estes últimos três anos…infelizmente, parece 

que tanto investimento não recompensou a negatividade da distância…mas sempre estiveram do outro lado 

a ouvir as minhas angústias e conquistas…Igualmente, gostaria de mostrar as minhas palavras de gratidão e 

apresso pela minha família nos Açores, que sempre me receberam de braços abertos, com muito carinho…à 

minha avó Maria, aos meus tios (Alcides, Lubélia, Maria, Benjamim), aos meus primos…à minha prima 

Leonor e família, e a todos os conhecidos da Pedreira, da Vila do Nordeste…Obrigada por tudo… na terra 

que me viu nascer e que revela a minha personalidade wild-type!! 

 

O presente trabalho, incluindo a sua publicação, beneficiou dos seguintes apoios financeiros da Fundação 

para a Ciência e Tecnologia: 

Bolsa de Doutoramento: SFRH/BD/38379/2007 

Financiada pelo programa do QREN-POPH- Formação Avançada para a Ciência, comparticipado pelo Fundo 

Social Europeu (FSE) e por fundos nacionais do Ministério da Ciência, Tecnologia e Ensino Superior 

(MCTES). 

 

  



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

vii 
 

Characterisation of Arabidopsis thaliana Heat-Responsive RNA-

Binding Protein (HRR) Gene: Molecular Roles in Plant 

Thermotolerance and Development 

 

ABSTRACT 

Plants face a multiplicity of biotic and abiotic stresses, of which the most typical are extreme 

temperatures. High temperatures cause considerable morphological, physiological and molecular 

alterations that adversely affect plant growth and productivity. The acquisition of thermotolerance is 

controlled by activation and regulation of specific stress-related genes that lead to adjustments on 

plant transcriptome and proteome. From a previous transcriptomic analysis of heat-stressed 

Arabidopsis seedlings, the HRR gene was singled out by presenting a specific high heat-stress 

response. The principal aim of this work is the functional characterisation of this uncharacterized 

gene. At the end, this work is expected to contribute for the general understanding of RNA-binding 

proteins involvement in heat stress responses. These proteins are expected to be associated to the 

transcriptome organisation responsible for adaptation to heat stress, as well during plant 

development. 

The in silico analysis revealed that HRR codes for a putative RNA-binding protein, containing 

a RRM domain and a PABP-1234 functional domain. HRR was predicted to be highly expressed 

under heat stress conditions. However, HRR seems to present a basal expression throughout the 

plant life cycle, being prevised the highest levels during flower development, seed maturation and 

germination. The predicted co-interaction with other Arabidopsis RRM-containing proteins (UBP1 

and RBP45 proteins) and phylogenetic relationship with metazoan orthologues suggests that HRR 

could play functions in the stability of HS-induced transcripts. 

The phenotypic analysis of hrr loss-in-function and HRR over-expression mutant lines showed 

that HRR seems to be strongly involved in plant thermotolerance responses, at least during seed 

germination. In opposition to bioinformatic data, HRR appears to be also involved in responses to 

salt stress imposition. Furthermore, HRR was suggested to be a positive regulator in the metabolism 

and signalling of phytohormone ABA.  

When seedlings were subjected to heat stress, the HRR expression analysis revealed that 

HRR transcripts are subjected to alternative splicing process, originating the canonical HRR.1 and 

intron-retained HRR.2 transcripts. A mRNA decay analysis suggested that HRR.2 transcripts could 



viii 
 

be considered good targets for RNA degradation, most likely through nonsense mRNA decay 

mechanisms. The alternative splicing mechanism was not always evident. In seeds, either subjected 

or not to heat stress, HRR.1 was the only transcript to be originated. Therefore, depending on plant 

development stage, HRR proteins could display slightly different functional roles. HRR proteins 

appear to be crucial in the regulation of other heat stress-responsive transcripts (HSFs and HSPs). 

In agreement with bioinformatic analysis, HRR is expressed during the later stages of seed 

maturation and during transition from seed dormancy to germination phases. During these stages, 

HRR seems to modulate a set of seed-specific transcripts, namely ABI5, Em6, HSFA9 and HSP101. 

ABA biosynthesis (ABA1 and NCED9) and SPY (GA metabolism negative regulator) transcripts 

seem to be also regulated by HRR, during seed germination. 

In vitro localisation assays suggested that HRR proteins appear to follow distinct subcellular 

pathways during HS imposition. Initially, HRR.1 was found in the nucleus, being then recruited for 

cytoplasmic granules and nuclear pores. HRR.2 was mainly found in cytoplasmic granules but was 

also present in nuclear speckles. The localisation of both proteins in cytoplasmic aggregates 

suggests that they could be present in stress granules (SGs) and/or processing bodies (PBs). 

Transcriptional- and translational-inhibition experiments demonstrated that HRR.1 could be strongly 

involved in SG biogenesis, while HRR.2 could interfere in both SG and PB activities.  

The approaches used in this work to investigate the HRR function have disclosed the role of 

this protein in heat-stress responses and during seed development and germination. Further 

research on these proteins will strength the current knowledge about the RNA metabolism under 

heat stress conditions. However, the key features of plant RNA-binding proteins in abiotic stress 

responses and plant development have just begun to be uncovered and many questions remain still 

to be answered.   
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Caraterização do gene HRR (Heat-Responsive RNA-Binding Protein) 

em Arabidopsis thaliana: Funções Moleculares na Termotolerância e 

Desenvolvimento Vegetais 

 

RESUMO 

As plantas estão continuamente a ser sujeitas a uma multiplicidade de stresses bióticos e abióticos, 

sendo que as temperaturas extremas são a forma mais comum de stresse abiótico. As temperaturas 

elevadas provocam consideráveis alterações morfológicas, fisiológicas e moleculares nas plantas, 

as quais afetam negativamente o seu crescimento e desenvolvimento. A aquisição de 

termotolerância é efetuada pela ativação e regulação de genes específicos para a resposta ao 

stresse, conduzindo a ajustamentos no transcriptoma e proteoma da planta. Da prévia análise 

transcriptómica efetuada em plântulas de Arabidopsis sujeitas a stresse pelo calor, o gene HRR foi 

selecionado por apresentar uma específica e elevada resposta ao stresse pelo calor. O principal 

objetivo deste trabalho é a caracterização funcional deste gene de função desconhecida. No final 

deste trabalho espera-se que a caracterização funcional de HRR contribua para o maior 

conhecimento da funcionalidade das proteínas de ligação ao RNA nas respostas ao stresse pelo 

calor. Estas proteínas provavelmente estão associadas à re-organização do transcriptoma, a qual 

será responsável pela adaptação ao stresse pelo calor e em diferentes fases do desenvolvimento 

vegetal. 

A análise in silico revelou que o gene HRR codifica para uma putativa proteína de ligação ao 

RNA, sendo particularmente expresso sob condições de stresse pelo calor. No entanto, HRR parece 

apresentar uma expressão basal ao longo de todo o ciclo de vida da planta, estando previstos os 

níveis mais elevados durante o desenvolvimento floral, maturação das sementes e germinação. A 

previsão da co-interação de HRR com outras proteínas de Arabidopsis contendo o domínio RRM 

(proteínas UBP1 e RBP45) e a sua relação filogenética com ortólogos de metazoários sugere que 

HRR pode desempenhar funções na estabilidade de transcritos induzidos durante o stresse pelo 

calor. 

A análise fenotípica de linhas mutantes de HRR com perda- (hrr) e ganho-de-função 

(sobreexpressão) demonstrou que HRR pode estar fortemente envolvida nas respostas de 

termotolerância, pelo menos durante a germinação das sementes. Em oposição aos dados 

bioinformáticos, HRR parece também estar envolvido nas respostas ao stresse salino. Foi 
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igualmente sugerida a função de HRR como regulador positivo no metabolismo e sinalização da 

fitohormona ABA. 

Quando plântulas foram submetidas ao stresse pelo calor, a análise de expressão de HRR 

revelou que os transcritos de HRR são sujeitos a um processo de excisão alternativa, originando o 

já descrito transcrito HRR.1 e o transcrito HRR.2 que apresenta retenção de um intrão. A análise de 

decaimento de mRNA sugeriu que os transcritos de HRR.2 podem ser considerados potenciais 

alvos de degradação, provavelmente através de mecanismos de decaimento de mRNA nonsense. O 

mecanismo de excisão alternativa nem sempre é verificado. Nas sementes, quer sejam sujeitas ou 

não ao stresse pelo calor, o único transcrito produzido é HRR.1. Deste modo, dependendo da fase 

de desenvolvimento, as proteínas HRR poderão apresentar ligeiras diferenças funcionais.  

As proteínas HRR parecem ser importantes para a regulação de transcritos induzidos durante 

a resposta ao stresse pelo calor (HSFs e HSPs). De acordo com a análise bioinformática, HRR é 

expresso durante as últimas fases da maturação das sementes e durante a transição do estado de 

dormência para a germinação. Durante estas fases, HRR parece modular um grupo específico de 

genes, nomeadamente ABI5, Em6, HSFA9 e HSP101. Os transcritos para enzimas envolvidas na 

biossíntese de ABA (ABA1 e NCED9) e de SPY (regulador negativo no metabolismo do GA) 

parecem também ser regulados por HRR durante a germinação. 

Ensaios in vitro de localização subcelular sugerem que as proteínas HRR seguem vias 

subcelulares diferentes, durante a imposição de stresse pelo calor. Inicialmente, HRR.1 foi 

encontrada no núcleo, sendo depois recrutada para grânulos citoplasmáticos e poros nucleares. 

HRR.2 foi maioritariamente encontrada nos grânulos citoplasmáticos, estando também presente em 

agregados subnucleares. A localização das duas proteínas nos agregados citoplasmáticos sugere 

que ambas estão presentes em grânulos de stresse (SGs) e/ou corpos de processamento (PBs). 

Ensaios de inibição da transcrição e tradução sugerem que HRR.1 está fortemente envolvida na 

biogénese de grânulos de stresse, enquanto HRR.2 pode interferir na atividade de ambos os tipos 

de agregados citoplasmáticos. 

As abordagens utilizadas neste trabalho para estudar a função de HRR revelaram a função desta 

proteína nas respostas ao stresse pelo calor e durante o desenvolvimento das sementes e 

germinação. Trabalhos futuros sobre estas proteínas permitirão reforçar o conhecimento atual sobre 

o metabolismo do RNA em condições de stresse térmico pelo calor. Contudo, as características-

chave das proteínas de ligação ao RNA nas respostas ao stresse abiótico e desenvolvimento 

vegetal só começaram agora a ser desvendadas e muitas questões permanecem ainda por 

responder. 
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1.1 Plant abiotic stress - their impact in modern agriculture 

 

In response to an increasing world population and constant necessity of food supply, modern 

agriculture has been facing considerable challenges. The techniques used in modern agriculture 

have demonstrated limitations in substantially increasing crop productivity, mostly due to the adverse 

effects of stress imposed by environmental changes. For instance, 51-82% of potential yield of 

annual crops is estimated to be lost in developing countries (Nagarajan and Nagarajan 2010). To 

reduce the losses in crop productivity and avoid a progressive food shortage, a collective effort in 

plant science research has been carried out, in order to understand plant adaptations to 

environmental stresses. 

Plants are susceptible to abiotic and biotic stresses. Abiotic stresses are characterised by a 

physical or chemical input, while biotic stresses are caused by interacting organisms (pathogens, 

predators and other competing organisms) (Robert-Seilaniantz et al. 2010). Drought and 

temperature are the major abiotic stresses that affect plants, along with salinity, light intensity and 

nutrient stress. These stresses can act simultaneously and increase the pressure over plants. For 

example, an increase in salt content of soil due to water loss is frequent during drought periods. 

These stresses, combined with intermittent non-optimal temperatures can substantially reduce crop 

production in many parts of the world (Mittler 2006).  

To cope with abiotic and biotic stresses, plants have been developed a broad range of 

mechanisms and strategies to ensure their prevalence under stressful conditions. The impact in plant 

physiology is greatly determined by the intensity and duration of single or combined stresses. Plant 

susceptibility, genotype and structure also influence the survival of plants under stress conditions. 

Thus, the knowledge about mechanisms associated to plant resistance to stressful environments has 

been the central aim for abiotic stress research. This knowledge would be used to develop new 

crops with enhanced tolerance to abiotic stresses.  

In recent years, the development of numerous methodologies and molecular tools have 

promoted the understanding of perception mechanisms and signalling responses to abiotic stress, 

mainly orchestrated by the expression of hundreds of genes. The identification and functional 

characterisation of genes involved in enhancing stress tolerance has been performed through 

transgenic lines (T-DNA, RNAi and TILLING mutants). Recent advances in microarray technology, 

functional genomics and development of high-throughput proteomics and metabolomics allowed the 

discovery of the molecular role of many stress-induced genes (Mittler and Blumwald 2010).  
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Basic research on plant responses to abiotic stress has been carried out on plant models and 

further transferred to crops of high economical interest. In addition to rice, Arabidopsis thaliana has 

been extensively used as a plant model for functional studies and has been considered very 

important to applied research (MASC 2011). Therefore, the basic Arabidopsis research functions as 

a pivotal tool to study plant stress biology. The knowledge obtained with these studies will allow to 

reduce the negative effects of environmental stress in crops, promoting plant productivity and 

ultimately reducing the worldwide food shortage. 

 

1.2 The role of the model plant Arabidopsis thaliana in functional 

genomics 

 

The study of plant stress has tended to focus on crop and wild species that develop a high 

adaptation ability to abiotic stress. The existence of crop variants displaying to specific trait(s) of 

stress tolerance has been of crucial importance, to the understanding of the genetic mechanisms 

underlying plant stress responses. The selection of a model system suitable for studying important 

processes common to all plants is another strategy to get the fundamental knowledge of such plant 

tolerance mechanisms. The Arabidopsis thaliana (Arabidopsis) (Figure 1.1) is a small plant 

belonging to Brassicaceae family, is native to Europe, Asia and north-western Africa, being also 

distributed throughout North America. Many ecotypes have been chosen from natural populations to 

be experimental by analysed (Table 1.1). Currently, the ecotypes Columbia and Landsberg erecta 

have been accepted as standards for genetic and molecular studies. 

 

Table 1.1 Origin of the main Arabidopsis thaliana ecotypes, used in plant biology studies (http://nasc.nott.ac.uk/; 
http://www.arabidopsis.org/) 
 

Ecotype Origin 

Col-0 (Columbia) United States of America 

Ler (Landsberg erecta) Poland 

WS (Wassilewskija) Russia 

Cvi-0 Cape Verde Islands 

 

Arabidopsis has been considered as the main plant model for a number of reasons. This was 

the first plant species having the genome entirely sequenced in (Arabidopsis Genome Initiative 

2000). Arabidopsis possesses a small genome (~120 Mbp; 25,500 genes) supported into five 
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chromossomes (Huala et al. 2001). Due to genomics traits and being a diploid organism, Arabidopsis 

has been suitable and easy for genetic manipulation: easily transformed by Agrobacterium and has a 

number of T-DNA lines, cDNA clones, TILLING and RNAi lines (Kuromori et al. 2009).This small 

angiospermic possesses a relatively small life cycle (~ six weeks) and generates a high number of 

seeds (~20,000 seeds per plant). Although being self-fertile and diploid, plants can be crossed by 

applying pollen to the stigma surface (Meinke et al. 1998). Considering these reasons and the very 

extensive information existent from different genetic resources, this plant species becomes a 

reference tool for stress research. 

 

 

 

Even without agricultural value and not exhibiting unusual stress-tolerance, Arabidopsis 

importance lies on the discovery of gene and protein functions and in the previous knowledge on its 

plant physiology, morphology, metabolism and development (Meinke et al. 1998). At the time of 

completion of the genome sequence, only ~10% of the 25,500 genes initially predicted had an 

experimentally assigned function. Although being a tremendous challenge, for determining the 

function of remaining 90% of genes, the complementation between the structural and functional 

genomics approaches becomes essential (Alonso and Ecker 2006).  

In the early stage of genome analysis, the structural genomics establish the genetic and 

physical mapping of an organism, as well as its EST libraries. The functional genomics analysis 

promotes the knowledge of gene function through the structural genomics data, as well as the 

information obtained from bioinformatic tools. In recent years, the functional genomics has been 

performed through forward genetics and, most intensively, through reverse genetics (Figure 1.2) 

(Alonso and Ecker 2006; Feng and Mundy 2006).   

Figure 1.1 Arabidopsis thaliana - reproductive and 
vegetative development stages. This plant is a model 
broadly used in biochemical, physiological and molecular 
studies. (A) vegetative development before flowering; (B), 
adult plant; (C), flower, (D) floral stem and (E) seeds. White 
bars, 1cm, except in seeds (1 mm) Adapted from: 
http://wwwijpb.versailles.inra.fr/en/sgap/equipes/cyto/arabido.

htm].  
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The primary tool available to functional genomics studies was forward genetics screens, in 

which the principal aim is to identify a mutation that produces a certain phenotype (Feng and Mundy 

2006). Initially, a mutant population is generated by chemical (EMS, ENU), physical (UV, X-ray, fast 

neutron) or biological (transposon, T-DNA) mutagenesis. This approach enables genome 

“saturation” in which all potential genes can be mutated. This is followed by a screening in specific 

conditions to find a plant with the desired phenotype. Once identified the plant exhibiting the 

phenotype, a map-based cloning is performed to identify the genetic cause of the mutant phenotype 

(Alonso and Ecker 2006; Feng and Mundy 2006). 

 

 

 

Figure 1.2 Schematic representation describing functional annotation for a gene, using either the forward or 
reverse genetics approaches. The most recent methodologies used in functional genomics are based on DNA chips, 
protein-protein interactions, analysis of expression profiles and available mutants. Two approaches can be used: forward 
genetics (identification and genomics mapping of a mutation which promotes a phenotype) and reverse genetics 
(determination of phenotype from a mutation into a gene of interest). Adapted from Alonso and Ecker (2006). 

 

In opposition, reverse genetics attempts to find the phenotype that results from a specific 

mutated gene. Following this approach, the mutants can be obtained through RNAi, T-DNA and 

transposon insertional mutagenesis, Deleteagene or TILLING. The existence of a knockout line for 

the gene of interest is crucial to determine the effect of this gene in a specific biological process 

(Krysan et al. 1999; Feng and Mundy 2006). The majority of used knockout lines harbour a T-DNA-

tagged insertion [corresponding to a portion of Agrobacterium tumefaciens, tumor-inducing (Ti) 

plasmid]. Owing to its disruptive nature, T-DNA insertion mutagenesis is commonly associated with 
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loss-in-function. However, it can be adapted to generate gain-of-function alleles by activation 

tagging. To achieve this, a strong transcriptional enhancer is introduced into the T-DNA, causing the 

ectopic expression of the nearby gene. Alternatively, the transposon-based insertion lines have 

demonstrated to be the most sophisticated approach in reverse genetic studies. Transposable 

elements are found in almost all organisms and are the major agents for generating diversity through 

mutation. Once considered potential mutagenesis agents, they have been exploited in reverse 

genetics approaches. Besides interrupting genes, additional refinements can show how the 

interrupted genes are expressed, or even produce gain-in-function phenotypes. This can be 

achieved by the use of engineered insertion elements, enhancer or gene traps. The main 

disadvantage of transposon tagging corresponds to one of the advantages of T-DNA insertion lines: 

the chemical and physical stability of genome integration through multiple generations (Krysan et al. 

1999; Alonso and Ecker 2006; Feng and Mundy 2006). 

Nowadays, much information has been provided from different methodologies, though many 

stress-responsive gene functions remain elusive. Both forward and reverse genetic approaches are 

important for elucidating gene functions but, progressively, reverse genetic has been the 

predominant methodology. Considering the organism and the biological trait to be analysed, as well 

as the access to correspondent insertion lines, the reverse genetics became the better strategy to 

integrate associated biological functions to heat stress (HS)-induced genes. 

 

1.3 Temperature stress - the major threat for plants 

 

Temperature is one the most important environmental factors that regulate plant growth and 

development. Each plant species display a range of optimal temperatures, which promotes the 

normal plant development (Saidi et al. 2011). The stress situation associated to high or low 

temperatures has a tremendous impact on all aspects of plant development and growth. In order to 

predict plant ability to adapt to environmental conditions that are permanently changing, the 

determination of optimal temperatures and identification of important components involved in 

responses to high and low temperatures are the key questions in ecological and agronomical studies 

(Hua 2009).  

Low temperatures limit the productivity and the geographical distribution of many important 

crops, through the negative impact that they exert in plant physiology. Cold stress can be classified 

as chilling (<20ºC) and freezing (<0ºC) stresses. Plants have developed a repertoire of adaptations 

to these conditions, such as seed and bud dormancy, vernalisation, photoperiod sensitivity and cold 
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acclimation (Penfield 2008). Cold acclimation is the process by which plants adquire freezing 

tolerance prior to the exposure to low non-freezing temperatures. This is followed by the 

remodelation of cell and tissue structures and reprogramming of metabolism and gene expression. 

Particularly, the responses to cold stress are characterised by profound modifications in metabolome 

and transcriptome (Chinnusamy et al. 2007). Cold stress induces the accumulation of a large amount 

of metabolite products (~75%), mostly osmolytes and other metabolites that function as signals for 

gene expression reconfiguration (Kaplan et al. 2004). Simultaneously, the cold-induced 

transcriptome is regulated by a complex transcriptional network (ICE/CBF pathway), important post-

transcriptional (pre-mRNA splicing, export of mRNAs and small RNAs) and post-translational 

(ubiquitination /26S proteosome pathway and sumoylation) regulation processes (Chinnusamy et al. 

2007). 

Plant perception and response to high temperature/heat stress (HS) occurs when the rise in 

temperature, usually 5-7ºC, is above a threshold level (maximum temperature) (Wahid et al. 2007). 

Plants exhibit a complex response to extreme high temperatures in an attempt to survive and 

optimise growth and reprodutive success (Penfield 2008). The basal thermotolerance describes the 

plant response to HS in absence of any period of acclimatisation. On the other hand, acquired 

thermotolerance results from the prior exposure to a conditioning temperature, which is usually a 

short, sublethal HS or other moderate stress. The adquired thermotolerance is a more general 

mechanism that contributes to homeostasis of metabolome, transcriptome and proteome under 

diurnal temperature fluctuactions (Chinnusamy et al. 2007; Larkindale and Vierling 2008). When 

plants are exposed to low or high temperatures, several plant tissues and physiological processes 

are dramatically affected. The acquired temperature stress tolerance developed by plants in each 

particular temperature stress is distinct at physiological and molecular levels (Nagarajan and 

Nagarajan 2010). 

 

1.3.1 Plant responses to heat stress 

 

Plants can develop a broad range of morphological, physiological and molecular responses when 

exposed to HS (Figure 1.3). Plant responses to heat should be balanced to achieve optimal plant 

growth and productivity. In many cases, plant responses to a sudden increase of temperature 

(intensity) or long exposure (duration) may not be adequate, leading to plant death.  

The HS immediately affects the photosynthetic apparatus, since the over-production of 

oxidative by-products induces the chlorophyll degradation and the disassembly of the photosystem 

II. As a consequence, the photochemical reactions and carbon metabolism are highly affected by HS 
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(Larkindale et al. 2007; Wahid et al. 2007). In addition to the typical sunburns in leaves and stems, 

the first impact of HS on plant development is the inhibition of shoot and root growth and early 

senescence of meristematic tissues, including internodes (Wahid et al. 2007). On the other hand, HS 

can also affect plant reproduction, including defects in the development of gametes, pollen 

germination and fertilisation. 

 

 

 

Figure 1.3. Overview of plant morphological, physiological and molecular responses induced by high 
temperatures. Under high temperatures, plants built a complex network of responses to HS. In addition to morphological  
modifications, one of the first targets of HS-induced damaging is the photosynthetic apparatus. At this level, other cellular 
structures are similarly affected (plasma membrane, endomembranes), as well as several metabolic pathways and 
hormonal homeostasis. Simultaneously, a complex and specific molecular response is built, in attempt to promote the 
thermotolerance development. Adapted from Wahid et al. (2007). 

 

To respond to HS, plants adjust their metabolic, physiological and molecular processes. One 

of the first plant adaptation to HS is the accumulation of specific organic compounds, called 

osmolytes or compatible solutes. These compounds of low molecular mass promote the functional 

integrity of proteins and membranes. Recent metabolomic studies evidence that some amino acids 

(β-Ala and proline), sugars (maltose, sucrose and trehalose) and glycerol accumulated after 

prolonged exposure to HS (Kaplan 2004; Lv et al. 2011; Rizhsky et al. 2004). The hormonal 

homeostasis is also altered under HS, affecting the hormone levels of abscisic acid (ABA), salicylic 

acid (SA) and ethylene. These phytohormones regulate many physiological properties by acting as 

important signal molecules (Larkindale et al. 2007). 

Plant responses to HS are mainly determined by key molecular modifications that occur at the 

cellular level. After HS perception on the plasma membrane, the signalling transduction of the signal 
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will promote changes at different levels of gene regulation: transcriptional, post-transcriptional, 

translational and post-translational. The transcriptional level of regulation includes the HS-specific 

induction of transcription factors (TFs), heat shock proteins and other stress-related proteins. 

Proteins related to RNA metabolism, signal transduction effectors, and post-translation modification 

(phosphorylation, sumoylation, methylation, ubiquitination) also perform specific and crucial 

regulation roles. All the molecular networks engaged in response to HS integrate crucial proteomic, 

metabolomic and transcriptomic modifications which are necessary for development of plant 

thermotolerance (Urano et al. 2010). 

The negative effects of HS can be further intensified with the input of other stresses. For 

example, the combination of high temperatures and drought has been extensively studied, once they 

usually occur in the field simultaneously. This combination has a significantly greater detrimental 

effect on the growth and productivity of several crops, as well as unique physiological and molecular 

aspects (Mittler 2006). 

 

1.3.2 Temperature perception and signalling transduction 

 

Plants have a plethora of molecular processes to deal with HS, avoiding the negative effects caused 

by high temperatures. The activation of such molecular processes implicates several signalling 

pathways, which culminate in the activation of heat shock factors (HSFs) and the accumulation of 

high levels of heat shock proteins (HSPs) and small HSPs (sHSPs) (Figure 1.4). Meanwhile, the 

expression of other effectors components, such as dehydrins, late embryogenesis abundant (LEA) 

proteins, ROS-scavenging proteins also contributes for thermotolerance resistance. 

Despite the intensive research on this area, the existence of a thermosensor has not been yet 

described in plants. Plasma membrane and associated Ca2+ channels are considered good 

candidates to be heat sensors in plants (Reddy et al. 2011; Saidi et al. 2011). Osmotic stress, cold 

and in particular HS can dramatically modify the activity and integrity of plasma membrane and its 

associated proteins (Falcone et al. 2004). Supporting this premise, it is likely that membrane fluidity 

during HS imposition affects the activity of specific proteins, namely Ca2+ channels. Accordingly, a 

specific and transient Ca2+ influx across the plasma membrane is triggered by heat, which promotes 

a sudden increase of cytoplasmic Ca2+ (Reddy et al. 2011). The Ca2+ mediated signal implicates 

other proteins that work as Ca2+ sensors, namely calmodulin (CaM), CaM-like proteins (CMLs), 

calcineurin B-like proteins (CBLs) and CBL-interacting protein kinases (CIPKs) (DeFalco et al. 2009; 

Reddy et al. 2011). Some of these Ca2+ sensors are localised in the nucleus, whereas others are 

translocated from the cytoplasm to the nucleus in response to stresses. The heat-induced increase 
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of cellular Ca2+ levels ultimately promotes changes in the expression of several HSFs and Ca2+ 

sensor-coding genes (Reddy et al. 2011). In addition, Ca2+ modulates the activity of HSFs through 

CaM-binding kinases and phosphatases.  

Besides the Ca2+, the HS signalling pathways include other secondary messengers, such as 

hydrogen peroxide (H2O2), D-myo-inositol-1,4,5-triphosphate (IP3) and phosphatidyl inositol 4,5-

biphosphate (PIP2) (Figure 1.4). Hormones like ethylene and ABA are also implicated in the HS 

response, supporting the idea that heat is a major threat to plants, which developed redundant 

pathways to detect the stress caused by high temperatures. Recent evidences indicate that HS can 

cause some oxidative stress, depending on the duration of the stressful conditions. In the beginning 

of HS, the photosynthetic impairment originates high levels of reactive oxygen species (ROS), 

namely superoxide anion, which is immediately converted into H2O2. This ROS has been described 

as an essential second messenger in the HS signalling pathway, up-regulating HSP and APX2 

genes (Miller and Mitller 2006). This up-regulation appears to be mediated by HSFA2 and HSFA3 

regulators (Miller and Mitller 2006; Suzuki and Mittler 2006).  

Temperature variations can cause changes in membrane composition and fluidity (Mittler et al. 

2012). Under HS, mobilisation of numerous lipids molecules that are known to be involved in 

signalling occurs, notably PIP2 and phosphatidic acid (PA). PA and PIP2 function as key mediators 

of signalling pathways, membrane dynamics and cytoskeleton organisation that occur between the 

cytoplasm and the nucleus (Mishkind et al. 2009). The PIP2 molecule is converted to IP3 by 

phospholipase D (PLD). Together with its derivate IP6, IP3 will be responsible for the release of Ca2+ 

from intracelular stores (Mishkind et al. 2009). 

Besides the regulation of gene transcription, the secondary messengers mentioned above can 

also regulate protein activity. Together with a set of kinases and phosphatases, the secondary 

messengers promote the activation of transcription factors from the HSFA1 group. In plants growing in 

optimal temperatures, HSFA1 proteins are complexed and negatively regulated by the cytosolic HSP90s 

and HSP70s (Forreiter 2006). The accumulation of misfolded proteins during HS triggers the recruitment 

of HSP90/70 to repair protein damage and HSFA1s’ activation is promoted. The HSFA1s’ activation can 

also occur through phosphorylation performed by activated CaM-binding protein kinase (CBK), which is 

activated by MAP protein kinases, through H2O2 stimulation.  Previous studies demonstrated that CaM-

binding kinase 3 (AtCBK3) phosphorylates AtHSFA1a (Liu et al. 2008). This post-translational 

modification promotes HSFA1a conformational alteration (from monomeric to trimeric forms) and its 

binding to HSE elements of target genes, such as those coding for pivotal transcriptional factors, like 

HSFA2, DREB2A and HSF7a/7b (Figure 1.4). In turn, these factors promote the expression of a subset of 

HS-induced genes, building up a thermotolerance response (Liu et al. 2011). 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

12 
 

 

 

 

Figure 1.4 Overview of multiple signalling pathways and factors implicated in the HS response. HSFs are the 
main components of the network, mediating the expression of protective proteins - HSPs, small HSPs (sHSPs) and 
ascorbate peroxidase 2 (APX2). Some phytohormones such as ABA, SA and ethylene have also been implicated in 
response to HS. Bold arrows depict the signalling pathways already experimentally described, whereas the lighter ones 
are the only predicted. The secondary messengers Ca2+/CaM and hydrogen peroxide (H2O2) (bold) have been described 
as early effectors of signalling pathways in response to HS. HSFA2 (bold) has been described as pivotal transcriptional 
regulator in late HS responses. 

 

 

The HSFA2 transcription factor expression is highly expressed during HS, particularly in the 

later phases of the HS response (Schramm et al. 2006; Charng et al. 2007). However, HSFA2 role is 

not restricted to HS, since it is also implicated in other abiotic stresses (Nishizawa et al. 2006). 

Several results indicate that HSFA2 may be present in a signalling cascade under the control of at 

least one master regulator or directly induced by H2O2 (Li et al. 2005; Volkov et al. 2006). 

DREB2A and its homologue DREB2B were initially indicated as transcriptional factors whose 

expression was induced under drought and high salinity (Sakuma et al. 2006a). However, recent 

data have also implicated DREB2A in high temperature responses (Schramm et al. 2008). Like 

HSFA1 members, DREB2A requires a phosphorylation to be activated under stressful conditions. 

Although DREB2A can be directly activated by HS, it also requires the HSFA1-inducible activation, in 

order to induce HSFA3 expression (Figure 1.4). DREB2A involvement through HSFA3 allows the 

long-term imposition of HS responses (Schramm et al. 2008).  
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HSF7a/7b have been described as contributing to heat acclimation, in response to cytosolic 

unfolded protein accumulation during HS treatment (Larkindale and Vierling 2008; Sugio et al. 2009). 

Globally, the activity of both early (HSFA1, DREB2A) and late (HSFA2, HSFA3 and 

HSF7a/7b) regulators of HS response leads to the expression of specific genes, responsible for 

thermotolerance acquisition in plants.  

In addition to a plethora of transcription factors, HSPs and sHSPs are also highly expressed 

during sudden or gradual HS treatment (Huang and Xu 2008). However, these proteins are also 

engaged in other processes, namely embryogenesis, seed germination and pollen development. 

HSPs function as molecular chaperones, binding to structural unstable proteins. This role is 

important in protein folding, transport of proteins across membranes, modulation of protein activity 

and regulation of protein degradation. The molecular roles of HSPs are consistent with their wide 

subcellular distribution (Table 1.2). Hence, their intervention in diverse development stages appears 

to be essential for proper functioning of cell, in particular maintenance of cellular homeostasis 

(Forreiter 2006). 

There are five well-characterised classes of HSPs that have been defined in both plants and 

other organisms (Wang et al. 2004b). As HSP classes are common to all organisms and their 

function was preserved during evolution (Forreiter 2006; Tiedemann et al. 2008), the prokaryotic 

counterpart of a given chaperone is also presented in table 1.2 (in brackets). 

HSP100/Clp class of chaperones is found in many organisms (bacteria, yeast, plants), 

belonging to AAA+ superfamily of ATPases (Singh and Grover 2010). In plants, they are considered 

as caseinolytic protease (Clp)-like proteins, working to maintain the quality of cellular proteins. These 

proteins are structurally hexameric and their ATP-dependent activity promotes the protein 

remodelling through ATP-binding and hydrolysis (Singh and Grover 2010). In Arabidopsis, the well 

characterised AtHSP101 has been implicated in acquired thermotolerance in different growth stages 

(Larkindale et al. 2007).  

HSP90 chaperones are well characterised in a number of eukaryotes (mostly in animals and 

yeast). In Arabidopsis, there are seven HSP90 genes, whose proteins have different subcellular 

localisations. Although some of these genes show high expression levels in response to heat 

treatment, no direct evidences of connection between HSP90s and heat tolerance have been 

described (Forreiter 2006). Their activity may depend on the type of interacting partner involved 

(receptor/signalling molecule) but an interaction with HSP70 and co-chaperones is necessary 

(Forreiter 2006).  
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Table 1.2 Principal groups of HSPs in plants. HSP roles and respective subcellular localisations show their ubiquity 
and partial functional overlapping in the cell. 
 

HSP 
class 

Size 
(kDa) 

Examples Cellular 
localisation 

Principal functions 

HSP100 

(Clp) 
100-114 AtHSP101 

Cytoplasm, 

mitochondria and 

chloroplast 

Resolubilisation of protein aggregation in 

cooperation with HSP70/DnaK chaperone 

system and sHSPs. (Weibezahn et al. 2004; 

Singh and Grover 2010). 

AAA+ ATP-dependent activity (Neuwald et al. 

1999). 

HSP90 

(HtpG) 
80- 94 AtHSP90 

Cytoplasm, 

mitochondria, ER and 

chloroplast 

Folding of proteins with key functions in cell 

proliferation (Johannes 1999). 

Protein trafficking and degradation (Wang et al. 

2004b). 

Roles in signalling transduction pathways 

(Stepanova et al. 1996; Johannes 1999). 

Activity promoted by binding of HSF70 and co-

chaperones (Forreiter 2006). 

HSP70 

(DnaK) 
69- 71 

AtHSP70, 

AtHSC70 

Cytoplasm, nucleus, 

mitochondria and 

chloroplast 

Plant heat tolerance (Nover and Scharf 1997).  

Necessary for activity of HSP90, HSP101 and 

sHSPs (Young et al. 2004). 

ATP binding and hydrolysis (Forreiter 2006). 

HSP60 

(GroE) 
57-60 AtTCP-1 

Mitochondria and 

chloroplast 

Assistance in folding of new synthesised and 

new translocated proteins to achieve their 

native forms (Frydman 2001) 

Small 

HSPs, 

sHSPs 

12-40 

AtHSP17.7 

AtHSP18.1 

AtHSP25.3 

AtHSP23.6 

AtHSP26.5 

HSA32 

Cytoplasm, nucleus, 

plastids, ER, 

mitochondria 

Prevention of irreversible aggregation of 

unfolding proteins (Forreiter 2006). 

Association with membranes and maintenance 

of integrity (Nover et al. 1989; Friedrich et al. 

2004). 

ATP-independent activity (Huang and Xu 

2008). 

 

HSP70 proteins play a pivotal role in controlling HSP90, HSP101 and sHSPs activity, 

adjusting the global chaperone system activity. Due to its weak ATPase activity, HSP70 interacts 

with HSP40 to increase its activity (Bukau and Horwich 1998). Several studies in plants have 

demonstrated that HSP70s and their related isoforms are important for plant heat tolerance 

(Larkindale et al. 2007). 
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Less known than other HSPs’ groups, plant HSP60s or chaperonins, have been described as a 

chaperone system similar in structure and function to the procaryotic GroEL/S complex (Forreiter 2006). 

They exist as two distinct groups, being associated to organelles (group I) or distributed in cytosol (group 

II). Both groups of chaperonins play roles in assistance to newly synthesised and newly translocated 

proteins (Huang and Xo 2008). While chaperonins in organelles function in complex with other 

chaperones, some cytosolic chaperonins join with HSP70/HSP40 complex and assist in actin protein 

folding mechanisms (Frydman 2001). 

Among the five major conserved groups of HSPs/chaperones, the sHSPs are found in all 

kingdoms. They are the most prevalent group in plants and are present in diverse cellular 

compartments (Larkindale et al. 2007). They bind to a wide range of cellular substrates and are 

implicated in many different stresses. These proteins possess an oligomeric organisation, which is 

broken down into smaller dimers under stressful conditions (Forreiter 2006). When sHSPs-

substrates complexes interact with other molecular chaperones they can be stabilised and promote 

refolding. A high sHSPs/substrate ratio is the principal determinant in co-interaction and activity 

efficiency of sHSPs with unfolded proteins (Nakamoto and Vígh 2007; Siddique et al. 2008). 

HS responses also involve modifications in hormonal levels. ABA is known to be involved in 

HS response, inducing some degree of thermotolerance in plants (Rock et al. 2010). In addition to 

up-regulation of ABA biosynthesis genes (ABA1, NCED2, NCED5 and NCED9) and enhancement of 

SPINDLY gene expression (SPY, a GA negative regulator), high ABA levels also promote the 

accumulation of HSPs, dehydrins and LEA proteins. Despite these evidences, ABA was suggested 

to function in the HS response through a HSF/HSP-independent pathway (Larkindale et al. 2007). 

Other experimental evidences suggest that ABA functions in preventing denaturation and 

coagulation of cellular proteins or membranes under HS (Rock et al. 2010). 

SA hormone is also accumulated under HS conditions and improves heat tolerance. SA was 

suggested to stabilise the trimers of HSFs and help them to bind to HSE sequences of HS-related 

promoters (Larkindale et al. 2007). 

The present knowledge about the ethylene involvement in thermotolerance is still scarce. 

Previous studies indicated that ACC oxidases (ethylene biosynthesis), as well as ETR1 and EIN2 

genes are up-regulated during heat treatment (Larkindale et al. 2007). Ultimately, they seem to 

protect against the oxidative stress generated by high temperatures.  

In synthesis, HS responses are supported by a complex network between all the cellular 

components above described. This network promotes plant thermotolerance improvement and 

adaptation to new environmental conditions. 
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1.3.3 Genetic improvement for heat tolerance 

 

When plants are subjected to different environmental conditions, a high number of genes is up- or 

down-regulated, resulting in changes of several metabolites and proteins levels. Ultimately, these 

changes on metabolites and proteins are the principal factors that confer plant protection against the 

imposed stresses. 

Plant scientists have been concerned in manipulating the molecular processes used by plants 

in response to abiotic stresses. The main goal is to improve crop growth in adverse conditions 

(Bhatnagar-Mathur et al. 2008). The introduction of molecular markers use in breeding programs, 

together with introgression of genomic portions (QTLs), have permitted the selection of better 

agronomic characteristics. However, the lack of a precise knowledge of key genes underlying the 

QTLs leads to the development of genetically engineered or transgenic plants (Bhatnagar-Mathur et 

al. 2008). Transgenic plants are defined by the introduction and/or over-expression of specific genes 

in the plant. In addition to be a faster way to insert beneficial genes, this genetic engineering 

approach is the only option when genes of interest come from cross barrier species, distant relatives, 

or from non-plant organisms (Bhatnagar-Mathur et al. 2008). 

Various transgenic technologies have been used to improve stress tolerance in plants, in particular 

by the introduction of components involved in HS response (Bhatnagar-Mathur et al. 2008). Although 

many molecular mechanisms of HS response maintain to be elucidated, the gene expression profile 

during HS is one of the best studied inside abiotic stresses. It is known that responses to HS are 

characterised by synthesis of HSPs, whose expression is regulated by HSFs. The growing need to 

obtain HS tolerant crops through transgenic approaches lead to the manipulation of some HS 

response components, namely HSFs and HSPs accumulation (directly or through regulatory circuits 

governed by HSFs), changes in levels of osmolytes and ROS-scavenging enzymes (Bhatnagar-

Mathur et al. 2008; Singh and Grover 2008). 

Since HSPs are involved in thermotolerance acquisition in plants, their up-regulation was 

achieved in several studies. Malik et al. (1999) produced transgenic carrot cell lines and plants over-

expressing sHSP17.7. Modified expression of sHSP17.7 enhanced carrot survival at high 

temperature. Transgenic rice plants over-expressing OsHSP17.7 gene also showed increased 

thermotolerance as well as higher resistance to UV-B radiation (Murakami et al. 2004). The over-

expression of HSP101 in rice produced plants with high survival rates in the post-HS recovery phase 

(Katiyar-Agarwal et al. 2003). The over-expression of AtHSFA3 and tomato HSFA1 genes lead to 

enhancement of thermotolerance of respective transgenic plants (Prändl et al. 1998; Mishra et al. 

2002). 
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Plant response to HS also involves the synthesis of specific osmolytes, such as proline, 

glycine-betaine and sugars (mannitol, trehalose, sorbitol). Osmolytes accumulation helps plants to 

adapt against water deficit generated by continuous exposition to HS (Larkindale et al. 2007). Plants 

harbouring transgenes encoding enzymes implicated in the biosynthesis of specific osmolytes have 

been produced and the consequences of osmolytes accumulation addressed. The most extensive 

study promoted the accumulation of glycine-betaine in Arabidopsis through the production of plants over-

expressing the codA gene (encodes for choline oxidase from Arthrobacter globiformis) (Alia et al. 1998). 

The seeds of such transgenic plants were more resistant to HS than the wild-type seeds, resulting in a 

higher rate of seed germination and increased growth of seedlings. Recently, the over-expression of 

betaine aldehyde dehydrogenase protein from spinach increased the glycine-betaine levels in 

tobacco plants (Yang et al. 2005). The transformant seedlings showed increased thermotolerance as 

well as higher CO2 assimilation rate. 

The ROS characteristic accumulation of HS is reduced by scavenging enzymes, such as 

ascorbate peroxidase (APX). The over-expression of barley HvAPX1 gene in Arabidopsis increased 

their thermotolerance, when compared to wild-type (Shi et al. 2001). 

Since the manipulation of gene expression levels normally implies many molecular and 

physiological modifications, the “omics” (genomic, transcriptomic and proteomic) studies are 

essential to characterise the key components involved at different regulation levels (namely post-

transcriptional and post-translational). 

 

1.4 RNA-binding proteins, crucial effectors in post-transcriptional 

regulation 

 

Gene regulation can occur at transcriptional, post-transcriptional, translational and post-translational 

levels. However, the study of gene regulation during biotic and abiotic stresses is mostly focused on 

the transcriptional level. Only recently the other levels of gene regulation have started to be 

thoroughly analysed. As a result, the importance of post-transcriptional, translational and post-

translational regulation in stress signalling and molecular responses is still far from being elucidated. 

These levels of regulation have risen as key mechanisms to modulate the amount and activity of 

transcripts and proteins under stressful conditions (Urano et al. 2010). 

The amount of mRNAs available in the cell for translation can be controlled through different 

steps, which include transcription, mRNA processing, transport, translation initiation and mRNA 

turnover. All these processes implicate direct and/or indirect binding of proteins to RNA molecules 
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(Glisovic et al. 2008). These proteins are designated RNA-binding proteins (RBPs) and compose a 

widespread family.  

The binding of proteins to mRNA in the nucleus during gene transcription and RNA processing 

forms the heterogeneous nuclear ribonucleoproteins (hnRNPs) (Chaudhury et al. 2010). Molecular 

cloning of genes encoding hnRNPs led to the discovery of several motifs/domains involved in RNA 

binding and protein-protein interactions (Burd and Dreyfuss 1994). Some well characterised RNA-

binding domains in ribonucleoproteins include: RNA-recognition motif (RRM); K-homology (KH) 

domain; RGG box (Arg-Gly-Gly); DEAD/DEAH box; zinc finger (ZnF); double stranded RNA-binding 

domain (dsRBD); Pumilio/FBF (PUF) domain and Piwi/Argonaute/Zwille (PAZ) domain (Chen and 

Varani 2005; Lunde et al. 2007; Glisovic et al. 2008).  Using bioinformatics tools, a high number of 

RBPs with different combinations of RNA-binding domains was discovered, in eukaryotic organisms. 

In Arabidopsis, a high number of RBPs (279) were recently detected, compared to the 100 

RBPs identified in Caenorhabditis elegans and 117 RBPs in Drosophila (Peal et al. 2011). 

Arabidopsis RBPs mainly contain RRM domains and others RNA-binding domains that have not 

been described yet. Recent evidences indicate that besides RNA recognition and binding, the RRM 

domain is also implicated in protein-protein interactions (Maris et al. 2005). This may be important in 

the establishment of a broad range of protein associations that are necessary to modulate the RNA-

binding affinity and specificity. The RRM domain has approximately 90 amino acids and contains the 

RNP1 and RNP2 consensus sequences or motifs. The RNP1 is a central and highly conserved 

sequence, containing eight conserved residues that are mainly aromatic and positively charged. This 

motif has been indicated to be responsible for the RNA interaction. The RNP2 possesses six amino 

acids and is less conserved than RNP1 (Lorković and Barta 2002) . 

 In addition to RRM domain, the RBPs can harbour other functional domains that are mostly 

involved in protein-protein interactions and post-translational modifications (Lorković and Barta 2002; 

Peal et al. 2011). In Arabidopsis, these domains include glycine(G)-rich, arginine-(R)rich, 

serine/arginine(SR)-rich, glutamine(Q)-rich and poly(A)-binding (KRDE) domain (Lorković and Barta 

2002; Zdravko 2009). 

The Arabidopsis RRM-containing proteins are divided in groups, based on similarities with their 

metazoan counterparts and on the combination between RRM and the functional domains involved in 

protein-protein interaction domains. Four main groups can be distinguished: the poly(A)-binding proteins 

(PABPs); SR proteins (including snRNPs); oligourydilate-binding proteins and G-rich-RBPs (GR-RBPs) 

(Figure 1.5). 

The PABPs are composed of four consecutive RRMs and may have an additional functional 

domain. These proteins bind to poly(A) tails of mRNAs, being essential for polyadenylation 
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stimulation, control of poly(A) length, regulation of mRNA stability, translation initiation and for mRNA 

degradation (Keller and Minvielle-Sebastia 1997; Minvielle-Sebastia and Keller 1999; Wahle and 

Rüegsegger 1999). The Arabidopsis genome codifies for 12 different PABPs, but nine of them are 

homologues to yeast and mammalian Pab1p (Lorković and Barta 2002).  

The SR proteins, together with snRNPs, are the major effectors in mRNA splicing activity and 

spliceosome composition. SR proteins play an important role in canonical and alternative splicing by 

promoting interactions across intronic and exonic sequences during early steps of the spliceosome 

assembly (Duque 2011). Together with snRNPs (U1, U2, U4/U6 and U5), the SR proteins are 

important for selection of specific sequences (branchpoint, 5’ and 3’ splicing sites) during the pre-

mRNA splicing (Barta et al. 2008). 

 

 

 

Figure 1.5. Modular structure of the Arabidopsis RRM-containing proteins. Only representative types of domain 
combinations are shown. Individual domains are identified by different shapes and colours. Different types of domains 
(RNA-binding and functional/auxiliary domains) are listed at the bottom. Adapted from Lorković and Barta (2002). 

 

Oligourydilate-binding proteins include UBP1 (and related proteins UBA1 and UBA2), RBP45 and 

RBP47. Despite their specificity in mRNA stability and pre-mRNA splicing, these proteins are structurally 

similar, with three RRM domains (except UBA1 and UBA2) (Peal et al. 2011). The RBP45/RBP47 and 

UBP1 proteins are homologous to yeast Nam8p and metazoan TIA-1 (Lorković and Barta 2002). 

Arabidopsis GR-RBPs harbour RRMs at the N-terminus and glycine-rich region at the C-terminus 

(Lorković and Barta 2002). GR-RBPs have been described to be active during development, response to 

stimulus, such as circadian clock and several environmental stresses (salt, cold). 
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In summary, plants possess a large number of RNA-binding proteins, crucial for several post-

transcriptional mechanisms that control gene expression. This RBP diversity is partially responsible 

for the success of plant adaptation during evolution. Although the function of the majority of RRM-

containing proteins still remains unknown, the progressive technical advances in transcriptome and 

proteome analyses will be essential to elucidate most of their functions under different environmental 

conditions. 

 

1.4.1 Alternative splicing, the key for proteome diversity 

 

During RNA splicing, introns are removed from primary transcripts and the exons are joined to form a 

continuous sequence that specifies a functional polypeptide. This process is performed by a large 

ribonucleoprotein complex – spliceosome – composed by snRNPs, SR proteins and other splicing 

regulators (hnRNPs, SR kinase proteins) (Kim et al. 2008a). Just after the emerging of pre-mRNA, 

several spliceosome complexes are assembled along specific sequences present in the pre-mRNA 

molecule. These sequences define exon-intron the boundaries. The main splice recognition sites in 

plants are: 5’ donor (AG/GUAAG) and 3’ acceptor (UGCAG/G) splice sites and branchpoint (Figure 1.6). 

 

 

 

Figure 1.6 Major consensus sequences involved in the splicing process in plants. The three principal splicing 
signals are depicted: 5’ splice site, branchpoint and 3’ splice site. The UA corresponds to UA-rich intronic sequences. 
Adapted from Brown (1996). 

 

The complexity of RNA splicing is firstly determined by both 5’ and 3’ splice recognition sites. 

Although many sequences similar to the consensus might be present in the pre-mRNA, the 

existence of a branchpoint (AU rich) and a U-rich polypyrimidine sequences inside the introns are 

crucial for the selection of the correct splice sites. The absence of these two elements leads to the 

wrong selection of splice sites (Brown 1996; Kim et al. 2008). 

The efficiency of RNA splicing is enhanced by short cis-acting regulatory sequences (4-18 nts) 

that are classified as exonic or intronic splicing enhancers or silencers. Specific binding of splicing 

regulator proteins, such SR proteins, snRNPs and hnRNPs to those cis-acting elements assists in 

the correct position of the spliceosome on splice sites. 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

21 
 

Depending on the environmental or developmental inputs, the splicing pattern could be 

modified by the recognition of a new splice site, leading to alternative splicing (AS). This process 

promotes the generation of more than one mRNA transcript from the same pre-mRNA (Brown 1996; 

Reddy 2007; Kim et al. 2008). AS plays an important role in increasing the protein diversity, an 

essential aspect to maintain the complexity of an organism. In plants, the AS is precisely regulated in 

a tissue- and developmental stage-specific manner, encompassing the majority of genes related to 

cell growth and maintenance, cell communication and plant development (Barta et al. 2008). In 

plants and other organisms, the major AS events can result from the selection of alternative 5’ or 3’ 

splicing sites, retention of an intron or skipping of exons (Figure 1.7) (Barbazuk et al. 2008)  

 

 

 

Figure 1.7 The main types of alternative splicing in plants. Four different alternative splicing events can be 
distinguished in plants: intron retention, alternative 3’ splice site selection, alternative 5’ splice site selection and exon 
skipping. The relative prevalence of each type of alternative splicing in Arabidopsis is shown in parenthesis. Dashed lines 
indicate the splicing options: canonical or constitutive splicing (in black, above); and alternative splicing (in orange, 
below). The brown intron corresponds to a retained intron, resulting from intron retention mechanism. DS1, donor or 5’ 
constitutive splice site; DS2, donor or 5’ alternative splice site; AS1, acceptor or 3’ constitutive splice site; AS2, acceptor 
or 3’ alternative splice site. Adapted from Ner-Gaon et al. (2004) and Barbazuk et al. (2008)  

 
Intron retention has been reported as the major AS event in plants, occurring in more than a 

half of the alternative splicing events in Arabidopsis. This mechanism results in the introduction of a 

few amino acids in the final protein sequence, as a result of retention of the entire intronic sequence. 

The effect of a retained intron strongly depends from its localisation in mRNA transcript. The retained 

intron could appear either as a part of coding sequence (CDS), bridging both CDS and UTRs or be 
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present in 5’/3’ UTR (Ner-Gaon et al. 2004; Barbazuk et al, 2008).These different possibilities of 

intron retention can have profound effects on gene expression. When retained in CDS, it may result 

in different effects, depending on the tissue and developmental stage. Normally, this mechanism 

produces a shorter protein that prematurely ends at a small distance from 5’ end of retained intron 

(Ner-Gaon et al. 2004; Barbazuk et al. 2008). However, the majority of transcripts that harbour an in-

frame premature stop codon (PTC) are good candidates for further degradation. In case of an intron 

retention in the 5’UTR, the tissue specificity, expression levels and translation efficiency of 

alternative transcripts could be altered (Gauss et al. 2006). The intron retention into 3’UTR may have 

drastic effects on mRNA stability (Chan and Yu 1998; Cheng et al. 1999). 

Another very common and relevant type of AS in plants is the alternative acceptor or donor 

splice sites (or alternative 3’ or 5’ splice sites, respectively). Depending on whether an alternative 3’ 

or 5’ splice site is used, either the 3’-most or 5’-most exon is extended, provided the splice does not 

change the reading frame. However, if the reading frame is changed the generation of an in-frame 

stop codon frequently occurs, leading to a truncated protein product (Louzada 2007). 

 In plants, in contrast to humans, the exon skipping (splicing or inclusion of an exon) is a less 

common form of AS. In this mechanism, an exon is either included or excluded from the mRNA 

(Louzada 2007; Barbazuk et al. 2008). 

 

1.4.1.1 Regulation of alternative splicing under stress 

 

Research on gene expression regulation at transcriptional level has resulted on the identification of stress 

response-related transcription factors and key signalling components. However, many studies have 

revealed that AS events occur on stress-related transcripts under abiotic stresses (Ali and Reddy 2008a). 

Indeed, AS has been considered a major gene regulation process in stress responses, since the 

resulting products generate great transcriptome/proteome alterations important for stress adaptation 

(Ali and Reddy 2008a).  

During adaptation to extreme temperatures and after the induction of HS-related genes, AS has 

been detected in several SR transcripts (SR30, SR33, SCL30a, RS31, SR34b) (Palusa et al. 2007). The 

resulting isoforms act in combination to specifically alter the splicing process of downstream 

temperature-induced genes. For example, in some plant crops, specific members of ERF/AP2 family 

transcription factors are predicted to undergo AS in cold conditions (Iida et al. 2005). On the other 

hand, several studies have shown changes in the AS pattern of HSP transcripts (HSP70, HSP81) 

(Hopf et al. 1992; Larkin and Park 1999). The changes in alternative splicing apparently would lead 

to either an enhancement or reduction of the HSP activity. 
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The changes in AS regulation can greatly depend from a combination of several cis and trans 

splicing elements which appear to be crucial for AS regulation (Ali and Reddy 2008a). Nevertheless, 

the cis elements that respond to temperature stress are mostly unknown. The trans activity is mostly 

addressed by SR proteins in combination with other splicing factors, which can act as splicing 

enhancers or repressors. In addition, the phosphorylation state of SR proteins could be determinant 

for the proper localisation and activity regulation of the several splicing components (van Bentem et 

al. 2006). The biophysical conditions imposed by temperature stress can promote conformational 

rearrangements of RNA cis-splicing elements or modulation of thermal-dependent stability of protein-

protein, RNA-RNA or RNA-proteins interactions. In the same way, the transcription rate influences 

the AS, once the sudden increase of transcription could lead to an exon or intron being skipped, 

resulting in unproductive spliced variants (de la Mata et al. 2003; Ali and Reddy 2008a). 

 

1.4.2 mRNA Degradation Pathways: an Overview 

 

The homeostasis of cellular transcriptome is mostly regulated under the flux of synthesis and 

degradation of RNA molecules. However, the kinetics established between these two mechanisms 

are greatly dependent on the RNA stability and RNA-associated proteins [forming a 

ribonucleoprotein (RNP) complex] (Bailey-Serres et al. 2009). Although the majority of studies 

related to mRNA turnover mechanisms have been performed in animals, recent advances have 

emerged in plants. Until now, the best way to characterise mRNA decay consisted in inhibiting the 

transcription, using chemical agents as actinomycin or cordycepin (Belostotsky 2008; Hori and 

Watanabe 2008). However, these chemical treatments can also lead to the depletion of some 

specific sets of genes encoding regulatory factors and effectors of mRNA stability.  

Eukaryotic mRNAs are thought to undergo degradation through a defined sequence of steps 

that first require deadenylation at 3’ terminus. After removal of adenines, two main degradation 

pathways pathways are present: deadenylation-dependent deccaping and deadenylation-dependent 

exosome (Figure 1.8) (Belostotsky 2008). Both mechanisms act in steady-state conditions and do 

not imply the existence of structural defects. In deadenylation-dependent decapping, the transcript is 

subjected to a decapping process (removing of m7GDP cap in the 5’ terminus). This process is 

played by specific deadenylating proteins, which can include DCP2 in combination with DCP1, DCP5 

and VARICOSE (Xu and Chua 2011). After cap removal the access for 5’-3’ exoribonucleolytic 

enzymes, such as homologous components of XRN1 family, is facilitated enhancing mRNA 
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degradation (Souret et al. 2004). Alternatively, the deadenylated mRNAs can be directed for 

degradation via the exosomal pathway, processed by 3’-5’ exoribonucleolytic enzymes. 

 

 

 

Figure 1.8 Principal mRNA turnover and decay pathways, with emphasis of some mRNA decay factors in plants. 
The main pathways for mRNAs structurally unaffected are deadenylation-dependent, either through decapping or 
exosomal mechanisms (bold arrows). Alternatively, two pathways of mRNA turnover and decay (light arrows) can occur: 
NMD (direct decapping) and endonucleolytic mRNA cleavage by RISC complex (normally miRNA and siRNA-
programmed) followed by exosomal and XRN4-mediated decay. Adapted from Belostotsky (2008). 

 

The exosomal pathway is executed through the action of exosome complex. The exosome 

consists in nine conserved subunits forming the core complex, which associates with active 

ribonucleases, RNA-binding proteins, helicases and additional co-factors (Lange and Gagliardi 

2011). The eukaryote exosome core complex comprises three heterodimers that form a ring-like 

structure (RRP41-RRP45, RRP42-MTR3 and RRP43-RRP46 Rnase PH domain-type), to which a 

“cap” of three S1/KH domain proteins (RRP4, RRP40 and CSL4) are bound. Homologues of all nine 

core proteins are coded in plants (Lange and Gagliardi 2011). In interaction with auxiliary factors, the 

exosome 3’-5’ exonucleotidic activities are executed in the cytoplasm (homeostatic mRNA turnover, 

decay of unstable mRNAs, NMD, products from RISC activity, no-go decay) and in the nucleus (3’ 
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end processing of the 5.8S rRNA precursor, degradation of aberrant pre-rRNAs, pre-mRNAs and 

pre-tRNAs) (Chekanova et al. 2007). 

Two pathways for mRNA decay can be recognised. Both are dependent on extrinsic and/or 

intrinsic stimulus and the existence of important structural signals. The mRNA decay can be started 

by internal endonucleolytic enzymes, mostly present in the RISC multi-complex, which cut the RNA 

sequence. This complex mediates the post-transcriptional gene silencing, and contains AGO 

proteins and single stranded small RNAs (siRNA or miRNA) (Jones-Rhoades et al. 2006). The 

resulting fragments can be degraded either via the exosome or the exonucleolytic enzyme XRN4 

(Figure 1.8). When aberrant mRNAs containing PTC are detected the nonsense-mediated mRNA 

decay (NMD) eliminates these transcripts, avoiding their accumulation and further cellular toxicity. It 

has been suggested that aberrant transcripts are subjected to direct decapping and are degraded via 

5’-3’ exonucleotidic decay by XRN4 (Figure 1.8). 

Studies performed in yeast and mammalian models demonstrated that RNA decay reactions 

are spatially compartmentalised. In plants, many enzymes and the exosome complex involved in 

RNA decay were suggested to be localised in small and discrete cytoplasmic structures. These 

structures, called processing bodies (P-bodies or PBs), are physical structures that establish the 

widespread cross-talk between the different processes of mRNA decay and translational control. In 

addition, they are strongly implicated in RNA interference processes (Parker and Sheth 2007). 

 

1.4.2.1 Nonsense-mediated mRNA decay (NMD), an update mechanism for plant mRNA 

homeostasis  

 

The NMD is one of several mechanisms involved in RNA surveillance pathways that ensure the 

fidelity of gene expression by degrading mRNAs that lack the proper arrangement of translational 

signals. This phenomenon is observed in all investigated organisms, from bacteria to mammalian 

cells, but has been extensively studied in eukaryotic cells (Brogna and Wen 2009). Although widely 

studied in animal models, the NMD process in plants still needs to be investigated in more detail. 

The central question in NMD concerns how the process distinguishes between a PTC and a 

normal stop codon. Two NMD models have been proposed: the faux UTR model (S. cerevisiae) and 

EJC-based NMD model (mammalian cells) (Kerenyi et al. 2008; Brogna and Wen 2009). 

The faux (false) model predicts that the distance between the PTC and the poly(A) tail might 

be the key determinant. The translation termination of PTC-containing mRNAs is suggested to be 

aberrant because their 3’UTR factors, including poly(A)-binding protein, are not properly positioned and 
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cannot interact with terminating ribosome (Amrani et al. 2004). If a long 3’UTR inhibits this interaction, the 

translation termination will be detected as aberrant and transcript is driven to degradation. 

The other NMD model is based on exon junction complex (EJC)-interacting proteins. EJC is a 

multiprotein complex with a core of four proteins that interact with UPF2 (UP-frameshift 2) and UPF3 

(Amrani et al. 2006). These components further interact with phosphorylated UPF1 to induce NMD 

mechanism. The Arabidopsis genome codifies for the three UPF homologues, but only UPF1 and 

UPF3 have been described (Hori and Watanabe 2005). The functional studies performed in 

Arabidopsis demonstrated that upf1 and upf3 mutants accumulate high levels of alternatively spliced 

mRNAs containing PTC. In addition, these mutants are extremely affected in some developmental 

stages, and display some lethality (Hori and Watanabe 2005; Yoine et al. 2006). During the pre-

mRNA splicing, EJCs are deposited 20-25 nts upstream of each exon-exon junction. Simultaneously, 

the nuclear cap binding complex (CBC, comprising the binding proteins CBP80 and CBP20) is 

added to 5’ cap of the pre-mRNAs (Lewis and Izaurflde 1997). During the nuclear export of mature 

mRNA, a ribosome or ribosomal subunit (usually 40S) binds and scan mRNAs for PTCs (named as 

‘pionner round’ process), displaying EJCs upstream of the stop codon (Maquat 2004; Chang et al. 

2007; Brogna and Wen 2009). In earliest round(s) of translation, if the CBC is not replaced by 

initiation translation factors (eIF4s) and ribosome is prematurely terminated at PTC, occurs the 

formation of NMD-inducing complex, by recruiting of phosphorylated UPF1. As in PTC-containing 

transcripts there are at least one EJC deposited downstream of the PTC (>50-55 nts), 

phosphorylated UPF1 interacts with UPF2/UPF3 complex in EJC and move aberrant transcripts to 

degradation (Chang et al. 2007). 

The mechanisms involved in plant NMD are still unclear. The detection of PTC and distinction 

from a normal termination codon in plants has been proposed to be in part similar to yeast and 

mammalian models. In plants, the PTC is suggested to be detected when the premature translation 

termination event takes place far upstream of the original 3’UTR (Hoof and Green 2006). The 

existence of a EJC > 50 nts downstream of this PTC avoids the interaction of terminating ribosome 

with specific sequences present in 3’UTR, which are essential for correct translation termination. 

Under this conditions, EJC recruits and activates UPF factors, priming the elimination of aberrant 

transcripts by NMD (Hoof and Green 2006; Brogna and Wen 2009). 

Although little knowledge about plant NMD has emerged, the advances in transcriptome 

methodologies will be crucial to understand this and other mRNA-surveillance mechanisms during 

transition of non-stress to HS-induced transcriptomes in plants. The better comprehension of 

importance of these surveillance mechanisms in plant physiology will promote the prediction of 

tolerance of transgenic crop plants under episodic extreme temperatures in the field. 
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1.5 Genetic control of seed development and germination 

 

Plants developed structures to promote their successful adaptation to environmental conditions. For 

example, in case of gimnosperms and angiosperms, the capacity for seed production allowed their 

evolutionary success. Seeds are structures originated from the double fertilisation of egg cell and the 

large central cell (polar nuclei). After development, they include the embryo and endosperm, 

respectively. During seed formation a set of developmental processes occur until seeds reach a 

quiescent state. At this stage the seed becomes dormant which is essential to turn it competent to 

germination. Seed development is tightly regulated by genetic processes, most of them controlled by 

hormonal homeostasis between ABA and GA hormones. 

 

1.5.1 Molecular and physiological traits of seed development 

 

The seed development processes are largely divided into three phases: embryo morphogenesis, 

embryo maturation and seed desiccation (Bentsink and Koornneef 2008) (Figure 1.9). During 

morphogenesis, cell division is very active and embryo undergoes through several developmental 

stages: pre-globular, globular and heart stages. 

Following this early phase, the growth stops and developing seeds enter into a maturation 

phase. The metabolism undergoes reorganisation with intensive synthesis of storage compounds 

(starch, oil and storage proteins) and nucleic acids. The embryo accumulates considerable levels of 

ABA during this maturation phase, which can be physiologically divided in two phases (Figure 1.9): 

mid maturation (MEM) and later maturation stages (LEM). Besides the progressive accumulation of 

ABA, the seed also stores protective proteins such as LEA proteins, entering into a desiccation stage 

(Wise and Tunnacliffe 2004). After the desiccation process, the embryo enters into a dormancy 

phase (dormant seed), until favourable conditions allow seed germination (Vicente-Carbajosa and 

Carbonero 2005; Yamaguchi and Nambara 2007). 

Seed development is regulated by temporal and spatial expression of stage-specific genes 

and is dependent on hormonal levels. Experimental data shows an up-regulation of a specific set of 

genes, mostly involved in gene transcriptional regulation, signalling and metabolic pathways (e.g. 

lipids and carbohydrates synthesis). 

 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

28 
 

 

 

Figure 1.9 Stages of seed development. Seed development can be divided in several stages. Three of those 
developmental stages are depicted here. An initial stage is characterised by morphologic development, where the 
embryo cell division and differentiation are elevated (early embryogenesis stage, EEM). The following stages are 
characterised by maturation of the embryo (mid and later stages, MEM and LEM, respectively), occurring a large 
accumulation of reserve compounds, ABA and protective proteins. The progressive acquisition of desiccation tolerance 
and induction of embryo dormancy leads to the dormant seed. Adapted from Le et al. (2010). 

 

In Arabidopsis, the main regulators of seed development are LEC1 (LEAFY COTYLEDON-1), 

LEC2 (LEAFY COTYLEDON-2), FUS3 (FUSCA3) and ABI3 (ABSCISIC ACID-INSENSITIVE 3) 

(Giraudat et al. 1992; Lotan et al. 1998; Stone et al. 2001; Chekanova et al. 2007). During early 

embryogenesis, LEC1, LEC2 and FUS3 genes are required to maintain embryonic cell fate and to 

specify cotyledon identity (Figure 1.10) (Santos-Mendoza et al. 2008). These proteins, together with 

ABI3 are also involved in the initiation and maintenance of maturation phase of embryogenesis. ABI3 

is essential for correct completion of seed maturation and functions as a transducer of ABA induced 

dormancy. Indeed, ABI3 is considered as one of the major regulators of the transition between 

embryo maturation and early seedling development (Nambara et al. 1995).  

The Arabidopsis mutants lec1, lec2, fus3 and abi3 have seeds intolerant to desiccation 

because of the reduced amount of compounds that are accumulated (Meinke et al. 1994). Indeed, 

during embryogenesis, respective mutant embryos display morphological features characteristic of 

developing seedlings. Nevertheless, there are differences among lec1, lec2, fus3 and abi3 

phenotypes. The abi3 mutant it is not affected at the post-embryonic development, while lec1, lec2 

and fus3 share defects in some tissues formed at the post-embryonic phase, like trichomes and 

vascular tissue pattern in cotyledons (Meinke et al. 1994). Such phenotype suggested that LEC1, 

LEC2 and FUS3 are required for cotyledon identity and are co-regulated during embryogenesis. 

However, to avoid their expression through post-embryonic phase, these genes are later epigenetically 

repressed by PKL, a chromatin remodelling protein (Figure 1.10) (Dean Rider et al. 2003). 

Consistent with their partial functional redundancy, the LEC2, FUS3 and ABI3 encode related 

transcription factors of the B3 domain family. This domain was originally identified in the maize VP1 

transcription factor, a orthologue of the Arabidopsis ABI3 (Santos-Mendoza et al. 2008). The B3 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

29 
 

domains of ABI3 and FUS3 are structurally similar and both transcription factors bind to RY motifs, 

present in many ABA-dependent inducible gene promoters. The LEC1 gene encodes for a CCAAT-

box-binding factor (CBFs) HAP3 subunit (Lotan et al. 1998). Both cis-acting motifs are present in a 

particular set of co-regulated genes, mostly involved in nitrogen and carbon metabolism and cell cycle. 

 

 

 

Figure 1.10 Regulation of seed development in Arabidopsis seeds and proposed interactions between some of 
the genes involved. Model proposed for the genetic and molecular interactions in the seed development regulatory 
network, in Arabidopsis. Arrows and T bars indicate positive and negative effects, respectively. Green arrow indicates 
up-regulation of molecular components involved in ABA biosynthesis. Brown and green triangles represent hormonal 
levels of ABA and GA, respectively. The different dimensions of ABA and GA hormone circles correspond to their 
influence during seed development. The interactions between regulators, environmental factors, hormones and different 
genes are described in the main text. 

 

From morphogenesis until maturation of embryo, the levels of ABA and bioactive GAs are 

thought to be negatively correlated (Figure 1.10). This tight control of ABA/GA ratio is guaranteed by 

specific regulators involved in signalling and metabolism of these hormones (Razem et al. 2006). 

During the early stages of embryogenesis the biosynthesis of GA is important to maintain the proper 

embryo growth, preventing seed abortion (Singh et al. 2002). In Arabidopsis, the bioactive GAs are 

produced by gibberellins oxidases (GAox), the AtGA20ox and the AtGA3ox enzymes, which are 

encoded by gene families composed of five and four genes, respectively (Figure 1.10). Previous 
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work demonstrated that AtGA3ox1, AtGA3ox2 and AtGA3ox4 were induced in early immature seeds and 

their spatial and temporal expression pattern was different in embryo meristems (Mitchum et al. 2006). 

The AtGA2ox6 was shown to be highly expressed until the end of embryo morphogenesis (Wang et al. 

2004a; Kim et al. 2005; Mitchum et al. 2006).  

The metabolic switch between GA and ABA occurs when the embryo enters the maturation 

stage and is transiently promoted by FUS3 (Gazzarrini et al. 2004). This transcription factor appears 

to repress the expression of AtGA20ox1 and AtGA3ox1 by binding to RY cis-elements present in 

their promoter sequences. This FUS3 negative regulation causes a lower synthesis of GA and an 

increase in ABA levels (Gazzarrini et al. 2004). The rising of ABA levels activates specific signalling 

pathways that promote the induction of important seed maturation-related genes.  

During seed maturation, ABI factors (ABI3, ABI4 and ABI5) are recruited to the ABA signalling 

pathway. At this stage, the interplay between ABI factors is crucial to regulate the transition between 

the two peaks of ABA production that occur during embryo maturation. In the first peak, ABA is 

synthesised in both embryo and maternal tissues, whereas in the second peak, ABA only rises on 

embryo tissues (Finkelstein et al. 2002). The use of genetic approaches has allowed the 

identification of abi3, abi4 and abi5 mutants, which are remarkably ABA insensitive (Holdsworth et al. 

2008). The abi3 mutant is strongly intolerant to desiccation, when compared to abi4 and abi5. The 

abi4 and abi5 seeds display a desiccation tolerance similar to wild-type (Reeves et al. 2011). The 

ABI4 encodes an AP2-type transcription factor that binds the coupling element1 (CE1) in promoters. 

The CE1 acts cooperatively with G-box-like ABA-responsive elements (ABREs), mostly present in 

promoters of ABA-responsive genes (Reeves et al. 2011). Moreover, these cis-elements also co-

exist with RY motifs in genes whose transcripts are highly accumulated in dry seeds. ABI5 gene 

encodes a b-ZIP transcription factor that is capable of binding to ABREs. Transcriptomic data 

suggest that ABI5, cooperatively with ABI3 and ABI4, are essential in determining the composition of 

mRNAs that will be stored in Arabidopsis dry seeds, suggesting a co-regulation and interaction of 

ABI factors (Nakabayashi et al. 2005) (Figure 1.10).  

The metabolic regulation of ABA levels is achieved by expressing genes implicated in the 

biosynthesis or deactivation of ABA during seed development and germination. The main enzymes 

in ABA biosynthesis pathway are encoded by NCED genes (9-cis-epoxycarotenid dioxygenases). 

The Arabidopsis genome contains five possible NCED genes (Yamaguchi et al. 2007). Previous 

works demonstrated that NCED6 and NCED9 are the major isoforms involved in regulating seed 

development (Lefebvre et al. 2006). 
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1.5.2 Regulation of seed germination potential 

 

Germination corresponds to the period that comprises the start of dry seed imbibition until the 

emergence of the embryo (usually through of radicle) from the enclosing tissues (Nonogaki et al. 2007). 

Important physiological, metabolic and molecular events occur during germination. These events mostly 

depend on environmental conditions: light, temperature and nutrient conditions. Indeed, the 

germination also appears to be mediated by a hormonal balance between ABA and GA (Razem et 

al. 2006). Accumulating evidences indicate that GA is the principal hormone controlling germination, 

through integration of light and temperature conditions (Figure 1.11). 

The light-dependent pathway of germination induction is under control of phytochromes. The 

first evidence was provided by Borthwick et al. (1952) when showed that dark-imbibed lettuce seeds 

radiated with red (R) light germinated but not when a far-red (FR) light was imposed. In Arabidopsis, 

the phytochrome PHYB is stored in seeds at maturity and is responsible for typical photoreversible 

responses during imbibition (Shinomura et al. 1994; Shinomura et al. 1996). Accordingly, in the phyB 

mutant, the AtGA3ox1 and AtGA3ox2 expression is not increased by R-light. This demonstrates the 

role of PHYB in the regulation of GA3-oxidases gene expression (Figure 1.9) (Yamaguchi et al. 

1998; Mitchum et al. 2006). However, a phytochrome-interacting protein, PIL5, has been shown to 

function as a negative regulator of seed germination (Oh et al. 2004). PIL5, a basic helix-loop-helix 

protein, is one of the major components linking light signals to GA metabolism and responsiveness. 

This light-labile protein seems to be partly related with transcriptional repression of GA3ox genes, in 

darkness. Indeed, the reduction of PIL5 proteins levels seems to be crucial in regulation of two 

DELLA genes (GA repressors), during seed germination (Oh et al. 2004; Oh et al. 2007). DELLA 

proteins belong to a subfamily in the GRAS family of putative transcription factors. In Arabidopsis, DELLA 

comprise five genes: RGA (REPRESSOR OF ga1-3), GAI (GA INSENSITIVE), RGL1 (RGA-LIKE1), 

RGL2 and RGL3 (Sun 2008). After GA sensing by the soluble receptor GID1 (GA-insensitive Dwarf1), the 

downstream activity induces the proteolysis of these repressors through the ubiquitin-26S proteosome 

pathway (Sun and Gubler 2004; Thomas and Sun 2004). RGA and GAI repress stem elongation, 

while RGL1, RGA and RGL2 repress the flowering (Itoh et al. 2003). From all, RGL2 has been 

shown to encode the major negative regulator of seed germination (Lee et al. 2002; Tyler et al. 2004; 

Cao et al. 2005). The SPY protein, has revealed as being an important regulator of GA signalling. 

The SPY protein has been described as a negative regulator of plant GA responsiveness, possibly 

involved in the alteration of activity or stability of DELLA proteins (Qin et al. 2011). Future 
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investigations are necessary to further uncover the molecular relationships between light signalling 

components and GA biosynthesis genes. 

Temperature is other crucial environmental factor that controls seed germination. The 

exposition of seeds to cold temperature (stratification) promotes seed dormancy in many plants. 

Previous works have demonstrated that cold treatment (essentially the pre-incubation at cold 

temperature in dark) is a potential regulator of GA biosynthesis. In Arabidopsis seeds, during dark-

imbibition at 4ºC, the level of both GA3ox1 and GA3ox2 mRNAs greatly increased (Yamauchi et al. 2004). 

Indeed, the increase of bioactive GAs, the cold-induction of GA biosynthesis genes and the germination 

ability were compromised in the ga3ox1 mutant, demonstrating that GA3ox1 is important for 

temperature sensing (Yamaguchi and Nambara 2007). Inversely, the expression of GA2ox2, a GA 

deactivation gene is diminished, during dark-imbibition at 4ºC  

 

 

 

Figure 1.11 Regulation of seed germination in imbibed Arabidopsis seeds and proposed interactions between 
some of the genes involved. Model proposed for genetic and molecular interactions in imbibed mature seeds in 
Arabidopsis. Arrows and T bars indicate positive and negative effects, respectively. Green and red arrows correspond to 
up- and down-regulation of molecular components involved in each metabolic pathway, respectively. Brown and green 
triangles represent hormonal levels of ABA and GA, respectively. The different sizes of ABA and GA hormone circles 
relates to their respective influence during seed germination. GAsiT, GA signalling transduction. The interactions 
between regulators, environmental factors, hormones and different genes are described in the main text. 

 

Besides a GA increase after seed imbibition, the levels of ABA decrease as result of the 

activity of deactivation enzymes CYP707As, which catalyse the ABA 8’-hydroxylation. In 

Arabidopsis, there are four members of CYP707As (Kushiro et al. 2004). These genes are 
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differentially expressed during seed germination, suggesting that each member has distinct 

physiological roles, being responsible by control of ABA levels during early stages of germination. 

During the first two phases of imbibition (rapid water uptake and plateau, respectively), a brief 

increase of ABA levels occurs, that requires ABI5 (Figure 1.11). ABA appears to regulate the ion-

channel activities and aquaporin expression and abundance (Kucera et al. 2005). In the third phase 

of imbibition (water uptake that promotes the embryo elongation and radicle emergence) the 

degradation of ABI5 occurs. This event is regulated by ABI5 interaction with AFP (ABI five-binding 

protein), which is also induced by ABA (Lopez-Molina et al. 2001). The progressive decrease of ABA 

biosynthesis and sensing is followed by the endosperm rupture, embryo extension and seedling 

growth after the radicle emergence. This particular regulation of ABA levels, in parallel with GA levels 

rising, promotes the environmental adaptation of the embryo during the early stages of seed 

germination. 

The fundamental knowledgement about the different developmental regulators and signalling 

pathways involved in seed development and germination is crucial for future improvement of seed 

quality in crop plants, namely under extreme temperature conditions.  

 

1.6 Principal aims of thesis 

 

The large quantity of transcriptomic data provided by ATH1 Gene Chip experiments, deposited in 

NASCArrays (NASC International Affimetrix Service), allowed the selection of several heat-

responsive genes (Silva-Correia 2009). In that study, a search for heat-determinants was conducted 

by the use of the “heat stress time course experiment”, from the “AtGenExpress Abiotic Stress 

Series”. In this transcriptomic experiment Arabidopsis seedlings (roots and leaves) and suspension 

cells were heat-stressed and allowed to recover. After an extensive bioinformatic analysis, an 

uncharacterised gene (HRR, At5g53680) seemed to be more specific to HS responses and was 

selected for further studies.  

The HRR gene encodes a RNA-binding protein that could be involved in transcript binding 

during heat stress, thus representing a putative determinant gene for thermotolerance. The principal 

goal of this thesis is to functionally characterise the HRR gene. The work will be performed in the 

plant model A. thaliana, using bioinformatic, phenotypic, molecular and cellular approaches. A 

bioinformatics analysis will be performed for prediction of putative HRR functions, considering its 

structural and phylogenetic relationships with other Arabidopsis homologues and metazoan 

orthologues. In addition, the bioinformatic data obtained from analysis of transcriptomic data and cis 
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promoter elements will corroborate the global prediction of HRR inducibility upon HS and will give 

new information about HRR expression profile in different plant tissues, plant development stages, 

mutants and other stressful conditions. The use of knockout (hrr) and HRR over-expression mutant 

lines will be used for studying the possible involvement of HRR in abiotic stress responses and in 

regulation of physiological levels of ABA and GA phytohormones. For corroborating previous 

bioinformatic data, the expression profile of HRR gene will be analysed under HS conditions, as well 

as during seed development and germination. In order to understand the possible involvement of 

HRR in regulation of several transcripts, an expression analysis of genes related to HS responses, 

seed development and germination will be performed in wild-type Ler, hrr and HRR over-expression 

mutant lines. The functional analysis of HRR will be complemented with subcellular analysis of HRR 

proteins, in order to understand their cellular targets and dynamics. Altogether, the results obtained 

from this thesis are expected to provide new insights about HRR involvement in plant 

thermotolerance, seed development and germination processes. 
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2.1 In silico analysis of HRR 

 

2.1.1 Blast searches 

 

Blast searches were performed using the HRR protein sequence in TBLASTN program at NCBI (The 

National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/) and WU-BLAST at TAIR 

(The Arabidopsis Information Resource, http://www.arabidopsis.org/). All sequences of Arabidopsis 

RRM-containing proteins were obtained from NCBI protein database. 

 

2.1.2 Conserved domains analysis 

 

The search for protein conserved domains on HRR sequence was performed by using the NCBI 

Conserved Domains tool (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), and the Pfam 

database of the Wellcome Trust Sanger Institute (http://pfam.sanger.ac.uk/). 

 

2.1.3 Cis-regulatory elements 

 

The prediction of cis-regulatory elements on the promoter sequence of HRR was conducted on ActisDB 

platform, residing in the Arabidopsis Gene Regulatory Information Server (AGRIS, 

http://arabidopsis.med.ohio-state.edu/) and Athena (http://www.bioinformatics2.wsu.edu/cgi-

bin/Athena/cgi/home.pl). 

 

2.1.4 Expression profiles 

 

Expression patterns of HRR transcripts were predicted through BAR - The Bio-Array Resource for Plant 

Biology (http://142.150.214.117/welcome.htm) and Genevestigator (https://www.genevestigator.com/) 

platforms, using the BAR Arabidopsis and Cell eFP tools, or the Genevestigator Meta-profile analysis and 

Clustering analysis tools. ATTED II- Arabidopsis thaliana trans-factor and cis-element prediction database 

(http://atted.jp/), Athena (http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl) and GeneMania 

(http://www.genemania.org/) platforms were used to predict co-expression and co-localisation networks. 
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2.2 Phenotypic characterisation of hrr loss-in-function and HRR over-

expression mutant lines 

 

2.2.1 Plant material and growth conditions 

 

The HRR mutant line (hrr mutant), a GT_5_47364 transposon line in Landsberg erecta (Ler) 

background of A. thaliana, was used to evaluate the effect of HRR (At5g53680) loss-in-function. This 

line and wild-type Ler were obtained from John Innes Centre (JIC, UK) collection and ordered 

through NASC center (http://arabidopsis.info/). Plant growth was promoted under a long photoperiod 

(16 h light/ 8 h dark), at 23ºC with 80 µE m- 2.s-1 of light intensity (Annex II, sections 1 and 2). 

 

2.2.2 Plasmid construct and plant transformation  

 

For producing over-expression lines, the p35S::HRR-GFP6 construct was obtained through the 

Gateway system (Invitrogen). RNA from 16-days-old Ler seedlings, subjected to HS for 60 min at 

38ºC, was used for the cDNA synthesis and amplification of the HRR coding sequence (510 bp). 

PCR conditions and specific primers are presented in Annexes III and IV. The amplified sequence 

was cloned into the Gateway® vector pDONR™201 (Invitrogen) by performing the BP recombination 

reaction (Annex II, section 12). The resulting pENTR-HRR vector was used to perform the LR 

recombination reaction with the pDEST vector pMDC83 (Curtis and Grossniklaus 2003), which 

contained the translational fusion GFP6 (C-terminal GFP6). The Agrobacterium tumefaciens 

(EHA105 strain) harbouring the resulting p35S::HRR-GFP6 construct was used to transform wild-

type (Ler) and hrr mutant Arabidopsis plants by the floral dip method (Clough and Bent 1998). Single 

genetic transformants were detected in the T2 generation by growing on MS medium supplemented 

with hygromycin and followed a 3:1 segregation. From the homozygous T3 transgenic lines, five 

transformed lines were selected: L2 and L6 (in Ler genetic background), and JP5, JP6 and JP9 (in 

hrr genetic background). Synchronised plants of hrr and HRR over-expression mutant lines (T3), as 

well as wild-type Ler, were screened by diagnostic PCR using the conditions and specific primers 

described in Annexes II (section 8), III and IV. 
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2.2.3 Selection of HRR homozygous recessive insertion and over-expression 

lines  

 

About 100 plants from the T3 generation of ordered hrr seed stocks were grown for diagnostic PCR 

and seed harvesting. Genomic DNA from Arabidopsis leaves was extracted (Annex II, section 3) and 

used for selecting the homozygous hrr mutant lines by diagnostic PCR analysis (Annex II, section 8). 

For this amplification a multiplex primer system was used: one specific primer for the transposon 

insertion (prb.ZF_rv primer) and two primers conceived to HRR gene (RB and LB primers). These 

primers were designed using the Oligo6 software (Primer Analysis Software, version 6.68). Primer 

sequences and PCR conditions are present in Annexes III and IV, respectively. After gel 

electrophoresis (Annex II, section 7), the hrr mutant seeds from those plants displaying the proper 

estimated fragment size were harvested. The diagnostic PCR analysis was repeated for these hrr 

mutants in the following three generations to guarantee that transposon insertion remained stable. 

From the selected homozygous T3 HRR over-expression lines, a diagnostic PCR was performed to 

evaluate the presence of p35S::HRR-GFP6 transgene in the genome of these plants. The genomic 

DNA was isolated and amplified with diagnostic primers for pMDC 35S and pMDC gfp left borders as 

referred above. 

 

2.2.4 Expression analysis of HRR homozygous recessive insertion and over-

expression lines 

 

To analyse the HRR expression levels in five-weeks-old plants of wild-type (Ler) and hrr mutant 

lines, grown under standard conditions, total RNA was isolated from different Arabidopsis 

organs/tissues with Trizol® reagent (Annex II, section 4). For the cDNA synthesis (SuperScript First-

Strand Synthesis System, Invitrogen), it was followed the provider instructions (Annex II, section 9). 

The resulting cDNA pools were then used for the gene expression analysis by semi-quantitative RT-

PCR amplification, which was performed as described in standard protocol for PCR reaction (Annex 

II, section 8). The same procedure was followed for confirming the over-expression of HRR 

transcripts in HRR over-expression seedlings (16-days-old), grown under standard conditions. The 

gene-specific primer pairs used for this analysis, HRRcDNA_fw/HRRcDNA_rv for wild-type Ler and 

hrr mutant sample and HRR_RT_fw/HRR_RT_rv for HRR over-expression lines, and corresponding 

PCR conditions are presented in Annexes III and IV, respectively. The constitutive gene Actin2 (ACT2) 
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expression levels were simultaneously analysed as internal control for RNA amount normalisation of each 

RNA sample (gene-specific primers and PCR conditions are presented in Annexes III and IV). 

 

2.2.5 Thermotolerance germination assays 

 

All seed germination assays were performed with synchronised seeds (seed pools from lines 

simultaneously grown in the same conditions). Seeds were stratified (4ºC, 2 days) in the dark, and 

subsequently surface sterilised (Annex II, section 1). For HS treatments, sterilised seeds were heat-

stressed by immersion of respective microtubes into a water bath under a constant temperature of 

50°C, for different periods (15-300 min), or at different temperatures (38-56°C) for 60 minutes. 

Immediately after HS, seeds were resuspended in sterile 0.25% (w/v) agarose solution and sown 

onto MS-agar medium. The plates were incubated under 16h light/8h dark photoperiod (80 µE.m- 2.s-

1 light intensity) at 23ºC. The emergence of radicle was followed every day, from second to tenth day 

after stress imposition. Germination rate (as percentage, %) was normalised with corresponding 

germinated seeds in control conditions (23ºC). Mean and SEM were determined based on results 

from four replicates for each seed line, all containing 30 seeds.  Results were submitted to statistical 

analysis using t-test, one-way or two-way analysis of variances (ANOVA) tests (GraphPad Prism v.5 

program), considering statistically significant differences those that exhibit p-values of <0.001, <0.01 

or <0.05. All experiences were repeated with similar results. 

 

2.2.6 Salt, osmotic and oxidative stress assays 

 

Germination of heat stressed seeds in salt, osmotic or oxidative stress conditions was performed as 

previously referred, but with some modifications. Stratified hrr mutant and wild-type Ler seeds were 

heat-stressed (47ºC), during for 60 min. Seeds were sown and allowed to germinate onto MS 

medium supplemented with different concentrations of sodium chloride (NaCl; 0, 75, 100, 150, 

200 mM), mannitol [1.5, 3, 5, 7% (w/v)] or paraquat (0.001, 0.01, 0.1, 1 µM). The appearance of 

green and fully expanded cotyledons (viable seedlings) was scored at 10th day of assay. The same 

assay was simultaneously performed with stratified seeds without HS treatment. Survival seedlings 

percentage (survival rate) was normalised with corresponding viable seedlings in control conditions 

(non-HS seeds sown onto MS medium without stressors). Mean and SEM were determined based 

on results from three replicates for each seed line, all containing 40 seeds. Statistical analysis was 

performed as described for thermotolerance germination assays. 
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2.2.7 Hormonal sensitivity assays with ABA and GA3 

 

Germination of seeds in the presence of exogenous ABA and an active form GA3 was performed as 

previously described, with some modifications. Stratified wild-type Ler, hrr and HRR over-expression 

mutant seeds were sown onto MS medium supplemented with different concentrations of ABA (0.5, 

1, 1.5 and 2 µM, Duchefa). For germination assays in the presence of exogenous GA3, stratified hrr 

mutant and wild-type Ler seeds were directly sown onto MS-agar medium containing variable GA3 

concentrations (25, 50, 75 and 100 µM, Duchefa). Whenever a HS treatment was applied, stratified 

seeds were previously heat-stressed at 50ºC, during 60 min. The emergence of radicle was scored 

every day, from the second to the tenth day after sowing. Germination rate (%) was normalised with 

respective viable seeds in control samples. Mean and SEM were based on results from three 

replicates for each seed line, all containing 40 seeds. Statistical analysis was performed as 

described for thermotolerance germination assays. 

 

2.3 HRR gene expression and their putative roles in regulation of HS- 

and plant developmental-related transcriptomes 

 

2.3.1 Biological samples and treatment conditions 

 

2.3.1.1 Heat stress treatment on Arabidopsis seedlings 

 

To analyse the HRR expression during HS treatment, wild-type Ler and hrr mutant seedlings (five-six 

seedlings, 16-days-old ) were heat-stressed at 38ºC, for 15 to 180 min, followed by a recovery period 

(15, 30, 60, 120 and 180 min) at control conditions (23ºC). After HS treatment and recovery period, 

each sample was immediately frozen in liquid N2. For in vivo analysis of mRNA decay of HRR 

alternative transcripts, wild-type Ler seedlings (16-days-old) were either untreated (23ºC) or heat-

stressed at 38ºC for 60 min. All procedures corresponding to RNA and cDNA manipulation for these 

samples are described in Annex II (sections 4 and 9, respectively). 

In case of histochemical analysis of HRR promoter activity, wild-type Ler and transgenic 

pHRR::gusA seedlings (seven-days-old) were HS-treated (38ºC), during three hours. Transgenic 

p35S::gusA were directly subjected to GUS assay (without HS treatment, 23ºC). 
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2.3.1.2 Seed and siliques material treatment 

 

To analyse the HRR expression during seed maturation and germination, siliques, stratified seeds, 

and germinated seeds from wild-type Ler and hrr mutant lines were used. The whole siliques were 

harvested during the seed maturation stage, according with the embryo and seed development 

stages considered in Arabidopsis eFP Browser. Desiccated seeds (from 12-weeks-old plants) were 

stratified (two days, at 4ºC), being further heat-stressed in water bath (50ºC, 60 min) or maintained at 

standard conditions (23ºC). This last procedure was also made for HRR over-expression lines. For 

getting germinated seeds, stratified and sterilised seeds were sown onto MS medium and were 

harvested after the first and second days of sowing. All procedures corresponding to RNA and cDNA 

manipulation for these samples are described in Annex II (sections 5 and 9, respectively). 

 

2.3.2 In vivo analysis of nonsense-mediated mRNA decay of HRR transcripts 

 

To analyse if the HRR transcripts are removed in vivo by NMD mechanisms, the methodology 

reported by Hori and Watanabe (2008) was followed with some modifications. Immediately after the 

HS treatment (section 2.3.1.1), four to six seedlings from each treatment were rinsed in a 2 ml 

microtube containing MS medium, supplemented with the appropriate inhibitor: 100 µg.ml-1 

Actinomycin D (ActD, Biochemia) or 20 µM cycloheximide (CHX, Merck). Controls were prepared 

using the same procedure but with no inhibitor supplementation. The seedlings were slightly 

wounded and held down with the micropestle. The samples were immediately put under vacuum for 

7 min. After infiltration, the medium was removed and the samples immediately frozen in liquid N2.  

All samples were ground in liquid N2 and used for RNA purification (Annex II, section 4). Total RNA 

(1 µg) was used for first strand cDNA synthsis (Annex II, section 9). 

 

2.3.3 Histochemical analysis of HRR 

 

2.3.3.1 HRR promoter cloning into pCAMBIA and plant transformation 

 

The cloning of HRR promoter sequence in fusion with gusA coding sequence (present in the 

pCAMBIA1303 vector, Annex V) allows the histochemical analysis of HRR promoter activity, in 

different Arabidopsis organs and under HS conditions. The HRR promoter sequence was amplified 

from Ler genomic DNA (Annex II, sections 3 and 8), using specific primers that added the restriction 
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sequences HindIII and BglII in the PCR products (Annex III). Purified PCR products and 

pCAMBIA1303 vector were restricted with the referred enzymes, during 4 hours, at 38ºC (Annex II, 

section 13). After restriction and purification, both fragments were used for T4 DNA ligation reaction 

(Annex II,14) and 5 µl of ligation reaction was used to transform XL1-Blue E.coli competent cells 

(Annex II, section 16). The transformants were grown in LB-agar medium supplemented with 50 µg.ml-1 

kanamycin. By using the specific primers used for cloning into pCAMBIA1303, a colony PCR was done 

for further selected transformants, where the insert is introduced upstream to gusA sequence (Annex 

II, section 8). The PCR products were analysed by agarose gel electrophoresis and positive 

transformants were selected according to the expected fragment size (Annex II, section 7). After 

sequencing confirmation, the recombinant plasmid was used to transform A. tumefaciens EHA105 

strain (Annex II, section 19). After selection in LB-agar medium supplemented with 50 µg.ml-1 

rifampicin and 50 µg.ml-1 kanamycin, ten transformants were confirmed by colony PCR using the 

last referred specific primers. The selected recombinant plasmid were used for transformation of 

wild-type Ler plants by the floral dip method (Annex II, section 20). 

 

2.3.3.2 Histochemical localisation of GUS fusions and observation 

 

For the histochemical analysis of HRR expression in Arabidopsis tissues, transgenic and p35S::gusA 

(positive control) seedlings were used. After HS treatment (pHRR::gusA and wild-type Ler) or not 

(p35S::gusA), seedlings were immediately fixed in 90% (v/v) ice-cold acetone, for 5 min, on ice. After 

fixation, supernatant was replaced by 2 ml of X-Gluc staining solution (0.1 mM sodium phosphate pH 7.0, 

0.5 mM potassium ferrocyanide, 0.5 mM potassium ferricyanide, 0.3% (w/v) Triton X-100, 10 mM EDTA and 

1mM 5-bromo-4-chloro-3-indolyl-beta-D-glucuronic acid) [adapted from A.Jefferson et al. (1987)]. The 

samples were vaccum infiltrated at 600 mmHg for 10 min, at room temperature, four times. The 

samples were then incubated overnight either at 37ºC or 23ºC, depending on the GUS signal to be 

obtained. After these incubation periods, the samples were subsequently washed with 90% (v/v) 

ethanol, in order to remove chlorophyll from plant tissues. The seedlings were mounted on 

microscope slides and visualised in a Leica DM 5000 B microscope, under bright field. 
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2.4 Subcellular dynamics of HRR proteins: perspectives on functional 

roles 

 

2.4.1 pGEM®-T Easy Cloning of HRR.2  isoform 

 

The PCR products corresponding to alternative-spliced HRR.2 trasncript were cloned into pGEM®-T 

Easy vector (Promega). The HRR.2 PCR products were first purified from agarose gel (Annex II, 

section 11) and subjected to A-tailing reaction. As the Pfu polymerase only produces blunt-end 

fragments, the HRR.2 products (7 µl) was mixed with 1 µl 10x reaction buffer (with MgCl2) 

(Promega) and dATP (Promega) to a final concentration of 0.2 mM. After thoroughly mixing, 5U of 

Taq polymerase and double-distilled water were added for a final reaction volume of 10 µl. The 

reaction was incubated at 70ºC for 30 min and then kept onto ice until the cloning. The ligation was 

performed as described in Annex II (section 14). The reaction and corresponding control were 

incubated at 4ºC, overnight, after which 2 µl were directly used to transform XL1-Blue E. coli 

competent cells (Annex II, section 15). Each transformation culture (50 µl) was plated onto duplicate 

LB medium plates, containing 100 µg.ml-1 ampicilin, 100 mM IPTG and 50 mg.ml-1 X-Gal. The plates 

were incubated at 37ºC, during overnight. Then, the plates were screened for white colonies (15), 

which usually contain a successful cloned insert, and selected and subsequently screened by colony 

PCR (Annex II, section 8), using the HRR.2 insert-specific primers (Annex III). After confirmation, this 

construct was used as template for all HRR.2-containing cloning procedures. 

 

2.4.2 Cloning strategy 

 

The cloning strategy used to obtain the of HRR.1 and HRR.2 fusion constructs was based in the 

Gateway® Technology (Invitrogen) (Annex VI). To obtain the ectopic HRR.1 and HRR.2 constructs in 

fusion with GFP6 sequence, it was performed the following recombination reactions. The HRR.1 

sequence (510 bp) was insert in pMDC43 and pMDC83 vectors (Annex V), producing the N- and C-

termini fusions, respectively. Two HRR.2 sequences (583 and 257 bp) were respectively inserted in 

pMDC43 and pMDC83 vectors, then originating the N- and C-termini fusions (Curtis and 

Grossniklaus 2003). The predicted 650 bp promoter region (AGRIS source) was cloned in pMDC43 

(using HindIII and KpnI) and into pMDC83 (using HindIII and SpeI). These restriction enzymes were 

selected to replace the double CaMV 35S promoter (Annex II, section 13). The resulting pHRR 
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destination vectors were used to clone the HRR.1 and HRR.2 cDNA sequences by LR recombination 

process. The donor and destination vectors were ordered from ABRC (http://abrc.osu.edu/). 

 

2.4.2.1 Ectopic expression of HRR.1 and HRR.2 in fusion with GFP6 

 

The HRR.1 and HRR.2 sequences were amplified and flanked by attB recombination sites in two-

round PCR amplifications using as template cDNA from HS-treated Ler seedlings (16-days-old, 

under 38ºC, during 60 min). The primers used to amplify these sequences were designed in Oligo6 

software (Primer Analysis Software, version 6.68) and are presented in Annex III. The attB PCR 

products from HRR.1 and HRR.2 were initially amplified with sequence-specific primers, which 

contained 12 nts of attB1 and attB2 recombination sites coupled at each 5’ end (Annex II, section 8). 

The second PCR was performed to complete the attB1 and attB2 full sequences, employing then the 

adapter primers (Annex III). The PCR conditions are presented in Annex IV. The attB PCR products 

were subsequently purified from agarose gel (Annex II, section 11). The BP recombination reaction 

was accomplished using 100 fmol of each attB-PCR product and pDONR™201 (Annex II, section 

12). After incubation, 5 µl of each resulting pENTR vectors was used to transform XL1-Blue E.coli 

competent cells (Annex II, section 16) and the transformants were grown in selective LB-agar 

medium, supplemented with 50 µg.ml-1 kanamycin. From resulting transformants, 24 isolated 

colonies were selected to perform a colony PCR to evaluate the transformation efficiency, using the 

primers pDON201Seq (Annex II, section 8; Annex III). Positive transformants were selected 

according to the expected fragment size. After isolation of plasmid DNA (Annex II, section 17) and 

sequencing confirmation, cloned sequences were used to perform the LR recombination reactions 

(Annex II, section 12). XL1-Blue E.coli competent cells were transformed with resulting pEXP vectors 

(p35S::GFP6-HRR.1, p35S::GFP6-HRR.2, p35S::HRR.1-GFP6his, p35S::HRR.2-GFP6his). Positive 

transformants were selected and identified by colony PCR, using the specific primers for confirming 

the Gateway LR cloning reactions (Annex II, section 8; Annex III). 

After confirmation by sequencing, the new expression constructs were used to transform 

Agrobacterium tumefaciens EHA105 strain for proceeding with A. thaliana transformation (Annex II, 

section 19). After selection in LB-agar medium supplemented with 50 µg.ml-1 rifampicin and 50 

µg.ml-1 kanamycin, 10 transformants were verified by colony PCR using the last referred specific 

primers. 
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2.4.2.2 Native expression of HRR.1 and HRR.2 in fusion with GFP 
 

The destination vectors harbouring HRR promoter sequence in fusion with GFP6 reporter gene were 

obtained to analyse the native expression of HRR.1 and HRR.2 proteins. HRR promoter sequence 

was amplified using Ler genomic DNA using primers containing the appropriated restriction 

sequences for cloning. For obtaining GFP N-termini fusion (using pMDC43 vector), primers 

contained HindIII and KpnI restriction sites and for C-termini fusion (using pMDC83 vector) primers 

contained HindIII/SpeI restriction sites. The primers used to amplify that sequence were too 

designed in Oligo6 software (Primer Analysis Software, version 6.68) and presented in Annex III. 

The resulting PCR product and pMDC43/pMDC83 vectors (Annex V) were double digested with 

corresponding enzymes, during four to five hours, at 37ºC (Annex II, section 13). The vectors were 

subsequently desphosphorylated on their 5’ ends by Shrimp Alkaline Phosphatase (SAP, 1U), 

supplementing the restriction reaction. The reactions were deactivated by adding loading buffer and 

analysed by agarose gel electrophoresis (Annex II, section 7). The digested fragments were purified 

and used to perform a T4 DNA ligation reaction (Annex II, section 14). After incubation, the 3 µl of 

reaction was used to transform ccdB survival E. coli competent cells, whose transformants were 

selected onto LB-agar medium containing 50 µg.ml-1 kanamycin and 34 µg.ml-1 chloramphenicol 

(Annex II, section 16). The positive clones a were confirmed by colony PCR (Annex II, section 8) 

using the HRR promoter specific primers (Annex III). After plasmid DNA purification LR 

recombination reactions were performed with pENTR vectors obtained previously. The subsequent 

steps of transformation and selection of E.coli and Agrobacterium clones were done as indicated in 

Annex II (sections 16,17 and 19) The selected Agrobacterium clones were used to transform BY2 

cells (section 2.4.4). 

 

2.4.3 Agroinfiltration of Nicotiana benthamiana 

 

Agrobacterium tumefaciens EHA105 strain cells were transformed with the expression vectors and 

used to perform the transient over-expression of HRR.1 and HRR.2 GFP-fusion proteins in Nicotiana 

benthamiana leaves (Sparkes et al. 2006). 

An aliquot (20 µl) of the appropriated transformed Agrobacterium glycerol stock was placed in 

7 ml LB medium, supplemented with 50 µg.ml-1 rifampicin and 50 µg.ml-1 kanamycin. After overnight 

growing at 28ºC, with constant shaking (200 rpm) the A. tumefaciens cells were resuspended in 5 ml 

infiltration buffer (10 mM MgSO4, 10 mM MES pH 5.7, 400 µM acetoseryngone). The mixture was 

then infiltrated in the abaxial surface of the N. benthamiana leaves (one-month-old) and plants were 
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incubated in darkness for two days, at room temperature. The plant tissue was then mounted on 

microscope slides and observed at fluorescence microscope (Leica DM 5000B). 

 

2.4.3 Transformation of Nicotiana tabacum Bright Yellow-2 (BY2) cells 

 

Nicotiana tabacum Bright Yellow-2 (BY2) cells (kindly provided by Rita Abranches, ITQB, Lisboa) 

were sub-cultured at least twice before they were used as source for transformation. Three or four days 

before transformation, a new subculture was established by diluting a aliquot of 1.5 ml BY2 cell 

suspension culture in 20 ml MS medium [4.3 g.L-1 Murashige and Skoog basal medium, 30 g.L-1 sucrose, 

0.1 g.L-1 myo-inositol, 1 mg.L-1 thiamine-hydroxychloride (HCl), 0.2 mg.L-1 2,4-Dichlorophenoxyacetic acid 

(2,4-D), 0.2 g.L-1 KH2PO4, pH 5.8]. The day before doing the transformation, 20 µl of glycerol stock of 

Agrobacterium (harbouring the appropriated construct) was inoculated into 5 ml LB medium 

supplemented with 50 µg.ml-1 rifampicin and 50 µg.ml-1 kanamycin. After overnight growing at 28ºC, with 

shaking at 200 rpm, the Agrobacterium cultures were harvested and centrifuged at 5000 g for 10 min, at 

room temperature. Cells were resuspended in 3 ml MES buffer (50 mM MES pH 5.7, 10 mM MgSO4). 

Aliquots of 15 ml BY2 cells were first incubated with 500 µM acetoseryngone for 15 min, with gently 

mixing by swirling, during 15 min. BY2 cells were then placed into Petri dishes and 100 µl of 

Agrobacterium cells suspension were added. For each construct, at least two transformations were 

performed. The Petri dishes were gently mixed, wrapped with Parafilm and incubated on dark, at 

25ºC, for two days.  

The transformed BY2 cells were transferred to a 50 ml centrifugue tube with a wide-bore 10 ml 

pipette. The plate was additionally rinsed with 5-7 ml of MS medium, which was then added to the 

centrifuge tube. The BY2 cells were centrifuged at 400 rpm for 3 min and the supernatant discarded 

and the BY2 cells were resuspended with MS medium to a final volume of 15 ml gently mixed and 

centrifuged again in same conditions. This washing was repeated three times. At the end, the 

washing was repeated using MS medium supplemented with 500 µg.ml-1 ticarcilin and cells were 

finally resuspended in 10 ml MS medium, supplemented with 250 µg.ml-1 ticarcilin and gently mixed 

by inversion. After cells setting, 1 ml of washed BY2 cells were plated in selective MS-agar medium 

containing 250 µg.ml-1 ticarcilin and 50 µg.ml-1 kanamycin. As control, the same washed cells were 

plated in non-selective MS medium, which only contained 250 µg.ml-1 ticarcilin. The cells were 

spread over agar surface by rocking and swirling the plate. The plates were kept open in the flux 

chamber for about 10 min until the liquid was absorved by the medium. After sealing with parafilm, 

the cells were incubated at 25ºC, in the dark for 10-14 days. At the end, visible microcalli were 
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transferred to a fresh MS plate, supplemented with 250 µg.ml-1 ticarcilin and 50 µg.ml-1 hygromycin. 

The plates were sealed and incubated in the dark, at 25ºC for eight days, to let the microcalli grow. 

Then they were cultured into liquid MS medium and GFP signal was detected, using in last the 

fluorescence microscope (Leica DM 5000B). 

 

2.4.4.1 HS and chemical treatments of BY2 transformed cells 

 

The HS and chemical treatments were performed with the transformant BY2 cells expressing the 

constructs pHRR::GFP6-HRR.1 and pHRR::GFP6-HRR.2. For HS treatment, samples of 

transformant BY2 microcalli rinsed into MS medium-containing microtube, which were then 

incubated in a water bath at 38ºC for 15, 30 or 60 min. For performing the chemical treatments, 

before the HS treatment, transformant BY2 microcalli of each construct were rinsed in 100 µl of MS 

medium, being the cell suspensions supplemented and incubated with 100 µg.ml-1 cycloheximide 

(CHX) or 10 µg.ml-1 puromycin (PUR) for one hour. The cells were then subjected to HS treatment 

(38ºC, 60 min). As negative control, the chemical-treated cells were kept at room temperature. The 

positive control corresponded to transformed BY2 cells under HS treatment (60 min at 38ºC). 

Immediately after HS treatment, a sample was mounted on microscope slides and observed at 

fluorescence microscope (Leica DM 5000 B). The control samples, corresponding to non-

transformant cells at room temperature, cells stained with DAPI and tobacco BY2 cells expressing 

p35S::GFP transgene, were only managed in MS medium.  
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3.1 In silico analysis of HRR 

 

In a previous work, HRR (At5g53680) was selected as being a potential genetic determinant in 

responses to HS imposition (Silva-Correia 2009). The HRR expression response profile was 

determined using the accessed microarray data of Heat Stress Experiences (AtGenExpress Abiotic 

Stress series) (Kilian et al. 2007). HRR seems to be strongly induced just after a heat stress 

imposition, in shoots and roots, as well as in cell suspensions. The maximal expression levels in 

suspension cells were detected after one hour of heat stress (HS, 38ºC) imposition and gradually 

decreased to basal values during recovery at 25ºC. In roots, HRR displayed an increasing 

expression level after one hour of HS treatment, reaching the highest levels of expression after three 

hours of HS (Figure 3.1). In shoots, the HRR expression is lower than in roots under the same 

conditions. During the recovery period at 25ºC, HRR expression decreased to basal values in all tissues. 

 

 

 

Figure 3.1 HRR expression profile predicted by the Arabidopsis eFP Browser under heat stress conditions. HRR 
expression levels were evaluated in heat-stressed (38ºC) Arabidopsis thaliana 16-d-old seedlings (roots and shoots), 
using data from AtGenExpress Abiotic Stress Series (NASCarrays). HRR displays the highest levels of expression after 
three hours of HS treatment. Expression levels are presented in absolute values and are identified as depicted in the 
color scale. 

 

The HRR expression profile was additionally performed using diverse of bioinformatic tools. 

 

3.1.1 HRR structural and phylogenetic analysis 

 

Currently, with the raising of Arabidopsis structural and functional data, many bioinformatic tools 

have emerged. The major Arabidopsis bioinformatic tool, the TAIR browser (The Arabidopsis 

Information Resource, http://www.arabidopsis.org/) displays and maintains a database for the model 

plant Arabidopsis, besides providing useful linkouts to other Arabidopsis web resources. The data 

obtained from this resource indicated that HRR encodes a RNA-binding protein which contains a 

RNA Recognition Motif (RRM-containing protein) and presents an uncharacterised biological 

function. The Sequence Viewer tool in TAIR revealed that HRR is located in chromosome 5, in the 

forward strand and is composed by three exons and two introns (Figure 3.2). The coding region of 
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HRR is located between 21798383 and 21799109 nt and possesses a predicted promoter sequence 

from 21797731 to 21798381 nt. HRR comprises 729 bp (including introns of 73 and 145 bp), 510 bp 

of which codifies for the protein. The protein data, provided from different databases (Pfam, SMART, 

EMBL-EBI, Expasy and Panther databases), indicated that HRR harbours a RNA recognition motif 

ranging from 14 to 141 amino acid. This domain is found in many eukaryotic organisms, ranging from 

yeasts and fungi to human, and is included in many RNA-containing proteins that are implicated in 

RNA metabolism roles, such as splicing factors and regulators, heterogenous and small nuclear 

ribonucleoproteins (hnRNPs and snRNPs) and other proteins that regulate RNA stabilisation and 

translation (Sachs et al. 1987; Chambers et al. 1988; Query et al. 1989; Lorkovic and Barta 2002). 

 

 

 

Figure 3.2 Full genomic sequence of HRR obtained from TAIR10 (Sequence Viewer). This gene is located in 
chromosome 5. The orange uppercase letters represent the exonic sequences. The purple lowercase letters represent 
the intronic sequences. Blue shaded uppercase letters represent the translational start/stop codons. Figure obtained 
from Sequence Viewer tool (TAIR). 

 

To detail the analysis of HRR putative conserved domains, a BLAST search was performed in 

NCBI (National Center for Biotechnology Information) database, through the “Conserved Domains” tool 

(Figure 3.3). This tool allowed the alignment of HRR protein sequence against all resident sequences 

placed in protein databases, using the basic BLAST algorithm. Besides the above described RRM 

domain, HRR also holds a multi-domain PABP-1234 (polyadenylate binding protein, human type 

1, 2, 3, 4). The RRM domain occurs between the K14 and R81 and the PABP-1234 domain from D9 

to E148 (Figure 3.3). Human proteins described as holding a PABP-1234 domain comprises four 

tandem RRM domains at the N-terminus, followed by a PABP-specific domain at C-terminus. Such 
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proteins have been described as being involved in the recognition and transport of mature mRNAs from 

the nucleus to the cytoplasm (Yang et al. 1995 ; Afonina et al. 1998; Féral et al. 2001). 

 

 

 

Figure 3.3 HRR protein conserved domains. (A) Protein sequence blast search identified two sequence domains:  
RRM domain and PABP-1234 multi-domain. (B) Both HRR protein conserved domains where aligned with the best hits 
for representative domain sequences. Blast search was obtained from Conserved Domains tool, supported by NCBI 
website. Identical amino acids are represented in red. The numbers refers to amino acid positions in the protein 
sequences. 

 

According to the data provided by Pfam database, only the RRM domain was found to display 

significant match. This database also assembled this RRM-containing protein in a group of 11 

related families, able to align between themselves by sequence similarity or structure. The best hits 

correspond to Smg4, UPF3, and RRM_3-containing protein families. The Smg4 and UPF3 proteins 

are involved in NMD, while the RRM_3-containing proteins, such human LA protein, function as a 

RNA chaperone during RNA polymerase III transcription and can also stimulate translation initiation 

(Aronoff et al. 2001; Jacks et al. 2003).  

Collectively, these results suggest a RNA binding ability of HRR, which could even involve the 

binding to the poly(A) tails present in 3’ ends of mature mRNAs (through its PABP-1234 domain). 

Putative roles on transcript stabilisation, translation initiation or, eventually, in mRNA decay 

processes could be predicted. 

As the Arabidopsis genome codes for 196 different RRM-containing proteins (Lorkovic and Barta 

2002), other Arabidopsis proteins could share similarities with HRR conserved domains. Indeed, TAIR 
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data revealed that the best match with HRR corresponds to another RNA-binding protein containing a 

RRM domain that is coded by the gene At5g11412.1. The WU-BLAST search (supported by TAIR) was 

performed using the HRR protein sequence against TAIR10 proteins database, allowing the 

selection of the best homologous protein sequences for HRR (Figure 3.4). The highest scores 

comprised two proteins, with identity percentages between 60% (for At5g11412.1 protein) and 46% 

(for At5g53720.1 protein). 

 

 

 

Figure 3.4 Representation of the blast search of HRR protein sequence against the Arabidopsis proteome. The 
10 most homologous sequences to HRR are presented, being the closest ones enclosed in a brown box. The RRM and 
PABP-1234 domains are highlighted by black and orange line-dashed box, respectively. The HRR homologous protein 
depicted with an asterisk shares homology with PABP-1234 domain in HRR. Adapted image obtained from TAIR10 
Proteins dataset of WU-Blast program in TAIR website. 

 

As predicted for HRR, all these homologous proteins contain RNA-binding motifs and are 

described as being functionally uncharacterised (TAIR source). It is noteworthy to point out that the 

protein coded by At3g54770 gene shares homology with HRR in almost all protein sequence 

queried, spanning until the PABP-1234 domain hedge. Recently, this protein was described as been 

involved in hormone-dependent regulation of gene expression during the transition stages of floral 

development (Chen et al. 2009). In addition, the corresponding gene has been predicted to share co-

expression with other Arabidopsis PABP proteins (PABP 7, 6 and 4), according to the data displayed 

by GeneMANIA (data not shown).  

The highest similar RRM-containing proteins with a function already attributed correspond to 

UBP1-associated proteins 1a (UBA1A) and UBP1-associated proteins 2a (UBA2A) proteins, 

displaying similarities of 41% and 33%, respectively (Figure 3.4, data not shown). These proteins, 

along with U-rich binding protein 1 ( UBP1), have been described as being involved in nuclear mRNA 

stabilisation in nucleus, being components of a complex that recognises U-rich sequences in plant 

3’UTRs (Lambermon et al. 2000; Lambermon et al. 2002). The predicted function of UBP and UBA 

proteins was based in best score alignments with metazoan hnRNPs, which have been described to play 

many roles in different stages of mRNA maturation: initial binding to nascent primary mRNA, regulatory 

tasks during splicing, mature mRNA transport, translation, and stability (Krecic and Swanson 1999). 
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Although the UBP and UBA proteins harbour more than one RRM domain (Peal et al. 2011), which most 

probably leads to differences in RNA binding proprieties from HRR, the structural similarity among them 

could suggest some functional relationships as hnRNP-like proteins.  

As the functional role of RNA-binding proteins has been more studied in metazoan organisms, 

a new BLAST search was performed using the UniGene database resource, deposited in NCBI. This 

database provides sets of transcripts that appear to come from the same transcription locus, creating 

clusters of sequences that share identical 3’UTRs. Each cluster contains the sequences from a 

unique gene, together with information on protein similarities, gene expression, cDNA clones and 

genomic location. This resource not only includes the metazoan data, but also other organisms, 

including plants and fungi. This analysis and subsequent protein sequence alignments allow 

achieving a putative function for HRR-containing cluster. The best metazoan matches of HRR cluster 

transcripts with RefSeq proteins consisted in four RNA-binding animal proteins: Caenorhabditis 

elegans SUP-12 (NP_001129938.1, 56.2% of identity), Xenopus laevis XSEB4R (NP_001082613.1, 

53.1% of identity), Mus musculus RBM38 (NP_062420.2, 52.1% of identity), Homo sapiens RBM38b 

isoform (NP_906270.1, 52.1% of identity). The corresponding HRR orthologue protein sequences 

were downloaded from GenBank at NCBI and the final alignment was generated, using the Clustal 

W analysis (MegaAlign software, LaserGene DNASTAR, version7) (Figure 3.5). Despite of low 

sequence identities with HRR sequence (56.2 – 52.1%), the results indicated a high sequence 

homology within the RRM domain, particularly in the consensus sequences RNP2 and RNP1. 

 

 

 
Figure 3.5 Sequence alignment of HRR protein with the most significant orthologues. The amino acid sequences 
were aligned using MegAlign (Lasergene, DNASTAR v7) with ClustalW method. The five most similar animal proteins 
used for the alignment were the RRM-containing proteins Caenorhabditis elegans SUP-12 (NP_001129938.1), Mus 
musculus RBM38 (NP_062420.2), Homo sapiens RBM38b isoform (NP_906270.1) and Xenopus laevis XSEB4R 
(NP_001082613.1). 
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In contrast to HRR, the other HRR orthologues shared highly conserved sequences in all RRM-

domain, even out the RNP2 and RNP1 consensus sequences. In the C-terminal half and spanning 

the PAPB-1234 domain, only the Xenopus XSEB4R (a XSEB4 isoform) and rat RMB38 share a high 

sequence homology with each other (Fetka et al. 2000). 

SUP-12 has been described as a novel member of tissue-specific alternative splicing regulator 

in C. elegans and shares high sequence homology with SEB4-related proteins (human SEB4 and 

Xenopus XSEB4 and XSEB 4R isoforms) (Anyanful et al. 2004). Recently, the metazoan SEB4 

proteins have been annotated as being coded by RBM38 gene and consequently are known as 

RBM38-related proteins (NCBI). Due to this high similarity, Anyanful et al. (2004) proposed that 

SUP-12 protein, SEB4 or RBM38-related proteins would be included into a new family of tissue-

specific splicing factors of multicellular organisms. The authors also suggested that the 

corresponding Arabidopsis orthologues could be considered as belonging to the family of AtSEB4a-f- 

like proteins. Making a brief analysis of their nucleotide sequences (NCBI and TAIR), the results 

demonstrated that all of them correspond to the best HRR homologues in Arabidopsis, including 

HRR itself (SEB4-like, e isoform). Another function was described to a metazoan member of this 

family, Xenopus XSEB4R (Souopgui et al. 2008). The direct binding of XSEB4R to the 3’UTR region 

of VegT transcripts promotes the increase of their stabilisation and translation. In addition, RNPC1 

(annotated as the human RBM-38) has been indicated as the target of p53 tumor supressor, being 

necessary for maintaining the stability of basal and stress-induced p21 (a cyclin-dependent kinase 

inhibitor) transcripts (Shu et al. 2006). This stability is promoted by the binding of RNPC1 to the 

3’UTR of p21 transcripts. Since HRR could be considered as a SEB4 like protein, a functional role on 

splicing or in stabilisation of primary and mature transcripts could be predicted. 

Another alignment analysis was performed between HRR protein sequence, its metazoan 

orthologues and all Arabidopsis RRM-containing proteins, which are distributed among different 

functional groups: PABPs (poly-A-binding proteins), GR-RBPs (glycine-rich RNA-binding proteins), 

oligouridylate-binding proteins, snRNPs (small nuclear ribonucleoproteins) and SR proteins (serine-

arginine-rich) (Lorkovic and Barta 2002). The final phylogenetic tree was obtained through the 

sequence alignment using the Clustal W analysis (MegaAlign software, LaserGene DNASTAR, 

version7) (Figure 3.6). The result confirms the close proximity between HRR and its corresponding 

orthologues, since all the proteins are clustered together in a single clade. In addition, this HRR 

metazoan clade is more phylogenetically close to Arabidopsis GR-RBP and oligouridylate-binding 

protein groups than to PABP, SnRNP and SR protein groups. 
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Figure 3.6 Phylogenetic analysis of RRM-containing proteins. The phylogenetic relationship of Arabidopsis RRM-
containing proteins and animal orthologues was based on amino acid sequence comparison (Clustal W analysis), using 
MegAlign (Lasergene, DNASTAR v7). Analysed RRM-containing proteins were selected according to the functional 
group they belong: 1, snRNP and serine-rich (SR) proteins; 2, glycine-rich (GR) RNA-binding proteins (GR-RBPs); 3, 
oligouridylate-binding proteins; 4, poly(A)-binding proteins (PABPs). The cluster comprising HRR is distinguished by bold 
lettering and bracket. The accession gene code for each proteins is depicted in Annex I.  

 

1 

2 

3 

4 
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GR-RBPs have been implicated in plant responses to environmental stresses (cold, salt and 

dehydration) (Lorkovic 2009). Recent studies demonstrated that Arabidopsis GR-RBP7 is required 

for the efficient export of mature mRNAs from nucleus to the cytoplasm and is highly expressed in 

cold stress conditions (Kim et al. 2008b). Furthermore, this protein was also suggested to act as an 

assistant in the establishment of better RNA conformations, to turn transcripts more functionally 

favourable for translation under cold conditions. Other Arabidopsis GR-RBP (GR-RBP2) was equally 

implicated in responses to cold stress and suggested to have a RNA chaperone activity (Kim et al. 2007). 

In this work, a cold sensitive Escherichia coli mutant was complemented on the cold adaptation process 

by the presence of GR-RBP2 protein. This mitochondrial protein exerts its role by binding 

mitochondrial targeted transcripts and regulating their processing and/or translation, thus modulating 

the protein synthesis during cold acclimatisation (Jiang et al. 1997; Vermel et al. 2002). Another GR-

RBP (Oryza sativa GR-RBP4) is suggested to promote plant thermotolerance by binding and 

stabilising the stress-inducible transcripts under HS conditions (Sahi et al. 2007).  

The group of oligouridylate-binding proteins participe in nuclear protein complexes involved in 

the recognition of U-rich sequences present in 3’UTRs of mature transcripts. UBA2 and UBA1 

isoform proteins have strong binding preferences for oligouridylate sequences in 3’UTRs 

(Lambermon et al. 2002). In addition, UBA2 and UBA1 mediate independent RNA-binding 

interactions with UBP1, to which they share some similarities. However, in contrast to UBP1, when 

UBA1 or UBA2 are over-expressed there is a strong accumulation of free poly(A)-mRNAs 

(Lambermon et al. 2000; Lambermon et al. 2002). In light of these observations, it was suggested 

that UBA1 and UBA2 proteins could participate in the composition of different protein complexes 

(Lambermon et al. 2002). 

 The closer phylogenetic relationship between HRR and GR-RBPs and oligouridylate-binding 

proteins could suggest a related functional role for HRR: as a transcript stabilising protein and/or as 

an interaction factor within protein complexes. Playing a role in transcript stabilisation and/or 

remodelation of RNA metabolism pathways, HRR could indirectly affect the stress-induced 

proteome, during HS imposition. Indeed the close phylogenetic relationship of HRR with 

oligoridylate-binding proteins (UBP1, UBAs, RBP45 and RBP47) suggests a regulatory role of HRR 

in the recognition of U-rich sequences present in 3’UTRs of mature transcripts, being a component of 

a protein complex. 

The HRR-containing clade is more phylogenetically distant from Arabidopsis PABPs group. 

Searching for conserved domains in some Arabidopsis PABPs (Conserved Domains tool, NCBI), the 

results show that they share homology with metazoan PABP-1234-containing proteins, as referred 

for HRR (results not shown.) As the Arabidopsis PABPs function has been only predicted based on 
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their similarity with metazoan counterparts (Lorkovic and Barta 2002), this could suggest that HRR 

could be also considered as a PABP protein. Nevertheless, a functional divergence should occur due 

to the presence of only one RRM domain in HRR, in contrast with the four present in Arabidopsis 

PABP. Ultimately, this could affect the RNA-protein and/or protein-protein interactions However, the 

possibility of protein interactions between HRR and Arabidopsis PABPs should not be eliminated. 

 

3.1.2 HRR promoter analysis 

 

Regarding that HRR is a RNA-binding protein highly up-regulated during HS imposition, a search for 

promoter cis-acting elements was performed. The predicted promoter sequences for HRR were 

obtained through AGRIS (AtcisDB platform, http://arabidopsis.med.ohio-state.edu/) and Athena 

(http://www.bioinformatics2.wsu.edu/cgi-bin/Athena/cgi/home.pl) databases (Table 3.1). The relevant 

presence of RAV1 motifs (three consensus sequences) suggests that HRR expression is regulated 

by the binding of RAV1. These transcription factors were initially identified by homology to the B3 

domain of maize VP1 transcription factor. Besides this B3 domain (C-termini), RAV1 transcription 

factor also contains an AP2 domain (N-termini). Therefore, RAV1 binds in a sequence-specific 

manner to bipartite sequence motifs containing the consensus sequence elements for both the AP2

 

Table 3.1 Representation of the regulatory regions of HRR promoter, using the bioinformatic tools AtcisDB 
(AGRIS) and Athena.  Detailed information of promoter binding sites (BS) and corresponding putative TFs that would 
bind to it are described. 
 

 
BS name 

Position 
(start) 

BS sequence BS-associated TFs 

AGRIS 
(AtcisDB) 

ATB2/AtbZIP53/AtbZIP44/GBF5 
BS in ProDH 

21815125 ACTCAT 
bZIP 

W-box promoter motif 21815305 TTGACT WRKY 

CCA1 binding site motif 21815558 AACAATCT MYB-related 

MYB binding site promoter 21814961 AACCAAAC MYB 

MYB4 binding site motif 21814961 ACCAAAC MYB 

RAV1 binding site motif 21814979 CAACA ABI3/VP1 

RAV1 binding site motif 21815481 CAACA ABI3/VP1 

RAV1 binding site motif 21815076 CAACA ABI3/VP1 

BoxII promoter motif 21815578 GGTTAA …. 

GATA promoter motif 21815025 AGATAA …. 

GATA promoter motif 21815463 AGATAA …. 

Ibox promoter motif 21815026 GATAAG …. 

Athena 

BoxII promoter motif -29 GGTTAA …. 

CCA1 binding site motif -49 AACAATCT MYB-related 
Ibox promoter motif -582 GATAAG … 
MYB binding site promoter -646 AACCAAAC MYB 
MYB4 binding site motif -646 ACCAAAC MYB 
W-box promoter motif -303 TTGACT WRKY 
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and B3 domains (Kagaya et al. 1999). The super-family of B3 transcription factors comprises those 

that have been described to be involved in seed development and ABA-responsive expression, such 

ABI3, LEC2 and FUS3 (Giraudat et al. 1992; Luerssen et al. 1998; Stone et al. 2001). Recently, 

RAV1 transcription factor has also been implicated as a cold-responsive factor and a negative 

regulatory component of growth development (Hu et al. 2004; Yamasaki et al. 2004). 

Due to the presence of cis-acting sequences for binding the AP2 domain (RAV1 motif), it is 

likely that transcription factors such as ERF, EREBP/AP2, DREB, CBF/AP2 and ABI4 could bind to 

the HRR promoter sequence. These factors are involved in many aspects of plant development, 

responses to abiotic and biotic stresses, hormonal and metabolism regulation (Finkelstein et al. 

1998; Liu et al. 1998; Kizis et al. 2001; Sakuma et al. 2002; Gutterson and Reuber 2004; Bossi et al. 

2009; Hinz et al. 2010; Yang et al. 2011). The binding of these factors might be mediated through 

interaction with other transcription factors in a protein complex. 

Besides RAV1 factors, MYB-related and other MYB transcription factors seem to bind to the 

predicted HRR promoter sequence. The MYB transcription factors are involved in many aspects of 

plant development and metabolism, as well as in responses to abiotic stresses, mainly drought 

stress (Stracke et al. 2001; Abe et al. 2003). The presence of a binding site for CIRCADIAN CLOCK 

ASSOCIATED 1 (CCA1) transcription factor indicates that HRR could be induced during the 

regulation of circadian rythms. This transcription factor has been indicated as a key element in the 

transcriptional regulation during the phytochrome signal transduction pathway. The CCA1 

transcription factor is greatly related to LATE ELONGATED HYPOCOTYL (LHY), since both harbour 

a unique MYB domain, so being considered as MYB-related transcription factors (Wang et al. 1997). 

Both CCA1 and LHY have been reported as being involved in regulation of Arabidopsis circadian 

rhythms, acting in a synergistic mode (Wang et al. 1997; Alabadí et al. 2002; Lu et al. 2009).  

The cis-elements present in the predicted HRR promoter for binding of bZIP transcription 

factors are ProDH promoter-like. These transcription factors belong to the S group of bZIP 

superfamily and have been associated to sugar and amino acid metabolism, to mid and late stages 

of seed maturation and to the responses to hypoosmotic and cold conditions (Satoh et al. 2004; 

Hanson et al. 2008; Alonso et al. 2009; Weltmeier et al. 2009; Ma et al. 2011). The presence of a W-

box in the HRR promoter indicates the binding of WRKY transcription factors. Recent data suggest 

that WRKY factors play key roles in regulation of biotic and abiotic stresses responses, besides 

being involved in many other physiological aspects, such as embryogenesis and seed coat 

development, trichome development and regulation of metabolism and hormone signalling (Eulgem 

et al. 2000; Agarwal et al. 2011). Recent reports have also referred the involvement of WRKY factors 
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in responses to heat stress (Li et al. 2009; Li et al. 2010; Li et al. 2011b). The association of bZIP 

and WRKY transcription factors to plant responses to stress conditions is a good indication that HRR 

promoter could be one target of stress-related gene expression. 

 

3.1.3 HRR expression analysis 

 

Being HRR expression suggested to be regulated by different types of transcription factors that have 

been implicated in different developmental and environmental conditions, it is expected that those 

transcription factors can activate the expression of other stress-related genes. The co-expression of 

HRR was analysed, performing a search in GeneMANIA and ATTED-II platforms. The majority of 

HRR co-expression relationships were predicted by GeneMANIA (Figure 3.7). This platform uses the 

data obtained from the functional relationships of orthologues that is often related to protein 

interactions studies, as well as the co-expression, co-localisation and physical interaction data 

already documented. It is noticeable the predicted HRR co-expression/interaction with other well-

known oligouridylate-binding proteins (AtRBP45C, UBP1A and UBP1B and RBP45B). As referred,

 

 

 

Figure 3.7 HRR co-expression network. The gene of interest is black shaded. Brown lines represent the predicted co-
expression/interaction relations. Light pink lines represent the co-expression relationships already documented. The co-
localised expressions are represented by light blue lines and physical interactions are highlighted by a blue/purple line. 
Stronger relationships are represented by thicker lines. The genes that are only represented by AGI number do not have 
an identified function. Genes displaying a higher score are represented by enlarged circles, meaning that they have 
higher probability of belonging to the networks assigned by the program. Analysis was performed in GeneMANIA 
platform. 
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these hnRNP-like proteins are involved in multiple steps of mRNA maturation, from enhancing intron 

excision to pre-mRNA splicing or mature mRNA stability (Lambermon et al. 2000; Lorkovic et al. 

2000; Lambermon et al. 2002). This prediction reinforces the previously suggested genetic and 

protein interactions of HRR with these U-rich binding proteins. 

Also, HRR seems also to be co-expressed or interacting with other RRM-containing proteins, 

which are still functionally uncharacterised. At2g16940 codes for a RRM-containing protein putatively 

involved in mRNA processing. This protein has been annotated as a CC1-like splicing factor and was 

suggested to be involved in spliceosome pre-assembling (Seraphin 1989; Ascencio-Ibáñez et al. 2008). 

Other co-expressed gene (At2g43370) codes for an U1 snRNP-like protein. This protein is also 

involved in spliceosome assembling and mRNA processing mechanisms (Lorković et al. 2005; 

Schindler et al. 2008). At1g03457 is an orthologue of a D. melanogaster gene that codes for a RNA-

binding protein described as being involved in mRNA 3’UTR binding (Wang et al. 2008; Zhou et al. 2010; 

Peal et al. 2011). Considering these predicted co-expressed or interacting data, HRR might also interact 

with many factors involved in spliceosome assembly and mRNA processing process. Hence, HRR 

could promote stability to nascent mRNA molecules during the pre-mRNA processing steps.  

An interesting aspect is the possible HRR co-expression/interaction with AtSC35 and 

AtRanGAP1, as well as PAB6 (or PABP6) genes. The AtSC35 is considered as an orthologue of the 

human splicing factor SC35 and belongs to the family of proteins containing a C- or both terminal 

domains rich in serine-arginine (SR) dipeptides that could be reversibly 

phosphorylated/desphosphorylated (Lopato et al. 2002; Barta et al. 2008). AtSC35 has been 

described to interact with other SR proteins, particularly with AtRSZ33 phosphoprotein, which seems 

to play an important role in selection of alternative splice sites and spliceosome assembly (Graveley 

2000; Lopato et al. 2002). However, the correct selection of splice sites in plants could be promoted by a 

different set of snRNPs and specific U-rich binding factors, since the plant introns have a high AU content 

and short U-rich stretches that are required for efficient intron removal (Gniadkowski et al. 1996; Brown 

and Simpson 1998; Barta et al. 2008a). In that way, oligouridylate-binding factors, such as UBP or UBA 

proteins, could participate in intron recognition and their splicing. Indeed, the over-expression of 

UBP1 enhances the splicing efficiency of the intronic sequences (Lambermon et al. 2000). In 

Arabidopsis, AtRanGAP1 coded by PARLL-1 was recently annotated as Nucleolin-like 2. This 

nucleolar protein is suggested to be implicated in ribosomal biogenesis, nuclear signal recognition 

and nucleocytoplasmic transport (Jeong et al. 2005; Petricka and Nelson 2007). PAB6, which presents 

the highest score for HRR, corresponds to a poly(A)-binding protein, functionally annotated as translation 

initiation factor (TAIR). Recent data has indicated that PAB6 is up-regulated during the pollen tube 

growth, a developmental stage where translation is very active (Wang et al. 2008). 
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All these co-expression/interaction predictions suggest that HRR could play functions in 

regulation of spliceossome assembly, as well as to be involved in intron recognition and enhancing 

intron splicing. Moreover, considering the predicted interaction with AtRanGAP1 and PABP6, HRR 

could be also involved in ribosomal biogenesis, nucleocytoplasmic transport and translation initiation 

process. These functional previsions for HRR are in accordance with the predicted subcellular 

localisation of HRR in the nucleus and cytoplasm (Figure 3.8). 

 

 

 

Figure 3.8 Subcellular localisation pattern of HRR. Prediction was performed in Cell eFP tool (provided by BAR 
website). The data indicate that HRR would be located in cytosol and nucleus. These results were obtained through 
LOCtree, Wolfpsort and Subloc prediction algoritms. Expression levels are identified in colours as depicted in the scale. 

 

The ATTED-II prediction of co-expressed genes with HRR is different from the one made by 

GeneMANIA. The ATTED-II results predicted that HRR is co-expressed with NMT2 (Pearson’s 

correlation coefficient, COR=0.76), SAP10 (COR=0.74), FTSH6 (COR=0.73), AT-HSFA7B 

(COR=0.72) and with a transposable element product (COR=0.66). All these genes are associated 

to stress responses, except the transposable element product with an unknown function. NMT2 

codes for a N-myristoyltransferase, which is involved in addition of the saturated C:14 fatty acid 

myristate to proteins. This irreversible modification alters the binding properties of crucial cytoplasmic 

proteins from signal transduction cascades, such calcium-dependent protein kinases and small 

GTPases (Boisson et al. 2003; Pierre et al. 2007). The recently annotated SAP10 (stress-associated 

protein 10) codes for an AN1-like zinc-finger protein and seems to be involved in responses to toxic 

metals and high temperatures responses (Dixit and Dhankher 2011). FTSH6 product corresponds to 

a chloroplastidial metalloprotease protein that promotes the degradation of Lhcb3 and Lhcb1 

proteins from the light-harvesting complex of photosystem II, during senescence and high-light 

acclimation (Zelisko et al. 2005; Wagner et al. 2011). The coding gene for the heat shock 

transcription factor A7B (HSFA7B) is up-regulated under high light and HS conditions. The promoter 

of this gene is one of the master targets of constitutive HsfA1d and HsfA1e factors. The expression 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

64 
 

of HsfA7B thus promotes the extension of thermotolerance responses by up-regulating other heat 

stress-related proteins (Nosaka et al. 2011). 

The HRR co-expressed genes (predicted by ATTED-II) indicate a complex network of 

molecular events that occur in early responses to heat stress. The post-translational modifications, 

promoted in part by N-myristoyltransferases, could change the membrane lipid composition and 

fluidity that would affect the activity of key kinase proteins. This would lead to alterations in signalling 

transduction pathways that could affect transcriptional (expression and activity of HSFs and HS-

related proteins, such HRR) and post-transcriptional (mRNA splicing, export and stability) and 

translational mechanisms.  

The prediction of HRR expression profile was performed using the Bio-Array Resource (BAR) 

and Genevestigator platforms. Through Arabidopsis eFP Browser (BAR), Metaprofile 

(Genevestigator) and Clustering (Genevestigator) analysis tools, the expression prediction data was 

determined in different tissues and organs of Arabidopsis plant (Figures 3.9), during the 

developmental stages (Figure 3.10), in response to different stress situations and mutant genotypes 

(Figure 3.11).  

The analysis performed in BAR platform for the wild-type Arabidopsis plants, grown under 

standard conditions, revealed that HRR is predicted to be more expressed in mature pollen, early 

flower bud (stage 9) and final stage of seed maturation (stage 10), exhibiting absolute values of 

27.06, 20.41 and 19.51, respectively (Figure 3.9A). Lower expression was predicted for the previous 

stage of developing seeds (stage 9) (13.63), senescing leaves (10.81), rosette leaves 2 (10.33) and 

cauline leaves (10.2). All other organs/tissues presented predicted expression levels less than 10. 

During seed development, HRR is highly expressed mainly in the embryo of in pre- and 

globular stages, mainly in embryo (22.45 and 31.68, respectively), but also in the corresponding 

peripheral endosperm tissues (25.96 and 17.69, respectively) (Figure 3.9B). High expression levels 

were also predicted for general seed coat at globular (19.72), linear-cotyledon (22.76) and mature 

green stages (17.68). During the initial hours of seed imbibition, HRR is expressed at low levels 

(5.39), achieving higher expression after 24h of imbibition (Figure 3.9C). In experiments where the 

seeds were further imbibited up to 96h, at 22ºC or 4ºC, the expression levels were much more 

intense (13.73 and 15.14, respectively). Analysing HRR expression in mutant seeds, it is noticeable 

the higher HRR expression in mutant seeds of ABA-related genes, namely cts1 (19.2) and fus3-8 

(19.05), but also abi3-4 (14.34). Taken together these results suggest that, under standard growth 

conditions, HRR could play a role during seed development and germination, simultaneously with 

ABA levels that seem to be crucial for regulation of these development stages. 
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Figure 3.9 Prediction of HRR expression in (A) different developmental stages, (B) seed development and (C) 
germination of wild-type and mutant seeds. HRR is highly expressed in mature pollen, early flower bud and final stage of 
seed maturation. During seed development, HRR is predicted to be highly expressed in globular, torpedo and cotyledon stages, 
being also expressed in imbibed seeds. Some ABA related mutant seeds present higher HRR expression levels than wild-type. 
Expression levels (absolute values) are identified in colors as depicted in the scale. This analysis was performed using 
Arabidopsis eFP Browser provided by BAR, considering the Development Map (A) and Seed (B,C) data. Seeds that not 
complete germination are marked with X symbol. 
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Figure 3.10 HRR expression profile during the different stages of Arabidopsis development. Although presenting 
low levels of expression, the highest levels are observed during seed germination. This analysis was performed 
considering the signal intensity definitions of ATH1 microarrays. Development  stages  (from left to right): seed 
germination, seedling, early rosette, mature rosette, stem formation, early flowering, mature flowering, seed 
development, desiccation. 
 

 

 

 

Figure 3.11. HRR expression profile in response to different stress situations (conditions) and in different 
mutant genotypes (genotypes). HRR is up-regulated under HS conditions, being also expressed under anoxia 
conditions. The treatment with phytoprostane A1 promotes the up-regulation of HRR. HRR expression is mostly affected 
in HS-related mutants. Expression analysis data were obtained from Meta-Profile analysis tool (Genevestigator). The 
values correspond to log2 ratio (treatment/ control ratio), being identified in colors as depicted in the scale. 
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During the different development stages, HRR is expressed in all stages, being the highest levels 

observed during seed germination. However, but at lower levels, the HRR expression is also 

observed during flower development, seed development and dessication (Figure 3.10) 

In the majority of experimental conditions analysed, HRR is highly up-regulated under HS 

conditions (Signal Ratio, SR: 157.45; 43.93; 12.66; 9.32), according to the previous prediction of 

HRR as a HS-responsive gene (Figure 3.11). HRR is also up-regulated after phytoprostane A1 

application (SR: 98.63). Phytoprostane A1 is a cyclopentenone oxylipin that can be formed via 

enzymatic jasmonate pathway or by a nonenzymatic pathway dependent of ROS, which can function 

as a signal for the expression of stress-induced genes (Mueller et al. 2008). The presence of 

phytoprostane A1 could thus trigger the mechanisms of HS response, including the HRR expression. 

Hence, this oxylipin could mimic certain functions of heat- induced membrane phospholipids (such 

as IP3 and PIP2), acting as secondary messengers to promote the further homeostasis adjustment 

at elevated temperatures. The highest HRR up-regulation was detected in anoxia conditions when a 

heat stress treatment was applied (SR: 275.25). Even without HS, anoxia conditions promote an 

induction of HRR expression (SR: 12.47). The possible cross-talk between anoxia and HS signalling 

pathways were already suggested when it was found that anoxia conditions promote the induction of 

HSPs (Banti et al. 2008). 

In most mutant plants there are no major differences on HRR expression (Figure 3.11). 

However, HRR is extremely affected in HS-related mutants (QK, quadruple mutant HsfA1a,1b,1d,1e 

and hsf1:hsf3 double mutant), being also down-regulated in flower mutants (lfy-1, mads miRNAs) 

(Weigel et al. 1992; Schwab et al. 2006; Banti et al. 2008; Shedge et al. 2010). These results 

indicate a specific expression of HRR during early phases of response to HS, directly or indirectly 

induced by HSFA1 factors. Indeed, HSFA1a, 1b, and 1d have been described as redundant master 

regulators, during early phases of HS response (Liu et al. 2011).   

When comparing the HRR gene expression with other RRM-containing proteins in different 

tissues and during plant development, it becomes clear that HRR is much less expressed (Figures 

C3.1 and C3.2). This suggests that the main role of HRR would be on stress conditions. Under 

different exogenous stimuli, a small number of RRM-containing proteins share expression similarities 

with HRR, namely under HS conditions (Figure C3.3). The phylogenetically close UBA1A presents a 

very similar expression pattern under HS conditions, but the same expression pattern was also found 

for the splicing factors SCL33/SR33 and AtSC35, which are more phylogenetic distant from HRR 

(Figure 3.6). In HS experiences performed in QK mutants, only SCL33/SR33 expression levels were 

as affected as the HRR (Figure C3.5). SCL33/SR33 and AtSC35 expressions have being described 

as being affected by HS treatment, generating a different alternative splicing pattern, which in turn 
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leads to different protein pattern under HS responses (Palusa et al. 2007) These results could 

corroborate the previous predicted functional similarities for HRR and UBA proteins. Once they share 

some structural and, possibly, some functional similarities as hnRNP-like proteins, it is likely that 

HRR interacts with UBA proteins during transcriptome regulation, under HS conditions.  

 

Taken together, the in silico analysis of HRR structure and expression suggests that this RNA-

binding protein (a RRM-containing protein) might be an important regulator protein during HS 

responses. Functional information of Arabidopsis RRM-containing protein homologues and 

metazoan orthologues suggests that HRR could play a role in the stability of specific HS-induced 

transcripts, mostly through interaction with other RNA-binding proteins. The phylogenetic relationship 

with GR-RBPs and oligouridylate-binding proteins suggests that HRR could directly or indirectly bind 

to HS-induced transcripts, promoting their stability during further RNA metabolism steps. The 

predicted co-interaction with UBA, UBP and even with spliceossomal factors (AtSC35, SCL33/SR33) 

also indicates that HRR could bind to certain transcript 3’UTRs, thus preventing their precocious 

exonucleotidic degradation. In addition, HRR could play auxiliary roles in intron selection and splicing 

efficiency into spliceossome assembly and activity. Hence, the induction of HRR could be important 

for remodelation of transcriptome during the thermotolerance development. The down-regulation of 

HRR in HS-related mutants (QK and hsf1:hsf3) (Lohmann et al 2004; Liu et al. 2011) suggests that 

HRR could act as an early post-transcription regulator in HS responses. The predicted co-interaction 

of HRR with RNA export and translation initiation factors (RanGAP and PAB6, respectively) also 

suggests a nucleocytoplasmic function during developmental or environmental transition of 

housekeeping transcriptome to HS-specific response transcriptome. 

 

 

 

 

 

 

 

 

 

(Right page)Figure C3.1 Gene expression profiles for RRM-containing proteins in different Arabidopsis organs/tissues. 
The red-lined box corresponds to the HRR expression profile. Expression profiles were obtained using the Clustering analysis 
(Hierarchical Clustering) for anatomy tool, by Pearson correlation, at the Genevestigator platform 
(https://www.genevestigator.com/gv/). Results are given as heat maps in blue/white coding (average expression levels), in 
which blue intensity indicates higher expression level.  
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3.1.4 Complementary data  
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Figure C3.2 Gene expression profiles for RRM-containing proteins during Arabidopsis development. The red--
lined box corresponds to the HRR expression profile. Expression profiles were obtained using the Clustering analysis 
(Hierarchical Clustering) for development tool, by Pearson correlation, at the Genevestigator platform 
(https://www.genevestigator.com/gv/). Results are given as heat maps in blue/white coding (average expression levels), 
in which blue intensity indicates higher expression level. 
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Figure C3.3 Gene expression profiles for RRM-containing proteins in different exogenous stimulus. The red--
lined box corresponds to the HRR expression profile. Expression profiles were obtained using the Clustering analysis 
(Biclustering) for stimulus tool, using BiMax algorithm, at the Genevestigator platform (https://www.genevestigator.com/gv/). 
Results are given as discrete matrix, depicting the up-regulated discretisation values (log2 ratio) between 1.0 and 2.5. 
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Figure C3.4 Gene expression profiles for RRM-containing proteins in Arabidopsis mutants. The red-lined box 
corresponds to the HRR expression profile. Expression profiles were obtained using the Clustering analysis (Biclustering) 
for stimulus tool, using BiMax algorithm, at the Genevestigator platform (https://www.genevestigator.com/gv/). Results 
are given as discrete matrix, depicting the down-regulated discretisation values (log2 ratio) between -2.5 and -1.0. 
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3.2 Phenotypic characterisation of hrr loss-in-function and HRR over-

expression mutant lines 

 
The functional characterisation of HRR was initiated by studying the loss-in-function and over-

expression lines for HRR, both in wild-type Ler ecotype background. 

 

3.2.1 Isolation of hrr loss-in-function and HRR over-expression lines 

 

A loss-in-function line (GT_5_47364) containing a Ds3-1 transposon insertion in the third exon of 

HRR (Figure 3.12), was ordered from public stocks (NASC) (Clarke 2000). As the acquired seed 

pool corresponds to the heterozygous F3 generation, the screening of homozygous for that insertion 

was initiated. The genomic DNA was extracted from each individual F3 plant and used in a 

diagnostic PCR analysis. For this, a multiplex PCR method was performed making use of three 

primers: two gene-specific primers (HRR_LP and HRR_RP) for flanking the Ds3-1 transposon-

insertion and an insertion-specific primer (prbZF_Rv) (Figure 3.12A, Annex III). The wild-type (Ler) 

 

 

   

 

 

Figure 3.12 Isolation of homozygous hrr mutant line. (A) Schematic representation of HRR gene depicting a Ds3-1 
transposon-containing insertion (triangle) in the third exon (position 21816179, chromosome 5). The predicted promoter 
region is represented by a dashed line. The full arrows depict the diagnostic primers used for plant genotyping by PCR. 
The dashed arrows depict the primers used for HRR expression analysis by semi-quantitative RT-PCR. (B) 
Electrophoretic analysis of diagnostic PCR products for genotypic identification of hrr mutant line. Public available HRR 
Ds3-1 transposon-containing insertion line was ordered and each F3 plant was tested for homozygous insertion-
containing individuals through diagnostic PCR. The picture represents a typical analysis, in which 11 F3 plants (F1-F8) 
were tested. The identified homozygous mutant lines are evidenced by orange boxes. Controls were performed with wild-
type (Ler) DNA and without any DNA (C-).  

A 
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genomic DNA was used as a positive control, since does not hold any Ds3-1 transposon-insertion. In 

this case, a single PCR product of 780 bp was obtained, resulting from the amplification with both 

gene-specific primers (Figure 3.12B). As homozygous plants contain Ds3-1 transposon insertions in 

both chromosomes, a single PCR product of about 1600 bp was amplified by the insertion-specific 

(prbZF_Rv) and gene-specific (HRR_LP) primers. In this case, no PCR product will result from 

amplification using both gene-specific primers. As hemizygous plants only harbour a Ds3-1 transposon-

insertion in one of the chromosomes, the PCR amplification will result in both fragments (780 and ≈ 

1600 bp). Three distinct homozygous insertion mutants (F1, E7 and F2) were depicted (Figure 3.12B). 

The same unspecific amplification was also detected in the negative control (without DNA). 

HRR over-expression lines were generated through the Gateway® recombination system 

(Invitrogen). The complete HRR cDNA sequence was inserted into the pMDC83 pDEST vector 

(Curtis and Grossniklaus 2003) that harbours a strong promoter (2x35S) and thus provides an HRR 

over-expression system. The resulting construct p35S::HRR-GFP6 (Figure 3.13A) was used to 

transform Agrobacterium tumefaciens (EHA105 strain), which was then used to transform the hrr 

mutant and wild-type Ler plants. The selection of transgenic lines was performed by germinating 

seeds onto selective MS medium (supplemented with hygromicin). In the first, generation T2 from 

independent HRR over-expression lines were recovered: JP5, JP6 and JP9 (in hrr mutant 

background) and L2 and L6 (in wild-type Ler background). For confirming the presence of the 

transgene construct in the genome, all over-expression lines were subjected to a diagnostic PCR 

analysis. For this PCR, the primers pMDC35S (for the 35S promoter sequence) and pMDCgfpleft (for 

the GFP6 coding sequence) were designed for allowing the amplification of all HRR coding 

sequence in the transgene construct (Figure 3.13A, Annex III). Using such a PCR analysis, the 

previously selected lines were proved to contain the transgene construct in genome (Figure 3.13B).  

 

.    

 

 

Figure 3.13 Selection of HRR over-expression lines. (A) Schematic representation of the transgene construct 
p35S::HRR.1-GFP6. The arrows depict the diagnostic primers used for plant genotyping by PCR. 2x35S, dual CaMV 
35S promoter; attB1 and attB2 recombination sites; GFP6his, GFP6 coding region; Nos, nos gene terminator; RB and 
LB, righ and left borders, respectively. (B) Electrophoretic analysis of diagnostic PCR products for genotypic identification 
of HRR over-expressing lines. The T4 transgenic plants from each selected HRR over-expression line (JP5, JP6, JP9 
and L6) were tested for the transgene presence by diagnostic PCR. Controls were performed with wild-type Ler, hrr 
mutant and without (C-) genomic DNA. 
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Indeed, regarding that HRR cDNA sequence possesses 510 bp and considering the position of 

primers in specific construct elements, the expected size (~750 bp) was obtained for each selected 

line. As expected, no amplification was detected in wild-type Ler and hrr mutant (Figure 3.13 B). 

Each HRR over-expression line was used for seed bulk production, being synchronised with wild-

type Ler and hrr mutant. 

 

3.2.2 HRR expression analysis in hrr and HRR over-expression mutant lines 

 

To confirm that hrr mutant is a knockout line and HRR over-expression lines constitutively produce 

high amounts of HRR  transcripts, a HRR expression analysis was performed in wild-type Ler, hrr, 

and over-expression mutant lines, under standard growth conditions. Total RNA samples from wild-

type Ler and hrr mutant plants were extracted from different Arabidopsis organs/tissues: 

inflorescences, rosette, cauline leaves (from five-weeks old plants), roots and cotyledons (16-days -old 

seedlings). In case of HRR over-expression lines, the HRR expression analysis was performed in RNA 

samples taken from 16-days-old seedlings. After synthesis of the corresponding cDNAs, a semi-

quantitative RT-PCR was performed using gene-specific primers (depicted in Figure 3.12A, Annex 

III). In wild-type (Ler) samples, HRR is more expressed in inflorescences (2),  and less expressed in 

cauline (1) and rosette (3) leaves, as well as in roots (4) (Figure 3.14). In cotyledons (5), HRR 

expression is undetectable. These results are in agreement with eFP Developmental Map data, in 

which HRR achieved the highest expression levels during flower development, exhibiting lower 

levels in cauline and rosette leaves (Figure 3.9A). Genevestigtor data also predicted the expression 

of HRR in roots (Complementary Figure C3.1), which was confirmed by the HRR transcript levels 

found in seedling roots (Figure 3.14). In the same plant tissues, no HRR expression was detected in 

hrr mutant lines, supporting the suggestion of hrr mutant being a knockout line.  

All HRR over-expression transgenic lines were expressing HRR, as confirmed by RT-PCR 

analysis (Figure 3.15). While JP5, JP6 and JP9 transgenic lines exhibit an evident over-expression 

of HRR, the transgenic lines L2 and L6 display low HRR transcript levels. As expected, under the 

same conditions, both wild-type Ler and hrr mutant seedlings did not express HRR. The differences 

on HRR expression among the over-expression lines could be explained by their different genetic 

backgrounds. The dip transformation of hrr mutant and wild-type Ler plants with a HRR over-

expression construct was followed for analysing the complementation of hrr mutant plants with a 

wild-type HRR copy (JP5, JP6 and JP9 lines) and to strength the HRR expression (L2 and L6 lines). 

However, while the ectopic HRR expression in hrr mutant background is evident, in Ler background 

the HRR expression is limited. The occurrence of a RNA silencing phenomenon, mediated by 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

76 
 

siRNAs, could be responsible for the low levels of HRR transcripts in those lines containing a wild-

type background. Once a substantial amount of foreign homologous transcripts is perceived, the 

production of double-stranded small RNAs ( 20-25 nt RNAs) by siRNA biogenesis machinery 

[Arabidopsis DICER-LIKE 2 (DCL2), DCL3 and DCL4] would be triggered. These siRNA will be 

incorporated in RNA-induced silencing complex (RISC) that would mediate the degradation of 

complementary mRNAs or even guide chromatin modification and transcription silencing processes 

(Filipowicz et al. 2005; Brodersen and Voinnet 2006; Vazquez 2006; Pontes and Pikaard 2008). 

 

 

 

Figure 3.14 Expression analysis of HRR in different organ/tissues of Arabidopsis (A) wild-type Ler and (B) hrr 
mutant plants. Semi-quantitative RT-PCR was performed from total RNA (1 µg) extracted from cauline leaves (1), 
inflorescences (2) and rosette leaves (3) of five-weeks-old plants. Expression analysis in roots (4) and cotyledons (5) 
was determined in 16-days-old seedlings. Wild-type Ler and hrr mutant plants and seedlings were grown at standard 
conditions. PCR was performed using HRRcDNA_fw and HRRcDNA_rv primers and 28 cycles of amplification. Numbers 
on the right refer to the expected sizes of PCR products. As internal control, the transcript levels of Actin2 (ACT2) were 
analysed. 

 

 

 

 

 

Figure 3.15 Expression analysis of HRR transgene in HRR over-expression lines. Transcript levels were 
determined by semi-quantitative RT-PCR from total RNA (1 µg) extracted from 16-days-old seedlings. Wild-type Ler, hrr 
and p35S::HRR-GFP lines, established in hrr mutant (JP5, JP6 and JP9) and wild-type Ler (L2 and L6) plants, were 
grown under standard conditions (23ºC, control). PCR was performed using HRRcDNA_fw and HRRcDNA_rv primers 
and 28 cycles of amplification. Numbers on the right refer to the expected sizes of PCR products. As internal control, the 
transcript levels of Actin2 (ACT2) were analysed.  
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3.2.3 Seed germination of hrr and HRR over-expression mutant lines after a HS 

treatment 

 

Microarray data indicated that HRR expression is induced just after HSS imposition (one to three 

hours, 38ºC; heat stress experiences in the AtGenExpress Abiotic Stress Series) and during seed 

germination (see in 3.1 section). For predicting the role of HRR in Arabidopsis, the germination was 

evaluated in wild-type Ler and hrr mutant seeds, under standard conditions or upon a HS treatment. 

Stratified seeds (4ºC, 2 days) were exposed to different HS treatment periods/temperatures and 

immediately sown onto MS medium. The germination of both seed lines was affected by raising the 

periods/temperatures of HS treatment, being completely impaired for treatment periods longer than 

180 min at 50ºC and heat treatments above 53ºC for 60 min (Figure 3.16; Complementary Figure C3.5). 

When a HS treatment of 50ºC was applied during 30 or 60 min, the germination of hrr mutant seeds was 

more affected than Ler seeds. Also, a HS treatment at 47ºC and 50ºC, during 60 min, reduces more 

the germination of hrr mutant seeds than wild-type Ler. Altogether, the results suggest a 

thermotolerance phenotype in hrr mutant seeds. 

 

 

 

 

Figure 3.16 Evaluation of heat stress effects on hrr mutant seed germination. After stratification (4ºC, 2 days) and 
before sowing onto MS medium, wild-type Ler and hrr mutant seeds were (A) heat-stressed at 50ºC, for periods ranging 
from 0 (control) to 300 min or (B) heat-stressed for 60 min, at different temperatures, ranging from 23ºC (control) to 56ºC. 
Seed germination was evaluated by scoring the radicle emergency 10 days after heat treatment. Results obtained from 
four replicates (30 seeds each) were normalised with corresponding germinated seeds in control conditions. Data 
correspond to means ± SEM. * and ***, significant differences at P< 0.05 and P<0.001, between hrr and Ler seed 
germination, according to the two-way ANOVA (Bonferroni test).  

 

The highest differences between hrr mutant and wild-type Ler germination occurred between 

30 and 60 min of HS treatment, suggesting that HRR is rapidly recruited for early HS responses. The 

extensive HRR down-regulation in QK mutants (quadruple mutant HsfA1a,1b,1d,1e) after HS 

treatment (Complementary Figure C3.4) suggests that HRR expression could be directly or indirectly 
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regulated by HSFA1 regulators (Liu et al 2011). The family of HSFA1 transcription factors is 

constitutively expressed, but remains in an inactive conformation under non-stressful conditions, in 

complex with HSP90/HSP70 chaperones (Schöffl et al. 1998). When a heat shock occurs, HSP90 

and HSP70 are recruited and these transcription factors became activated. Ultimately, HSFA1s 

promote the gene expression of HS-related genes, namely those that code for HSPs, other HSFs, as 

well as other transcription factors (WRKY, MYB, AP2/EREBP) (Busch et al. 2005). As HRR seems to 

be recruited during the first hour of HS treatment, HRR could regulate or interact with these HS-

induced transcripts. Being HRR promoter sequence enriched in cis-elements for binding of WRKY, 

MYB and AP2 transcription factors (Table 3.1), HSFA1 could indirectly induce HRR expression. A 

recent study demonstrated that some HSFA1-targeted genes (HSFA2, HSP101, HSP25.3 and 

HSA32) are highly up-regulated after 60 min of HS imposition (Liu et al. 2011). Indeed, the HSFA2 

factor is later induced by HSFA1 proteins and promotes the expression of HSP genes (Li et al. 

2011a). For this, HSFA2 is considered a key component of the HSF signalling network involved HS 

responses, function as replacer of HSFA1 factors (Schramm et al. 2006; Li et al. 2011a; Nosaka et 

al. 2011).  

To determine if the observed seed phenotype was really associated with a unique insertion in 

HRR gene and not related with additional gene disruptions, a genetic complementation assay was 

performed using the HRR over-expression lines. The wild-type Ler, hrr mutant and HRR over-

expression transgenic seeds were subjected to a HS treatment of 50ºC for 60 min, followed by a 

similar germination assay as described before. The transgenic lines JP5, JP6 and JP9 (in hrr mutant 

background) exhibited the highest germination levels, compared to the wild-type that exhibited 

similar levels to L2 and L6 over-expression lines (in the wild-type Ler background) (Figure 3.17, 

Complementary Figure C3.6). As expected, hrr mutant seeds presented a reduced germination in 

this condition. 

The presence of HRR over-expressing transgene in hrr mutant (JP5, JP6 and JP9 lines) not 

only complemented the mutation, but also improved the thermotolerance of corresponding seeds, 

when compared with those from wild-type Ler (Figure 3.17). This suggests that HRR could play a 

crucial role in thermotolerance of heat-stressed seeds. The lower germination rate of L2 and L6 

seeds upon HS treatment, yet not significantly different from wild-type Ler could result from reduced 

levels of HRR transcripts and protein in these seeds. This could be due to a possible post-

transcriptional silencing mechanism. As a result, HRR could be insufficient to induce seed 

thermotolerance. 

 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

79 
 

 

 
Figure 3.17 HRR over-expression transgenic seeds recover seed germination capacity under heat stress 
conditions. After stratification (4ºC, 2 days), seeds from wild-type Ler, hrr mutant and different p35S::HRR-GFP 
transgenic lines (in hrr mutant and Ler backgrounds) were heat-stressed (50ºC, 60 min) and directly sown onto MS 
medium. Seed germination was evaluated by scoring the radicle emergency 10 days after heat treatment. Results 
obtained from four replicates (30 seeds each) were normalised with corresponding germinated seeds in control 
conditions. Data correspond to means ± SEM. ** and *, significant difference at P<0.01 and P<0.05, when compared 
with Ler; ###, significant difference at P<0.001, when compared with hrr mutant (one-way ANOVA, Tukey test). 

 
The higher HRR transcript levels in JP5, JP6 and JP9 (Figure 3.15) could already have 

predicted the better thermotolerance ability of their seeds. High accumulation of HRR protein, in 

standard growth conditions, could improve its action during early stages of HS imposition and during 

the recovery period. As the HRR transcript levels are lower in L2 and L6, the response to high 

temperatures based on HRR function would be weaker and similar to the wild-type Ler. Here, even 

considering a possible post-transcriptional silencing mechanism, it is not excluded the possibility the 

intervention of other HS-response pathways to built the thermotolerance response in L2 and L6 lines. 

Few studies involving RNA-binding proteins in plant thermotolerance processes have been 

published. The over-accumulation of rice OsGR-RBP4 protein has been reported to be critical for 

survival of wild-type yeast cells at high temperatures. The respective coding gene has also been 

reported to be constitutively expressed as well as up-regulated by different stresses, particularly by 

high temperature stresses (Sahi et al. 2007). As this protein comprises an N-terminal RRM domain 

and a C-terminal sequence rich in arginine and glycine residues, being phylogenetically close to 

Arabidopsis GR-RBP7, a possible role on the protection of HS-related transcripts by binding to 

mRNA molecules during elevated temperatures has been suggested. Yet, this protein revealed to be 

a RNA shuttle protein, between the nucleus and cytoplasm, during HS treatments (Sahi et al. 2007). 

As HRR over-expression confers heat tolerance in germinated seeds, a similar function of HRR in 

structural stabilisation and protection of transcripts at elevated temperature could be predicted, 
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namely in the stabilisation of mRNAs from stress-related genes (corresponding transcripts for HSFs, 

HSPs, sHSPs, LEA proteins and dehydrins). 

3.2.4 Phenotypic analysis of hrr mutant under salt, osmotic and oxidative 

stresses 

 

The majority of abiotic stress studies in plants have been focused on single stress treatments applied 

under controlled conditions. However, field plants are subjected to simultaneous stresses, such as 

drought, high salinity, extreme temperatures and high UV-irradiance levels, which limit the plant 

growth and productivity. When combined together, such conditions may induce different gene 

expression profiles from those obtained in laboratory. Even though HRR is mainly expressed under 

HS treatment, germination assays using hrr mutant seeds were performed under different abiotic 

stresses and their combination with HS. Stratified seeds (4ºC, 2 days) of hrr mutant and wild-type 

Ler were sown onto MS agar medium supplemented with different concentrations of stress-inducible 

agents (NaCl for salt stress, mannitol for osmotic stress and paraquat for oxidative stress). Assays 

were performed with untreated or with HS-treated seeds (47ºC, 60 min). The percentage of 10-day-old 

seedlings with fully and green cotyledons (survival rate) was determined (Figure 3.18). 

The survival rates of hrr mutant and wild-type Ler seedlings were compromised in the 

presence of salt, being completely impaired at salt concentrations higher than 150 mM (Figure 

3.18A). Only a significant difference was found for wild-type Ler seeds directly sown onto a MS 

medium with a concentration of 75 mM NaCl. When a combination of heat and salt stresses was 

imposed, the survival rate of both seedling lines was even more affected than subjecting seeds only 

to salt stress. Either in combination with HS or not, the survival rate of hrr mutant seedlings was 

always more reduced than in wild-type Ler, though there were no significant differences between 

survival rates of different experimental conditions. A significant difference was detected between salt 

and salt/HS imposition in both lines for 75 mM and 100 mM NaCl. 

In case of osmotic stress treatment, the seedling survival of both lines is completely impaired 

at the highest concentrations of mannitol (7%, w/v) (Figures 3.18B). Under osmotic stress, there 

were not significant differences between survival rates of hrr mutant and wild-type Ler. However, 

seedling survival rate differences were detected between single abiotic stress and HS-combined 

abiotic stress imposition. This difference was statistically different in both line for osmotic and HS-

osmotic stress combination, at 5% mannitol. 
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Figure 3.18 Evaluation of the effect of abiotic stresses and their combination with HS treatment on hrr mutant. 
The effect of (A) salt and (B) osmotic stresses was evaluated by plating stratified seeds (4ºC, 2 days) onto MS agar 
medium supplemented with different concentrations of salt (NaCl) and mannitol, respectively. Assays were performed in 
wild-type Ler (closed symbols,  and ) or hrr mutant seeds (open symbols,  and ), without HS treatment (square 
symbols,  and ) or previously heat-stressed at 47ºC for 60 min (circle symbols,  and ). Viable seedlings, 
displaying green cotyledons, were scored 10 days after sowing. Results obtained from three replicates (40 seeds each) 
were normalised with corresponding viable seedlings in control conditions. Data correspond to means ± SEM. *, 
significant difference at P< 0.5, when compared with hrr mutant, in same conditions. ###,, significant difference at P< 0.001 
when compared with salt and salt/ HS stresses, in both lines. #, significant differences at P<0.5, when compared with 
osmotic and osmotic/heat stresses, in both lines; (two-way ANOVA, Bonferroni test). 

 

For performing these phenotypic analyses, stratified seeds were previously heat-stressed and 

then sown onto each stressful MS-agar medium or were directly sown onto the normal media. 

Therefore, during the germination and seedling growth, seeds/seedlings were continuously subjected 

to the other abiotic stress, while they were recovering from HS treatment. These experimental 

conditions could result in a different response that would be obtained if salt, osmotic or oxidative 

stress were imposed before HS treatment. In a previous study, where a transcriptome and 

metabolome analyses were performed during a combination of drought and heat, the HS treatment 

in Arabidopsis plants was imposed after drought treatment (Rizhsky et al. 2004). This difference 

between experimental designs could be reflected in the obtained results in wild-type Ler and hrr 

mutant survival rates observed for each combination of stress conditions, what could mask putative 

functions of HRR in transcriptome under salt and osmotic stresses. 

The highest impairment of hrr mutant under salt stress suggests that HRR could be involved in 

responses to salt stress conditions, under these experimental conditions. A similar situation was 

observed for grp2 mutant, whose germination was affected at 75 mM of NaCl (Kim et al 2007). 

GRP2 is a glycine-rich RNA binding protein that plays important roles in Arabidopsis seed 

germination under stress conditions. At 100 mM of NaCl, as the difference between wild-type Ler 

and hrr mutant was not significant, this could be related with a possible saturation of response ability 

to extreme salt conditions. In a previous work, Na+ concentration of 0.1M was cytotoxic, affecting 
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specific biochemical and physiological processes (Ramón 1996). With a previous HS treatment, both 

lines are greatly affected, though there was not difference between germination of wild-type Ler and 

hrr mutant. These results indicate a cumulative effect of both stresses, possibly implicating HRR in 

responses to both stresses. Indeed, by little difference of survival rates, it is possible that HRR 

function could not be sufficient to cope with such extreme conditions, such as occurs at 100 mM. A 

previous study demonstrated that wheat seedlings treated with a combination of salt (0.7%) and heat 

(40/30ºC) stresses were drastically affected in shoot elongation (Keleş and Öncel 2002). Relatively 

to imposition of osmotic stress (Figure 3.18B), the similar effects on germination of wild-type Ler and 

hrr mutant suggested that HRR is not implicated in responses to osmotic stress. Together with a HS 

treatment, the difference observed at 5% of mannitol only corresponds to HS responses, once HRR 

is involved in responses to HS and, thus not involved in responses to osmotic stress. Considering 

this, and comparing with salt results (Figure 3.18A), it is most likely that HRR could be more 

implicated in ionic component of salt stress than in osmotic component. 

Salt at higher concentration in cellular apoplast induces ionic toxicity and hyperosmolality. The 

ionic component is the first cause of ion homeostasis disruption, being sensed by SALT OVERLY 

SENSITIVE (SOS) pathway components in response to stress. This pathway emphasizes the 

significance of Ca2+ signal in reinstanting the cellular ion homeostasis, by exclusion of excess of Na+ 

ions (Mahajan and Tuteja 2005). SOS pathway compromises three elements: SOS3 (Ca2+ binding 

protein), SOS2 (serine/threonine protein kinase) and SOS1 (target of SOS3-SOS2 complex, which 

codes for a plasma membrane Na+/H+ antiporter-like protein). The perception of salt stress by a Ca2+ 

sensor in plasma membrane elicits cytoplasmic Ca2+ pertubations. These are perceived by SOS3, 

which complexes with SOS2. In downstream pathway steps, SOS2 phosphorylates and activates 

SOS1. The excess Na+ ions are expelled out of the cell and cellular ion homeostasis is restored. In 

this case, as response to ion deregulation corresponds to early response signalised by Ca2+ influx, 

HRR could be activated at same time, to regulate or protect specific sets of transcripts, such occurs 

during HS treatment (Figure 3.16).  

Germination assays of wild-type Ler and hrr mutant seeds during oxidative stress conditions 

could evaluate the role of HRR in leading with high levels of ROS. In this assay, the photosynthetic 

inhibitor paraquat was included in the MS medium used for seed sowing. This compound interferes 

with the photosysthem I functioning, generating a high-energy ROS, such as superoxide radical (O2-.), 

and then is converted to hydrogen peroxide (H2O2). No significant differences were observed 

between wild-type Ler and hrr mutant (results not shown). Hence, the results suggest that HRR is 

not implicated in responses to oxidative stress, in both experimental conditions. 
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3.2.5 Hormonal germination sensitivity of hrr mutant seeds 

 

The phytohormone ABA plays important physiological and molecular roles in plant growth and 

development (embryo and seed development, seed desiccation tolerance, dormancy, seed 

germination, reproduction), as well as in responses to abiotic (drought, cold and salinity) and biotic 

stresses (Finkelstein et al. 2002; Cutler et al. 2010). New insights for ABA signalling mechanisms 

that allow the regulation of many genes have been recently described. The gene expression 

induction of direct and indirectly ABA-regulated genes contributes for the responses under 

development signals and environmental cues (Cutler et al. 2010). Particularly, ABA acts 

antagonistically with gibberellins (GA) during seed germination process, where GA positively 

regulates the germination and ABA inhibits it (Razem et al. 2006). The tight and coordinated balance 

between molecular and physiological levels of both phytohormones is crucial for development 

transition that happens from stratified to germinated seed. 

As discussed in section 3.1, HRR is predicted to be expressed during seed development 

process, (namely during early embryogenesis and then in later stages of seed maturation) and 

during the endosperm development (Figure 3.9). HRR was also suggested to be implicated in 

thermotolerance responses of HS-stressed seeds during germination (Figure 3.17). For assessing 

the ABA and GA susceptibility of hrr and HRR over-expression mutants, a germination assay was 

performed in the presence of different exogenous ABA and GA concentrations. These assays will 

allow to understand the HRR involvement in ABA and GA signalling transduction pathways, during 

seed development and germination. 

 

3.2.5.1 Germination assays in the presence of ABA 

 

Stratified wild-type Ler and hrr mutant seeds (4ºC, 2 days) were directly sown onto MS agar medium 

supplemented with different concentrations of ABA. Germination, evaluated by radicle emergence, 

was followed during 10 days (Figure 3.19A-D). The germination of hrr mutant seeds was always 

more pronounced than wild-type Ler seeds. However, the germination rate differences were more 

evident between the fourth and sixth day of seed germination. In the high concentration of ABA 

(2 µM), wild-type Ler germination rate was about half of that verified for hrr mutant. After the sixth 

day, the germination rate differences between hrr mutant and wild-type Ler were less emphasised, 

reaching a steady-state. Considering the germination rate values obtained by the fifth day, under 

increasing ABA concentrations, the germination impairment of wild-type Ler seeds was evident when 

compared to hrr mutant (Figure 3.19E). The higher germination rate difference observed between 
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wild-type Ler and hrr mutant was observed at fifht day of germination for the highest ABA 

concentrations (1.5 and 2.0 µM). 

 

 

 

 

Figure 3.19 Evaluation of ABA effects on hrr mutant seed germination. Stratified hrr mutant and wild-type Ler seeds 
(4ºC, 2 days) were directly sown onto MS agar medium supplemented with (A) 0.5 µM ABA, (B) 1 µM ABA, (C) 1.5 µM 
ABA or (D) 2 µM ABA. Seed germination was evaluated by the radicle emergence scoring during ten days. (E) Effect of 
different concentration of ABA on wild-type and hrr mutant seeds, on the fifth day upon sowing. The results were 
obtained from four replicates (30 seeds each) and were normalised with corresponding germinated seeds in control 
conditions (without ABA). Data correspond to means ± SEM and were evaluated through t-test analysis, under a 
significance level of P<0.05. 

 

As ABA is required during the embryogenesis process, namely during seed maturation and 

dormancy induction, the exogenous application of ABA is known to extend the seed dormancy (Jiang 

et al. 2012). The enhanced germination of hrr mutant in relation to wild-type Ler seeds, in the 

A B 

C D 
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presence of ABA, suggests that HRR is a positive regulator on ABA signalling that inhibits seed 

germination. The genetic data support the idea that, during seed germination, HRR could be involved 

in ABA signalling pathways. Meanwhile, the application of higher ABA concentrations would give a 

better understanding about how much the HRR could be involved in regulation of ABA signalling.   

Several mutants display ABA-insensitive phenotypes similar to hrr mutant. The abi4, abi5 and, 

in a less extent, abi3 mutants were described to be insensitive to ABA during seed germination 

(Finkelstein 1994; Söderman et al. 2000; Brocard et al. 2002). The activity of these transcription 

factors is ABA-dependent, acting as principal regulators in the maturation phase of embryo 

development, thought they are also expressed in some vegetative tissues (Söderman et al. 2000). 

Also, the ahk1 mutant demonstrated a high germination rate in the presence of ABA, indicating that 

ahk1 mutants are also ABA insensitive. The AHK1/ATHK1 gene that codes for a histidine kinase 

appears to act as a positive regulator of ABA signal transduction, being involved in the 

phosphorylation of many components of ABA signalling pathway (Tran et al. 2007). Indeed, the 

AHK1/ATHK1 kinase has been proposed to be a ABA signalling component that can sense and 

transduce a signal of external osmolarity to downstream genes (Tran et al. 2007). More recently, the 

triple mutant srk2d/e/I was described to completely block the ABA signalling in germination and post-

germination stages, presenting a complete growth development insensitive to ABA (Nakashima et al. 

2009). These SNF1-related protein kinases has been proposed as being the central positive 

regulators in ABA signalling during germination, being essential for the control of seed development 

and dormancy (Nakashima et al. 2009).  

The role of HRR as a possible positive regulator on ABA signalling, in extending of seed 

maturation and dormancy mechanisms is corroborated by the results obtained with HRR over-

expression lines (Figure 3.20). When seeds of HRR over-expression lines were directly germinated 

onto MS-agar medium supplemented with exogenous ABA (2 µM), the sensibility responses were 

different from those obtained with hrr mutant. By the fourth day of germination, all HRR over-

expression line seeds germinate better than hrr mutant and wild-type Ler seeds, but in the following 

days the germination rates become more reduced than in hrr mutant (Figures 3.20A-B). By the tenth 

day of germination, while HRR over-expression lines in Ler background (L2 and L6) show a similar 

germination rate compared to wild-type Ler, HRR over-expression lines in hrr background (JP5, JP6 

and JP9) present a reduced germination rate when compared to wild-type Ler. Indeed, L2 and L6 

over-expression lines appeared to show similar levels of ABA sensitivity than hrr mutant seeds 

(Figure 3.20B). This result reinforces the premise that these HRR over-expression L2 and L6 lines 

are silenced by transgenic HRR siRNA molecules and develop a phenotype similar to hrr mutant 

(section 3.1). 
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Figure 3.20 Evaluation of ABA effects on (A) JP5, JP6 and JP9 and (B) L2 and L6 HRR over-expression lines. 
Seeds of wild-type Ler, hrr mutant, HRR over-expression line in hrr background (JP5, JP6, JP9) and in Ler background 
(L2, L6) were stratified (4ºC, 2 days) and directly sown onto MS medium containing 2 µM ABA. The germinated rates 
correspond to radicle emergence scoring taken during ten days. Germinated seeds were normalised with respective 
germinated seeds in control conditions and their rates obtained from four replicates, 30 seeds each. Data correspond to 
means ± SEM and were evaluated through one-way ANOVA (Tukey test), under a significance level of 0.05. 

 

The hypersensitivity to ABA displayed by HRR over-expression lines (in hrr background) 

corroborates the hypothesis of ABA insensitivity promoted by HRR. This result is similar to defective 

mutant in abh1, which shows ABA hypersensitivity and reduced wilting during drought (Hugouvieux 

et al. 2001). ABH1 (abscisic acid hypersensitive 1) codes for an mRNA cap binding protein 

(homologous to human CBP80) and was suggested to be a negative regulator during the early ABA 

signal transduction events, playing key roles in mRNA processing of certain ABA-dependent 

expressed transcripts. Similarly, The sad1 (supersensitive to ABA and drought 1) mutant proved to 

be ABA hypersensitive, displaying also germination and root growth impairments under drought 

conditions (Xiong et al. 2001; Kucera et al. 2005). In addition, sad1 mutant is also affected in the 

expression of some stress-responsive genes, particularly ABA biosynthesis genes, like the AAO3 

(Abscisic aldehyde oxidase) (Xiong et al. 2001; Kucera et al. 2005). As SAD1 codes for a Sm-like 

SnRNP protein, which could be involved in mRNA splicing, exporting and degradation, SAD1 could 

play critical roles in regulation of positive feedback loops during the early steps of ABA signalling in 

stressful conditions (Xiong et al. 2001). Also, the hly1 (hyponastic leaves) mutant exhibits 

hypersensitivity to ABA. HYL1, corresponding to dsRNA-binding protein, demonstrated to be ABA-

regulated, mediating an inhibitory effect at transcriptional or post-transcriptional levels of ABA-related 

genes during germination process (Lu and Fedoroff 2000). 

Altogether, the results suggest that HRR confers insensitivity to ABA. Not only the hrr mutant 

germinate better than wild-type Ler seeds (Figure 3.19), but also the over-expression of HRR confers 

some degree of hypersensitivity to ABA (Figure 3.20A). HRR could be positively involved in ABA 
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metabolism and signalling, possibly acting as a co-regulator and promoting the positive feedback 

loop during seed maturation and germination in the presence of ABA. 

 

3.2.5.2 Germination assays in the presence of GA 

 

As ABA levels are strictly regulated by raising levels of GA during the germination process. The 

possible role of HRR in GA signalling pathways was evaluated. Stratified seeds (4ºC, 2 days) from 

wild-type Ler and hrr mutant were directly sown onto MS agar medium containing different 

concentration of GA. The hrr sensibility to the presence of this phytohormone is reversed in relation 

to ABA treatment. The hrr mutant germination is more sensitive to GA hormone than wild-type, 

though the hrr germination rate eventually attains similar values to wild-type Ler (Figure 3.21). This 

effect is more pronounced at GA lower concentrations. Indeed, only at lowest GA concentration (25 µM), 

occurred a significant difference of germination rates was detected. Interestingly, hereafter, with raising 

GA concentrations, hrr hypersensitivity declines and the mutant reaches similar germination rates to 

those observed in wild-type Ler, at highest concentration tested (100 µM).  

 

 

 

Figure 3.21 Evaluation of GA effects on hrr mutant seed germination. Stratified wild-type Ler and hrr mutant seeds 
(4ºC, 2 days) were directly sown onto MS agar medium supplemented with (A) 25 µM GA, (B) 50 µM GA, (C) 75 µM 
GA, (D) 100 µM GA. Seed germination was evaluated by the radicle emergence scoring during ten days. The results 
were obtained from four replicates (30 seeds each) and were normalised with corresponding germinated seeds in control 
conditions (without GA). Data correspond to means ± SEM and were evaluated through t-test analysis, under a 
significance level of P<0.05. 
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The imposition of increasing GA concentrations mimics the raising levels of GA during seed 

germination process. The application of exogenous GA lowers the endogenous ABA content by 

enhancing the ABA catabolism (Okamoto et al. 2006). In response to lowest levels of ABA, it is 

possible a decrease in HRR protein accumulation. Considering this, the application of high 

exogenous GA concentrations attenuates the GA hypersensitivity observed for hrr mutant seeds, 

which is similar to wild-type Ler. The lowest supplied exogenous GA concentration (25 µM) could not 

be enough to induce the ABA catabolism. At this point it would be important to consider the 

endogenous GA/ABA ratio, instead of considering each absolute phytohormone amount. In low 

exogenous GA concentration, the GA/ABA ratio could not be enough to promote the hrr mutant seed 

germination. With increasing concentrations of GA, the endogenous GA/ABA ratio leads to an 

improvement of hrr mutant germination rate compared to wild-type Ler attaining similar germination 

levels at the highest GA concentration. Hence, the reduction of hrr mutant hypersensibility to 

increasing concentration of GA suggests that HRR could be down-regulated during seed germination 

process. At the highest concentrations of GA, the germination rates of both lines are slowly impaired, 

mostly due to a negative feedback mechanism involved in regulation of GA levels (Figure 3.21C and 

D). Previous work demonstrated that GA biosynthesis genes (GA3ox and GA20ox) are down-

regulated by exogenous GA treatment and, in contrast, GA catabolism genes (GA2ox1 and GA2ox2) 

are up-regulated (Sun 2008). This gene expression coordenation shows that GA homeostasis is 

controlled by a negative feedback mechanism. The de novo GA biosynthesis could have been 

compromised under the highest GA conditions, thus delaying the germination of both wild-type Ler 

and hrr mutant seeds. Indeed, it is possible corroborate these results with those for ABA germination 

assays (Figure 3.19). Under low levels of exogenous ABA, the GA/ABA ratio could be sufficient to 

promote the germination of both lines, not being detected the hrr mutant sensibility. Hence, it is 

perceptible that hrr germination ability is similar to wild-type Ler, in both hormonal conditions (Figure 

3.21D and 3.19A). Again, these results reinforce the ideia that HRR is a positive regulation of ABA 

signalling.  

 

Taken together, these results suggest that HRR is a RNA-binding protein strongly involved in 

plant thermotolerance responses, according with predicted bioinformatic data (section 3.1). However, 

contrary to bioinformatic data, under these experimental conditions, HRR appear to be involved in 

responses to salt stress imposition, under the ionic impairment condition imposed by high apoplastic 

salinity. HRR is not involved in responses to osmotic and oxidative stress conditions. Once the 

transition phase of dormancy for seed germination is strictly regulated by hormonal ratio levels of 

ABA and GA, HRR seems to function as a positive regulator in ABA signalling pathway, whereas 
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appears to exert negative effects in GA signalling. Once ABA is considered a phytohormone of 

stress and HRR is exclusively expressed under stressful conditions (HS), it is agreed the positive 

role of HRR in ABA signalling.  

Being a putative stress-responsive RNA-binding protein, HRR might be important for the post-

transcriptional regulation during seed maturation and early desiccation stages, particularly 

characterised by the water deficit conditions and accumulation of organic compounds (proteins, 

nucleic acids, lipids, sugars). This progressive water content reduction and concomitant increasing of 

reserve accumulation leads to low oxygen content (anoxia) in seed. Together, these conditions 

compromise several post-transcriptional mechanisms. So, the processing, stability, transport and 

proper storage of mRNAs would be of major importance for the establishment of early steps of seed 

germination, either under HS conditions or other combined stress treatments. Therefore, HRR could 

be a relevant RNA-binding protein involved in many of mRNA metabolism steps (pre-mRNA 

processing, mRNA transport and stability, translation initiation process) that could have place during 

the developmental transition from seed to seedling. 

During the early steps of seed germination, where the temperature and light are also 

fundamental, de novo mRNA synthesis is imposed. RNA-binding proteins, possibly including HRR, 

would be important for regulation of the levels of these newly transcripts, thus controlling the 

germination onset. HRR could be up-regulated in the early phase of imbibition, where a transient rise 

in ABA content occurs in the embryo (Sun 2008). This could be sufficient for the induction and 

regulation of transcript levels of ABA signalling factors, such as ABI factors, which play crucial roles 

in transition phases during germination. As ABA content decrease, the embryo growth is promoted 

by de novo GA biosynthesis, due to the up-regulation of GA biosynthesis and signalling genes. 
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3.2.6 Complementary data 

 

 

Figure C3.5 Heat sensibility of wild-type Ler and hrr mutant after HS treatments. After stratification (4ºC, 2 days) 
and before sowing onto MS medium, wild-type Ler and hrr mutant seeds were (A) heat-stressed at 50ºC, for periods 
ranging from 0 (control) to 300 min and (B) heat-stressed for 60 min, at different temperatures, ranging from 23ºC 
(control) to 56ºC. Photographs were taken 10 days after heat treatment.  
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Figure C3.6 Complementation of hrr mutation and effect of over-expression of HRR. After stratification (4ºC, 2 
days), seeds from wild-type Ler, hrr mutant and different p35S::HRR-GFP transgenic lines were heat-stressed (50ºC, 60 
min) and directly sown onto MS medium. JP5, JP6 and JP9 refer to transgenic lines in hrr background. L2 and L6 refer to 
transgenic lines in Ler background. Photographs were taken 10 days after heat treatment. 
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3.3 HRR gene expression and their putative roles in regulation of HS- 

and plant developmental-related transcriptomes 

 

The analysis of accessed ATH1 microarray data revealed that HRR is strongly induced just after HS 

imposition (BAR- The Bio-Array Resource for Plant Biology, http://142.150.214.117/welcome.htm). The 

maximal expression levels were detected in roots, one hour after HS treatment, being reduced to basal 

levels during the recovery period (Section 3.1). In attempting to confirm these in silico data, HRR 

expression analysis was performed, both in seedlings (16-days-old) and imbibed seeds. In addition to its 

higher expression under HS conditions, the bioinformatic data predicted that HRR is also expressed 

during later stages of seed maturation and during seed germination (Section 3.1.3). Considering these 

facts, HRR expression profile was evaluated during different stages of seed development and in seed 

germination. In perspective of putative HRR functions under HS conditions and those plant development 

stages, becomes important to understand how much HRR could be involved in regulation of expression 

levels corresponding to specific set of genes. Hence, the hrr mutant and HRR over-expression lines were 

used to determine respective expression profiles. In response to a variety of stresses, many plant 

transcripts undergo to alternative splicing mechanisms. Based in results obtained for HRR expression 

analysis, a mRNA decay analysis of HRR alternative transcripts was performed. The HRR funcional 

prediction was complemented with histochemical analysis, to access in which organs/tissues the HRR 

expression occurs, through the HRR promoter activity. 

Collectively, the presented results focus for attribution of putative HRR functions in regulation of the 

HS-induced transcriptome, as well as in the seed development and germination transcriptomes.  

 

3.3.1 Heat-dependent HRR expression analysis, in seedlings  

 

To verify if HRR expression is dependent of HS, a semi-quantitative RT-PCR was performed to 

follow the accumulation of HRR transcripts during HS treatment and subsequent recovery, at 38ºC, 

in 16-days-old wild-type (Ler) seedlings (Figure 3.22A). The HRR transcript levels were induced from 

one to three hours upon HS treatment and returned to basal levels after three hours at recovery 

temperature (23ºC). Two alternative-spliced HRR transcripts were observed, which will be hereafter 

designated as HRR.1 (510 bp) and HRR.2 (583 bp). Both transcripts were detected just after 30 min 

of HS and reached the highest levels after 60 min of HS imposition, where the longest transcript 

 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

94 
 

 

 

Figure 3.22 Expression analysis of HRR during heat stress imposition and recovery. (A) Transcript levels were 
determined by semi-quantitative RT-PCR from mRNA extracted from HS-treated 16-days-old seedlings (wild-type Ler 
and hrr mutant). Seedlings were heat-stressed (HS, 38ºC) for periods ranging from 15 to 180 minutes, or heat-stressed 
for 180 minutes and then allowed to recover (23ºC) for different periods up to 180 minutes. (B) Differential expression of 
HRR gene in wild-type Ler roots and shoots was determined using mRNA extracted from heat-stressed (38ºC for 60 min) 
16-days-old seedlings. As internal controls, the transcript levels of Actin2 (Act2) were analysed. Numbers on the right 
correspond to the expected sizes of PCR products. The pair of primers and PCR conditions are described in Annexes III 
and IV, respectively. 

 

(HRR.2) displayed higher expression than the other (HRR.1). In contrast, during recovery, HRR.2 

transcript levels declined more rapidly than HRR.1 transcripts. Indeed, after 30 min of recovery, only a 

reduced level of HRR.2 is visible, while HRR.1 expression still endures up to 120 min. When performing 

RT-PCR analysis using hrr mutant seedlings in the same HS conditions, no expression of HRR gene 

was detected, confirming hrr as a knockout mutant of HRR (Figure 3.22A). 

As the microarray data analysis indicated that HRR expression was maximal in roots (Figure 3.1), 

in order to examine in which seedling organs the HRR expression is highest, a similar expression 

analysis was performed in leaves and roots of heat-treated (38ºC, 60 min) seedlings. As expected, 

though the same overall expression pattern of alternative-spliced transcripts was observed, both HRR 

transcripts were mainly expressed in roots, being quite undetectable in seedling leaves (Figure 3.22B). 

The results indicate that under HS an alternative splicing (AS) process produces two different 

alternative-spliced mRNAs: HRR.1 and HRR.2. HRR.1 has been annotated as the unique HRR 

transcript in general databases (TAIR, Ensembl), being the HRR.2 described for the first time in this 

work. The alternative splicing mechanism, an intron retention process, produces a longer transcript 

(HRR.2, 583 bp) that retains the first and smaller intron (Figure 3.23). As this transcript
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Figure 3.23 HRR gene structure and deduced amino acid sequence of HRR proteins. Introns are represented in 
lower case and the one that is retained in the alternative splicing mechanism, resulting in the HRR.2 transcript, is 
displayed in italics. The predicted amino acid sequence of HRR.1 and HRR.2 isoforms are depicted above the nucleotide 
sequence. Both HRR proteins present a RRM domain (shadowed in light grey with the corresponding RNP consensus 
sequences, RNP2 and RNP1, in dark grey), but only HRR.1 protein contains the PABP-1234 domain (boxed). All protein 
domains were predicted by NCBI. Numbers on the left refer to nucleotides, and numbers above amino acid sequences 
refer to amino acids (in italic for HRR.2). Black arrows and bold letters represent the primers used in RT-PCR for 
expression analysis. 
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harbours an in PTC, HRR.2 is predicted to be 84 amino acid residues shorter than HRR.1. Both HRR 

proteins contain a RRM domain, described as a RNA-recognition motif, which contains the two highly 

conserved consensus sequences: the hexamer RNP2 and octamer RNP1 (Figure 3.23, shadowed in 

dark grey). As the alternative splicing site interrupts the coding region of RNP1, a slight difference in 

the amino acid sequence occurs in both isoforms (QGYGFVSN in HRR.2; QGYGFVTF in HRR.1) 

(Figure 3.23). 

The expression analysis corroborates the microarray data, since HRR up-regulation was 

observed after one to three hours of HS treatment, being mostly detected in roots (Figure 3.22). The 

differential HRR expression in roots and shoots could be explained by the difference in temperature 

sensitivity and distinct function played by tissues that lead to different protein synthesis pattern 

(Huang and Xu 2008). 

Up to now, the possibility of AS for HRR transcripts has never been predicted. The AS 

mechanism by intron retention, is considered to be the main AS event in plants, comprising about 

41% of AS in Arabidopsis, contrasting with human genes, where only 9% follow by an intron 

retention process (Barbazuk et al. 2008). When the AS occurs by an intron retention process, 

alternatively retained introns can appear as part of coding sequences (CDS) or bridging the CDS and 

UTRs, or even be located at the 5’ or 3’ UTR (Ner-Gaon et al. 2004; Louzada 2007). Many 

transcripts containing a retained intron have been related to stress or other stimuli input, exerting 

many effects on their own stability and nuclear transport or even in other transcripts (Ner-Gaon et al. 

2004). Thus, the imposition of an environmental cue, such as HS treatment, would promote not only 

modifications in transcription, but also in splicing processes or protein modifications. The production 

of HRR.2 alternative transcript could mainly result from effects in the spliceosome composition and 

activity under heat stress conditions. Alterations in the spliceosome machinery (composition, 

concentration, activity) could change the splicing pattern of transcripts. Consequently, the subsquent 

transcription and post-transcription events could be modified, altering the expression and splicing of 

downstream expressed genes needed for metabolic and development processes (Simpson et al. 2008). 

The occurrence of such spliceosome modifications, will change the recognition of 5’ and 3’ splice sites 

(ss) and the splicing of HRR introns, resulting in the production of two different alternative transcripts. 

The possible occurrence of small changes in intron splicing signals could influence the binding and 

activity of the spliceossome complex. Plant intron 5’ and 3’ ss consensus sequences are very similar 

to those of vertebrate introns, but they exhibit a great variation around the conserved :GU and AG: 

dinucleotides at 5’ and 3’ ss, respectively (Brown 1996; Brown and Simpson 1998). Sequencing 

results for HRR.2 sequence revealed that those consensus sequences in alternative splice sites are 
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not altered, occurring only variations in neighbour nucleotides. Perhaps these small variations would 

determine the recognition and activity strengths of spliceosome complex.  

The production of HRR.2 alternative transcript, under HS conditions, could exert important 

effects in transcript stability and translation initiation processes. If the corresponding mRNP complex 

passes through the checkpoint at nuclear transport level (described as ‘pionner round’), in the 

cytoplasmic side of nuclear membrane, the presence of an in-frame PTC in HRR.2 could be a further 

signal for translation blocking. Such mechanism could influence the transcription of HRR gene, 

probably being responsible for the own down-regulation. Indeed, the presence of misspliced introns 

in certain transcripts functions as a signal for their own down-regulation. Previous works have 

demonstrated that intron-retained transcripts are mostly associated with polyribosomes, indicating 

that these transcripts might play regulatory functions in RNA metabolism (Ner-Gaon et al. 2004). In 

mammalian, if an exon junction complex (EJC, which is depositated 20-25 nt upstream of each exon-

exon junction) is present more than 50-55 nt downstream from a PTC, the molecular mechanism of 

NMD can come into play (Ner-Gaon et al. 2004; Isken and Maquat 2007). Analysing the alignment of 

both HRR sequences, the PTC is about 150 nts upstream of last exon-exon junction (Figure 3.23), 

indicating that HRR.2 alternative transcript could be a potential target for NMD. Further experiences 

to analyse the HRR.2 mRNA decay are important to verify if HRR.2 transcript is removed by NMD-

associated mechanisms.  

 

3.3.2 Heat-dependent HRR expression analysis, during seed imbibition 

 

Once described the thermotolerance phenotype for HRR, through the basal termotolerance 

germination assays (Figure 3.16), expression analyses by semi-quantitative RT-PCR were 

performed in imbibed seeds of wild-type Ler, hrr mutant and the HRR over-expression independent 

lines JP9 and L2. After the stratification period, imbibed seeds (control conditions, 23ºC) of each line 

were then heat-stressed at 50ºC, during one hour. Under control conditions, HRR displayed 

expression in wild-type Ler, but none transcript was detected in hrr mutant seeds. When submitted to 

HS treatment, HRR was up-regulated in wild-type Ler and, as previously demonstrated (Figure 3.22), 

the HS-treated hrr mutant seeds did not express HRR transcripts (Figure 3.24). Under these HS 

conditions, HRR.2 transcripts were not expressed. In control conditions, JP9 seeds expressed higher 

HRR transcripts than L2 wild-type Ler seeds (Figure 3.24). When the HRR over-expression seed 

lines were subjected to HS treatment, the HRR transcripts were differently expressed. In case of JP9 

seeds, it was observed that occurred a slight reduction of HRR.1 transcript levels, whereas in L2 
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seeds displayed an up-regulation of HRR.1 transcripts. Indeed, both HS-treated JP9 and L2 seeds 

expressed similar HRR.1 transcript levels, when compared with wild-type Ler. 

 

 

 

Figure 3.24 Expression analysis of HRR during heat stress imposition, in imbibed seeds, subjected or not to HS. 
Transcript levels were evaluated by semi-quantitative RT-PCR from mRNA extracted from imbibed wild-type Ler, hrr and 
HRR over-expression (JP9 and L2) mutant seeds, which were subjected to HS treatment (50ºC for 60 min) or were 
maintained at standard conditions (23ºC). As internal control, the transcript levels of Actin2 (Act2) were analysed. 
Numbers on the right correspond to the expected sizes of PCR products. The pair primers and PCR conditions are 
depicted in Annexes III and IV, respectively. 

 

Under control conditions, the JP9 lines showed the highest HRR.1 transcript levels, in 

comparison with other lines. Meanwhile, HRR.1 transcript levels in L2 seeds were similar to those in 

wild-type Ler. These results indicate that ectopic expression of HRR.1 is greatly influenced by seed 

genetic background. Thus, as in imbibed wild-type seeds occur HRR expression, the introduction 

and over-expression of HRR transgene could lead to induction of silencing mechanisms. As hrr 

mutant is a knockout line, the HRR.1 over-expression in this line (JP9 seeds) leads to accumulation 

of HRR transcripts. 

In this expression analysis, HRR.2 transcripts were not expressed in HS-treated wild-type Ler 

seeds, such as occurred in wild-type Ler seedlings (Figure 3.22). This result could be explained by 

differences of developmental stage and experimental conditions used. Under HS conditions, HRR.1 

transcripts analysed in JP9 seeds appeared to be down-regulated, relatively to control conditons. 

Indeed, in same conditions, HRR transcript levels are similar in wild-type Ler and HRR over-

expression JP9 seeds. The reduction of HRR transcript levels in JP9 seeds could be due to 

accumulation of cytoplasmic mRNP aggregates, as result of activation of defense mechanisms 

against stressful conditions.  

 

3.3.3 HRR expression during seed development and germination 

 

The in silico gene expression analysis predicted the HRR up-regulation during seed development 

and germination processes (Section 3.1.3). Moreover, the basal thermotolerance phenotype 

observed during seed germination (Section 3.2.3) could result from deregulation of seed 
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development process in hrr mutant. The seed germination process is characterised by the transition 

of seed from dormant to non-dormant state, under optimal environmental conditions (light, 

temperature, nutrients). Although the term ‘germination’ has a surprisingly large number of 

meanings, the strict sense (sensu stricto) meaning corresponds to the period from the imbibition of 

dry seeds until the embryo (usually the radicle) first emerges from any tissues enclosing it (Nonogaki 

et al. 2007). In this work, germination was considered as the process occurring just after sowing in 

MS medium until radicle emergence (2d). 

To evaluate the expression of HRR during seed maturation and subsequent germination, 

siliques and germinated seeds were harvested during different development stages. The Arabidopsis 

organ harvesting was carried out considering the correlation between embryo development phases 

and siliques growth (Figure 3.25). The early stages of embryogenesis occur in silique stages 1 and 

2; stages 3 through 5 match the seed maturation stages; and the late maturation of embryogenesis 

corresponds to pre-desiccated siliques.  

 

 

 

Figure 3.25 Seed development and maturation stages used for semi-quantitative RT-PCR analysis. These stages 
were chosen according with Arabidopsis eFP browser data (development map, BAR) for HRR expression. (1) opened 
flower, (2) emerged siliques, (3) early siliques, (4-5) developing siliques, (6) mature silique (desiccated silique). Scale: 1 
cm.  

 

In the wild-type Ler, HRR transcript levels were only detected in later stage of seed 

maturation, corresponding to early phase of desiccation tolerance acquisition (Figure 3.26A). 
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Twenty-four hours after sowing of imbibed seeds, weak HRR expression levels were observed, not 

being detected any transcript levels at the second day of germination (Figure 3.26B). As expected, 

any HRR expression was not found for hrr mutant siliques/seeds. 

 

 

 

Figure 3.26 Expression analysis of HRR during seed development and germination. Transcript levels were 
evaluated by semi-quantitative RT-PCR from mRNA extracted (A) from flower/silique tissues, according to defined seed 
development and maturation stages (Figure 3.25) or (B) from germinated seeds with one or two days upon sowing in 
MS-agar medium. For comparison experiments were performed in wild-type Ler and hrr mutant. As internal control, the 
transcript levels of Actin2 (Act2) were analysed. Numbers on the right correspond to the expected sizes of PCR products. 
The pair of primers and PCR conditions are described in Annexes III and IV, respectively. 

 
Although HRR expression was predicted during early stages of embryogenesis (embryo 

globular phase), the samples corresponding to stages 1 and 2 might not have included this phase 

and thus detectable HRR expression levels could not have been observed. However, hypothesis of 

dilution of HRR expression signal should not be discarded, due to the specific expression of HRR in 

embryo tissues (globular embryo and peripheral endosperm tissues, Figure 3.9B). Since HRR is only 

expressed in later stages of seed maturation, these results corroborate the in silico data (Figure 

3.9A).  

During germination process, HRR expression levels were only detected at first day of 

germination, almost at basal levels. This result indicates that increasing levels of GA, normally 

verified during germination, could lead to HRR down-regulation. Thus, this result corroborates with 

negative effect of HRR in GA signalling, during germination process (Section 3.2.5.2). 

Simultaneously, the increasing of ABA catabolism could be a physiologic order for reduction of HRR 

activity, once it has been indicated as a positive regulator of ABA metabolism and signalling (Section 

3.2.5.1). 
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Globally, the results demonstrate that HRR is highly expressed during HS treatment, thus 

corroborating with previous in silico data (Section 3.1). However, HRR expression profile under these 

stressful conditions depends on plant development stage. In seedlings, the HRR expression under 

HS resulted in production of two alternatively-spliced transcripts: the canonical HRR.1 and the 

HRR.2 alternative transcript (Figure 3.22). The HRR.2 transcript harbours the first intron of gene, 

resulting of the intron retention mechanisms. On the other side, in imbibed seeds, only the HRR.1 

transcript was expressed. 

During seed development and germination, the HRR expression was detected in later stages 

of seed maturation (Figure 3.26A), imbibed seeds (Figure 3.24) and germinated seeds (first day, 

Figure 3.26B). These results suggest that HRR could be recruited during early stages of desiccation 

process, being possibly involved in mRNA storage. The stability of stored mRNAs during the seed 

desiccation process is fundamental, once the integrity and correct folding of mRNA molecules should 

be tightly regulated for a proper induction of further seed germination process. HRR could be similarly 

important for stability of transcripts during transition phase, from dormant seed to germination. 

 

3.3.4 Expression analysis of specific genes in hrr mutant and HRR over-

expression lines 

 

The transition phases in different development stages and responses to the multiplicity of stresses 

imply the up- and down-regulation of specific sets of genes. The HRR up-regulation during HS 

treatment and during seed maturation and germination leads to investigate if HRR is involved in 

regulation of specific sets of transcripts. The transcript levels analysed correspond to HS-induced 

genes, seed-specific TFs, stress-related proteins and ABA/GA metabolism components. The results 

obtained could further predict HRR functions in consecutive changes of transcriptomes, both under 

HS and during seed development and germination. 

 

3.3.4.1 HS-related genes 

 

The HS responses are mainly built by the expression of multiple transcription factors (HSFs) 

and, in turn, HSPs. Together, these HS-responsive components play key roles in plant 

thermotolerance. Once HRR is up-regulated under HS conditions, becomes crucial to understand if 

HRR could be involved in regulation of the HSF and HSP transcripts. To study the relevance of 

predicted HRR proteins in gene expression regulation of HSFs and HSPs, the transcript levels of 
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HSFA2, HSP101, HSP18.1, HSA32 and HSP25.3 were evaluated by semi-quantitative RT-PCR 

during heat treatment and following recovery (Figure 3.27). For comparison, this analysis was 

performed using wild-type Ler and hrr seedlings (16-days-old). In both lines, all the assayed genes 

transcripts were only expressed upon HS treatment, though HSA32 presented slight expression 

levels in control conditions. The highest HSP18.1 and HSA32 transcript levels were achieved during 

the recovery period. When compared to wild-type Ler, the hrr mutant exhibited reduced levels of 

HSFA2, HSP101 and HSP18.1 transcripts. This result was more evident during recovery period for 

the first two genes. In contrast to all other HSP genes, HSP25.3 and HSP32 transcript levels were 

increased in hrr mutant, not only during the HS imposition but also during the recovery period. 

HSFA2 has been described as a heat-inducible trans-activator that promotes the maintenance 

of HSP gene expression and extends the duration of acquired thermotolerance in Arabidopsis 

(Schramm et al. 2006; Charng et al. 2007). During the fast induction of HSFA2 gene, the resulting 

transcripts must be maintained in a stable state, due to their importance for the induction of other 

downstream HS-responsive genes, thus promoting the thermotolerance extension. During recovery 

period, the lower HSFA2 transcript levels in hrr mutant, comparing to wild-type Ler, could explain the 

low induction of HSP genes, namely HSP101 and HSP18.1, which have been suggested as strong 

targets of HSFA2 activity under HS treatment (Schramm et al. 2006; Charng et al. 2007). The hsfA2 

mutant transcriptome profile performed in heat-stressed seedlings (44ºC, 45 min) revealed that 

HSP18.1(-Cl) and HSP25.3(-P) transcript levels (in this work referred respectively as HSP18.1 and 

HSP25.3) were the most negatively affected (Charng et al. 2007). Indeed, HSP101 and HSP18.1 

transcripts were down-regulated in hrr mutant, during HS imposition and during recovery period.  

HSP101 is largely known as molecular chaperone belonging to the AAA+ ATPases class 

family, involved in development of thermotolerance in plants. The expression pattern of HSP101 is 

similar to LEA proteins and sHSP genes, during the late seed maturation and/or early germination 

(Xiong et al. 2001). Moreover, HSP101 protein seems to be crucial in basal thermotolerance during 

germination, since it was predicted to assist the resolubilisation of protein aggregates during HS 

treatment (Queitsch et al. 2000). In Pisum sativum, the cytoplasmic and small HSP18.1 was 

indicated as being involved in the refold of damaged proteins, in co-operation with other HSPs and 

sHSPs. Low levels of these proteins during early recovery period could be insufficient to promote the 

refolding of damaged proteins and could target the proteins irreversibly damaged to the proteosome-

dependent pathway. Thereby, the importance of HRR function under HS treatment, and mainly in 

recovery time, might be essential for regulation of key thermotolerance-related transcripts, as are 

HSFA2 and, subsequently, HSP101 and HSP18.1. 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

103 
 

 

F
ig

u
re

 3
.2

7 
E

xp
re

ss
io

n
 a

n
al

ys
is

 o
f 

H
S

-s
p

ec
if

ic
 g

en
es

 d
u

ri
n

g
 h

ea
t 

st
re

ss
 im

p
o

si
ti

o
n

 a
n

d
 r

ec
o

ve
ry

. T
ra

ns
cr

ip
ts

 le
ve

ls
 w

er
e 

de
te

rm
in

ed
 b

y 
se

m
i-q

ua
nt

ita
tiv

e 
R

T
-P

C
R

 fr
om

 m
R

N
A

 
ex

tr
ac

te
d 

fr
om

 h
ea

t-
tr

ea
te

d 
16

 d
ay

-o
ld

 s
ee

dl
in

gs
 (

w
ild

-t
yp

e 
Le

r 
an

d 
hr

r 
m

ut
an

t)
. S

ee
dl

in
gs

 w
er

e 
he

at
-s

tr
es

se
d 

(H
S

, 3
8º

C
) 

fo
r 

pe
rio

ds
 r

an
gi

ng
 fr

om
 1

5 
to

 1
80

 m
in

ut
es

, o
r 

he
at

 s
tr

es
se

d 
fo

r 
18

0 
m

in
ut

es
 a

nd
 th

en
 a

llo
w

ed
 to

 r
ec

o
ve

r 
(2

3º
C

).
 S

ee
dl

in
gs

 g
ro

w
n 

at
 c

o
nt

ro
l c

on
di

tio
ns

 (
23

ºC
) 

w
er

e 
us

ed
 fo

r 
co

m
pa

ris
on

. A
s 

in
te

rn
a

l c
on

tr
ol

, t
he

 tr
an

sc
rip

t l
ev

el
s 

of
 A

ct
in

2 
(A

ct
2)

 w
er

e 
an

al
ys

ed
. 

N
um

be
rs

 o
n 

th
e 

rig
ht

 c
or

re
sp

on
d 

to
 th

e 
ex

pe
ct

ed
 s

iz
es

 o
f 

P
C

R
 p

ro
du

ct
s.

 T
he

 p
ai

r 
of

 p
rim

er
s 

an
d 

P
C

R
 c

on
di

tio
ns

 a
re

 d
es

cr
ib

ed
 in

 A
nn

ex
es

 II
I a

nd
 IV

, r
es

pe
ct

iv
el

y.
 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

104 
 

The HSA32 expression analysis suggests that this protein is substantially expressed during 

recovery periods. HSA32 has been described as a novel and plant-specific HSP that is involved in 

improvement of acquired thermotolerance (Charng et al. 2006; Liu et al. 2006a; Liu et al. 2006b). 

The existence of HSA32 alternative-spliced transcripts, during HS treatment (15 to 180 min) and 

early recovery period (15 min of recovery) was already reported but one of the alternative transcripts 

soon disappeared (30 min of recovery) (Charng et al. 2006; Liu et al. 2006b). In this work, the 

HSA32 transcript levels did not present significant differences, among wild-type Ler and hrr mutant. 

Although a reduction of HSA32 transcript levels has been described in hsfaA2.1 mutant after four 

hours of recovery (Charng et al. 2007), the low levels of HSFA2 in hrr mutant does not seem to affect 

HSA32 expression levels in HS treatment and recovery. Indeed, the slight up-regulation of HSA32 

during recovery time could be due to transactivation by other HSFs rather than HSFA2. Recently, 

HSA32 up-regulation under HS conditions was described to be HSFA1-dependent (Liu et al.2011). 

As HSFA1s have been considered as early HSFs, it is likely that HSA32 could be directly or 

indirectly activated by these HSFs, under these experimental conditions. 

HSP25.3 has been described as a direct HS-responsive gene, whose expression is HSFA2-

dependent and could be regulated by HSFA1s. Such as occurs for HSA32, HSP25.3 gene could be 

also activated by HSFA1s, when HSFA2 expression is impaired (Schramm et al. 2006; Charng et al. 

2007; Liu et al. 2011). Considering this fact, HSFA1 regulators, instead of the HSFA2, could directly 

regulate the HSP25.3 expression in hrr mutant. Presumably, the obtained result could also be 

explained by different expression of this gene under these experimental conditions, plant 

development stage or even from the ecotype background where is expressed. 

 The HS-responsive gene expression levels assayed (HSFA2, HSP18.1, HSP25.3, HSA32 

and HSP101) suggest that HRR exerts important post-transcriptional regulatory functions over HS-

specific genes. This regulatory action could explain, at last in part, the observed phenotype for 

mutant in basal thermotolerance assays (Section 3.2.3, Complementary Figure C3.5), though the 

developmental stage and tissues of phenotypic assays and expression analysis were different (16-days-

old seedlings versus imbibed seeds). After HS treatment of wild-type Ler and hrr mutant imbibed seeds, 

the thermotolerance ability would be greatly determined by quantity and activity of HSPs and of their 

direct transcriptional regulators.  Hence, the lowest levels of HSFA2, HSP101 and, at minor 

extension, HSP18.1 in hrr mutant during recovery time could predict the low thermotolerance and, 

consequently, low survival rate of corresponding seedlings.  

In an attempt to further evaluate the relevance of HRR in regulation of HS-responsive 

transcripts, the transcript levels of HSFA2, HSP101, HSP18.1, HSA32 and HSP25.3 were evaluated 

in imbibed and HS-treated seeds of HRR over-expresssion lines (Figure 3.28). Under control 
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conditions, transcript levels of HSFA2, HSP101, HSP25.3 and HSA32 showed to be impaired in 

imbibed hrr mutant seeds, in comparison with wild-type Ler seeds. This result not only demonstrates 

the HSP and HSFA2 importance for quick response to HS treatment, as also may indicate the 

functional role of HRR in stability of their transcripts. Meanwhile, only HSFA2, HSP101 and HSP25.3 

transcript levels were impaired in HS-treated hrr mutant seeds. In contrast, the HSA32 and HSP18.1 

transcripts seemed to be more abundant in hrr mutant seeds than in wild-type Ler seeds under HS 

conditions.  These results contrast with the previous expression analysis (Figure 3.27). This fact 

could be due to different experimental conditions and developmental stages used for both analyses.  

In HRR.1 over-expression seed lines, the expression of almost all HS-induced genes was up-

regulated, with the exception of HSP25.3, whose transcript levels were drastically reduced in both 

lines. But, under control conditions, the JP9 seeds displayed the highest levels of other HSP and 

HSFA2 transcripts. Under HS treatment, HSP25.3 expression was slightly increased in JP9 line. 

Other differences between L2 and JP9 lines were detected. The HSFA2 transcript levels were more 

elevated in JP9 seeds than in L2, as in control as under HS conditions. During HS treatment, L2 

seeds exhibited a highest up-regulation of HSA32, in contrast to JP9 seed, that showed a reduction 

in its expression upon HS. The HSP101 and HSP18.1 expression levels were similar in both HRR 

over-expression lines and experimental conditions.  

 

 

 

Figure 3.28 Expression analyses of HS-specific genes during heat stress imposition, in imbibed seeds, 
subjected or not to HS. Transcript levels were evaluated by semi-quantitative RT-PCR from mRNA extracted from 
imbibed wild-type Ler, hrr and HRR over-expression (JP9 and L2) mutant seeds, which were subjected to HS treatment 
(50ºC for 60 min) or maintained at standard conditions (23ºC). As internal controls, the transcript levels of Actin2 (Act2) 
were analysed. Numbers on the right correspond to the expected sizes of PCR products. The pair of primers and PCR 
conditions are depicted in Annexes III and IV, respectively. 
 

Altogether, these results suggest that, under standard conditions, the introduction of HRR.1 

over-expressing transgene promotes an accumulation of HSP transcripts. However, this is only valid 

when the transgene was introduced into the hrr mutant background (JP9 line), once the expression 

pattern in L2 seeds is more similar to wild-type Ler.  
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Under HS conditions, the expression levels of HSP and HSFA2 transcripts in HRR over-

expression lines quite predict the thermotolerance response developed in the previous germination 

assays (Figure 3.17). Comparing all seed lines under HS conditions, the JP9 seeds presented the 

highest levels of HSFA2 transcripts (Figure 3.28). Under these conditions, the accumulation of 

HSFA2 transcripts in JP9 seeds could suggest that HRR is important to promote the stability of 

HSFA2 transcripts. Recently, the SUMOylation of HSFA2 was reported and suggested to repress the 

HSFA2 activity in recovery phase after HS. This repression leads to down-regulation of HSP gene 

expression and reduction of adquired thermotolerance (Cohen-Peer et al. 2010). Once verified a 

high accumulation of HSFA2 transcripts in JP9 seeds and, probably high levels of HSFA2 protein, it 

is possible that other post-translational mechanisms could be involved in regulation of HSFA2 protein 

levels. Hence, this prediction corroborates with highest thermotolerance improvement of HRR over-

expression seeds and seedlings (JP9). Indeed, previous studies suggested that the primary HSFA2 

transcripts are subjected to alternative splicing in response to the formation and accumulation of HS-

misfolded protein aggregates, under HS conditions (Sugio et al. 2009). The positive ratio between 

full-length HSFA2/misspliced HSFA2 transcripts could possibly culminate in a high maintenance of 

cellular homeostasis in JP9 seeds, under HS conditions, mainly promoted by RNA-binding proteins 

activities. 

In conclusion, these results pointed for a crucial role of HRR in post-transcriptional regulation 

of HS-responsive transcripts (HSPs and HSFs), depending on the plant development stage. In 

seedlings, HRR could mainly function during recovery period, but also during the HS imposition. 

Indeed, HRR appear to be involved in stability of HSFA2 and HSP101 transcripts, during HS 

treatment and recovery periods. Also during recovery, HRR seems to be crucial to maintain the 

stability of HSP18.1 transcripts. In imbibed seeds, HRR could be involved in regulation of the many 

of these HS-responsive genes (excepting HSP18.1). The high accumulation of HSFA2 transcripts in 

HS-treated JP9 seeds could point for HRR function in stabilisation of transcripts corresponding to 

regulatory factors, such as the pivotal HSFA2. Ultimately, HSFA2 is important for induction of a 

specific set of genes (HSPs, in majority), promoting the re-establishment of cellular homeostasis 

under stressful conditions. 

During germination the constant transcriptome and proteome remodelations would request the 

crucial function of chaperones in post-translational regulation. The presence of HSPs would be also 

essential for basal thermotolerance, promoting the quick reestablishment of protein homeostasis 

during recovery period. Therefore, the basal thermotolerance difference observed between wild-type 

Ler and hrr mutant (section 3.2.3) could be due to distinct expression levels of HSFs and HSPs, 

upon HS treatment conditions. 
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3.3.4.2 Seed-related genes 

 

In silico gene expression predicted that HRR is up-regulated during seed development and 

germination processes (section 3.1.3). Moreover, the reduction of seed thermotolerance in hrr 

mutant seeds could result from the deregulation of seed development. During this process, HRR 

could eventually play post-transcriptional functions on transcriptome modulation, from early stages of 

embryogenesis (active cell division and morphogenesis) to seed maturation (compound accumulation 

and acquisition of desiccation tolerance).  

The phase transitions occurring during the formation and maturation of embryo and during 

seed germination are supported by central transcriptional regulators that participate in the expression 

of downstream gene targets. These regulators include ABA-insensitive TFs (ABI3, ABI4, ABI5), 

LEAFY COTYLEDON1 and 2 (LEC1 and LEC2, respectively) and FUSCA3 (FUS3). To understand if 

HRR exerts regulation function on the corresponding transcript levels during seed development, a 

semi-quantitative RT-PCR analysis was performed in wild-type Ler and hrr mutant (Figure 3.29A). 

During seed germination only the transcript levels of ABI3, ABI4 and ABI5 were analysed, due to 

their role on ABA signalling during post-germination process (Figure 3.29B). The other seed-specific 

regulator genes (LEC1, LEC2 and FUS3), once presenting a embryo-restricted expression and being 

repressed by PKL during seed germination (Tiedemann et al. 2008), not were analysed during seed 

germination. 

The seed-specific transcriptional regulators (ABI3, ABI4, ABI5, LEC1, LEC2 and FUS3) 

(Figure 4.29A) presented high expression levels during seed maturation stages (4 throughout 6; 

Figure 3.29A). Although they do not appear to be significantly affected in hrr mutant, some slight 

fluctuations between the expression in wild-type Ler and hrr developing seeds were detected. ABI5 

transcript levels were slightly reduced in hrr mutant developing seeds, in stages 4 and 6 of seed 

maturation. Indeed, ABI5 seems to be up-regulated in the first stages of seed development. A slight 

impairment of LEC1, LEC2 and FUS3 in hrr mutant was also detected, namely, the LEC1 down-

regulation in early stage of seed embryogenesis (stage 2) and the LEC2 and FUS3 down-regulation 

in stage 4. 

ABI3, ABI4 and ABI5 transcriptional regulators presented high levels of transcripts in first day 

of germination, which are strongly reduced in the second day (Figure 3.29B). During germination, a 

difference between the ABI genes expression in wild-type Ler and hrr mutant was not detected, 

except for ABI5, whose transcript levels appeared to be slightly down-regulated in hrr mutant 

germinating seeds (Figure 3.29B). 
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Figure 3.29 Expression analyses of key transcriptional regulator-coding genes during seed development and 
germination. Transcript levels were evaluated by semi-quantitative RT-PCR from mRNA extracted (A) from 
flower/silique tissues, according to defined seed development and maturation stages (Figure 3.25) or (B) from 
germinated seeds with one or two days upon sowing in MS-agar medium. For comparison experiments were performed 
in wild-type Ler and hrr mutant. As internal control, the transcript levels of Actin2 (Act2) were analysed. Numbers on the 
right correspond to the expected sizes of PCR products. The pair of primers and PCR conditions are described in 
Annexes III and IV, respectively. 

 

The high expression of all transcription regulators evaluated (ABI3, ABI4, ABI5, LEC1, LEC2 

and FUS3) during seed maturation stages (stages 4 throughout 6) suggest their participation in 

induction of many genes coding for metabolic enzymes involved in accumulation of storage 

compounds (sugars, oil and seed storage proteins). This transcriptional induction is physiologically 

regulated by the increased levels of ABA during these stages. 

ABI3 was described as a central B3 domain-containing regulator in signalling, being involved 

in seed regulatory programs, firstly in transition between embryo maturation and early seedling 

development (Nambara et al. 1995). Indeed, ABI3 possesses a structural domain (B1) involved in 

interaction with ABI5, modulating ABI5 activity (Nakamura et al. 2001). ABI4 is an AP2 transcription 

factor involved in sugar and ABA signalling. ABI4 controls its own expression and is essential in 

regulation glucose signalling during early seedling development (Bossi et al. 2009). In addition, ABI4 
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induces the ABI5 expression during seed maturation, as well as induces the expression of specific 

plastid protein-coding genes (Bossi et al. 2009; Cutler et al. 2010). ABI5 is a bZIP and  pivotal 

regulator in ABA signalling tighly regulated by post-translational mechanisms (phosphorylation, 

sumoylation and ubiquitination) and is involved in induction of Em genes during seed maturation 

stages (Stone et al. 2006; Miura et al. 2009; Cutler et al. 2010). 

 The highest transcript levels of these ABI factors in seed maturation stages (stages 4 

throughout 6) could be related with higher ABA levels in these stages and accumulation of seed 

compounds. Exceptionally, ABI5 not only was expressed during seed maturation stages, but also 

presents expression during early stages of seed development. The detection of ABI5 expression in 

these early stages could be due to the presence of floral tissue remains at these stages, in which 

ABI5 expression has been reported (Schmid et al. 2005).  

The high levels of ABI3, ABI4 and ABI5 transcripts, in the first germination day were 

suggested to be the result of the brief post-germination developmental arrest checkpoint mediated by 

ABA that occurs during seed imbibition (Lopez-Molina et al. 2001). Indeed, during early growth, 

following the seed stratification, a narrow developmental window where ABA regulates and stabilises 

endogenous ABI5 protein accumulation was suggested to occur (Lopez-Molina et al. 2001). In this 

work, 24h post-sowing, under light conditions, the ABI transcript levels remained high, being reduced 

at the second germination day, concomitant with increasing GA levels.  

Only the ABI5 expression seems to be impaired in hrr mutant during seed maturation and 

germination. Although no significant difference had been observed at the first day of germination, in 

second day it was perceptible the difference in stability of ABI transcripts in germinating hrr mutant 

seeds. The low levels of ABI5 transcripts in hrr mutant seeds at later stage of seed maturation and in 

second day of germination suggested that HRR could regulate directly or indirectly the ABI5 

transcript levels. Although HRR transcript levels are low, as at later stage of seed maturation as at 

the first germination day (Figure 3.26), low amounts of HRR protein could be involved in the 

regulation of the ABI5 transcripts stability. As ABI5 is a pivotal regulator in ABA signalling and is 

involved in induction of Em genes (LEA proteins) during seed maturation, the regulation of their 

transcripts is crucial to determine the accumulation of protective proteins (Carles et al. 2002). 

Ultimately, this regulation is essential for definition of longevity and resistance ability to 

environmental cues of hrr mutant seeds. 

Other essential transcription factors are involved in seed development.  LEC1 gene encodes a 

homolog of the CCAAT-binding factor HAP3 subunit, while LEC2 and FUS3 are closely related to 

B3-containing protein transcription factors (Lotan et al. 1998; Luerssen et al. 1998; Stone et al. 

2001). LEC1 and LEC2 transcription factors, which have been indicated as key regulators of 
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embryogenesis traits, they also promote the seed compound accumulation, simultaneously with 

FUS3 and ABI3, in early phases of seed maturation (Kagaya et al. 2005; Stone et al. 2008). FUS3, 

such as LEC1 and LEC2, is requested to the determination of cotyledonary cell identity and to the 

synthesis and accumulation of storage compounds (Tiedemann et al. 2008). Indeed, FUS3 promotes 

the dormancy and prevents precocious germination of immature seeds, by stimulating ABA synthesis 

while repressing GA biosynthesis (Chiu et al. 2012). The slight impairment of LEC1 and FUS3, as 

well as LEC2 at a more extension, in seed maturation (stages 4) observed in hrr mutant could 

suggest that HRR could be important for regulation of transcriptome during seed accumulation 

phases. Since HRR transcripts were not detected in the earliest stages of seed maturation (stages 1 

and 2; Figure 3.25), the HRR function in regulation of LEC transcripts during this stage could not be 

predicted. However, due to weak sensitivity of semi-quantitative expression analysis for a minimal 

threshold of transcript, a real-time quantitative expression analysis should be performed to observe 

the HRR expression levels during early stages of embriogenesis. Hence, a better accuracy of HRR 

function in regulation of LEC transcripts could be made. 

To evaluate the effect of HRR.1 over-expression on ABI transcript levels, a semi-quantitative 

expression analysis was performed in imbibed seeds of wild-type Ler, hrr mutant and HRR over-

expression lines, submitted or not to HS (Figure 3.30). Upon HS treatment, ABI transcripts appeared 

to be slightly up-regulated in hrr mutant, though no differences have been detected under control 

conditions. This result could indicate that HRR could interfere in regulation of ABI transcript levels, in 

ABA-dependent HS response. Indeed, the increased ABI transcript levels in hrr mutant are 

concomitant with the eventual increase of ABA content in these seeds, which ultimately culminates in 

germination retardation. In HRR over-expression lines, all the ABI genes were much more up-

regulated, even under standard conditions. This up-regulation was more pronounced for ABI5 gene, 

corroborating the previous suggestion that HRR could regulate positively the ABI5 expression levels 

and thus acts as a positive regulator in ABA metabolism and signalling.  

Together, these results suggest a possible direct or indirect participation of HRR in modulation 

of seed-specific transcripts during seed development and germination. This is particularly true, for 

ABI5 transcripts, during later stage of seed maturation up to seed germination stages. Under HS 

conditions, HRR appears to play a role in the regulation of ABI transcript levels, which ultimately 

determine the thermoinhibition levels of seeds and their germinative ability. 
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Figure 3.30 Expression analyses of ABI genes during heat stress imposition in imbibed seeds, subjected or not 
to HS. Transcript levels were evaluated by semi-quantitative RT-PCR from mRNA extracted from imbibed wild-type Ler, 
hrr and HRR over-expression (JP9 and L2) mutant seeds, which were subjected to HS (50ºC for 60 min) or were 
maintained at standard conditions (23ºC). As internal control, the transcript levels of Actin2 (Act2) were analysed. 
Numbers on the right correspond to the expected sizes of PCR products. The pair of primers and PCR conditions are 
depicted in Annexes III and IV, respectively. 

 

3.3.4.3 Stress-related genes 

 

Besides the accumulation of storage proteins and lipids during seed maturation, stress-related 

proteins are also accumulated. LEA proteins and HSPs play essential protective functions during 

acquisition of dessication tolerance, at late maturation stage, preventing the macromolecules 

damage and promoting the maintenance of cellular stability. They are immobilised during early 

stages of seed germination, where some of them play protective roles and others are integrated in 

biosynthetic pathways. (Hong-Boa et al. 2005; Manfre et al. 2006; Kotak et al. 2007; Hundertmark 

and Hincha 2008; Manfre et al. 2009). As HRR is mainly expressed in later stage of seed maturation 

(stage 6, Figure 3.26A), it would be interesting and important to know if HRR is involved in regulation 

of transcript levels of some key stress-related proteins. For this, Em1 and Em6 (LEA proteins), 

HSP101 and HSFA9 gene expression levels were analysed during seed development (Figure 

3.31A). Their corresponding genes display considerable expression levels during later stages of 

maturation (Kotak et al. 2007; Bentsink and Koornneef 2008). When the environmental conditions 

(light, nutrients and temperatures) are ideal, seed will enter in the germination process and the 

accumulated stress-related proteins will be recruited, allowing the osmotic adaptation of germinating 

seed. For this, the same transcript levels were analysed during seed germination (Figure 3.31B).
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Figure 3.31 Expression analysis of LEA protein genes (Em1, Em6), HSP gene (HSP101) and seed-specific HSF 
gene (HSFA9) during seed development and germination. Transcript levels were evaluated by semi-quantitative RT-
PCR from mRNA extracted (A) from flower/silique tissues, according to defined seed development and maturation stages 
(Figure 3.25) or (B) from germinated seeds with one or two days upon sowing in MS-agar medium. For comparison 
experiments were performed in wild-type Ler and hrr mutant. As internal control, the transcript levels of Actin2 (Act2) 
were analysed. Numbers on the right correspond to the expected sizes of PCR products. The pair of primers and PCR 
conditions are described in Annexes III and IV, respectively. 

 

Em proteins belong to group 1 of Late Embriogenesis Abundant (LEA) proteins, being 

expressed in later stages of embryo maturation (acquisition of dessication tolerance) and during 

water deficit in vegetative organs, suggesting a protective role during water limitation (Hundertmark 

and Hincha 2008). HSFA9 was described as a specialised HSF for embryogenesis and seed 

maturation, controlled by hormonal networks (ABA and auxins) and involved in induction of HSP and 

sHSP promoters (Kotak et al. 2007; Carranco et al. 2010; Scharf et al. 2012). HSP101 codes for a 

chaperone involved in protein remodelation  through its ATPase activity (Singh and Grover 2010). 

This protein is not only implicated in Arabidopsis basal and acquired thermotolerance as it is 

regulated during seed development (Larkindale et al. 2007). HSP101 is accumulated during mid-

maturation and stored in dry seed, in an expression pattern similar to  that seen for LEA proteins and 

sHSPs (Xiong et al. 2001). 

As expected, all stress-related transcripts were up-regulated in later stages of seed maturation 

(stages 5 and 6) (Figure 3.311A). In early stages of seed development (stages 1 and 2), only a 
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reduced expression was detected for Em6 and HSP101 genes. This could be due to the 

considerable expression of these genes in floral tissues as the samples harvested in the first stages 

of seed development contained remains of floral tissues (petals, stamens, pollen grains). Indeed, in 

silico data (e-FP browser, BAR) predicted that HSP101 expression in carpels, stamens and petals. 

Em6 was only predicted to be up-regulated in later stages of seed maturation and dry and imbibed 

(24 h) seeds. However, recent quantitative RT-PCR expression analysis data revealed that Em6 is 

ubiquitously expressed in different Arabidopsis organs, displaying highest levels in seedlings, buds 

and flowers (Hundertmark and Hincha 2008). 

In the first germination day, seeds presented high Em1 and Em6 expression levels that 

significantly declined in the second day of germination (Figure 3.31B). During the germination 

process, the higher levels of Em transcripts, in relation to HSP101 and HSFA9, could be related with 

brief increased ABA levels during early phases of seed germination. This increase is crucial for 

environmental osmotic adaptation of germinating seeds, thus avoiding the damaging of important 

macromolecules. During germination, a much lower expression was observed for HSP101 and 

HSFA9 coding genes. . 

The expression analysis revealed significant expression differences between wild-type Ler 

and hrr mutant seeds. During seed maturation and in first day of germination, Em6 seems to be 

affected in developing hrr seeds (Figure 3.31A), while HSP101 and HSFA9 transcripts seem to be 

impaired in seeds during the first day of germination (Figure 3.31B). The expression impairment of 

these genes in hrr mutant suggests that HRR could be involved in the stability regulation of their 

transcripts. The expression regulation of Em6 has been proposed to be performed by ABI factors, 

through the interaction/modulation of ABI5 with ABI3 (Nakamura et al. 2001; Carles et al. 2002). 

Recent studies indicated that ABI3 could also activate the HSFA9 promoter, which in turn induces 

HSP promoters, such as HSP101 (Kotak et al. 2007). In addition to a possible effect of HRR on 

stabilisation of Em6, HSP101 and HSFA9 transcripts, the transcriptional network between ABI 

factors, HSFA9, HSP101 and Em proteins could enhance the HRR effect on seed development. 

Far studying the relevance of HRR on transcription of Em1, Em6 and HSP101 genes, a semi-

quantitative expression analysis was performed in imbibed seeds (wild-type Ler, hrr mutant and HRR 

over-expression lines), submitted or not to HS treatment (Figure 3.32). The expression profiles of Em 

genes were quite similar in wild-type Ler and hrr mutant seeds and in both experimental conditions. 

Only a slight reduction of HSP101 transcript levels was detected in hrr mutant seeds, in both 

experimental conditions. These results suggest that Em transcripts are not greatly affected by HS 

treatment (50ºC, during 60 min). Concerning the HRR over-expression lines, an up-regulation of all 
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genes was detected, after HS treatment and also in control conditions. This result seems to be a good 

indication of the importance of high levels of HRR protein for the stabilisation of seed-related proteins. 

 

 

 

Figure 3.32 Expression analysis of LEA protein genes (Em1, Em6) and HSP101 gene, in imbibed seeds, 
subjected or not to HS. Transcript levels were evaluated by semi-quantitative RT-PCR from mRNA extracted from 
imbibed wild-type Ler, hrr and HRR over-expression (JP9 and L2) mutant seeds, which were subjected to HS treatment 
(50ºC for 60 min) or  were maintained at standard conditions (23ºC). As internal control, the transcript levels of Actin2 
(Act2) were analysed. Numbers on the right correspond to the expected sizes of PCR products. The pair primers and 
PCR conditions are depicted in Annexes III and IV, respectively. 

 

Altogether, the results showed that the evaluated stress-related genes (Em1, Em6, HSFA9 

and HSP101) are preferentially induced in later stages of seed development (stages 5 and 6) and in 

early stages of seed germination. Almost all genes (Em6, HSP101 and HSFA9) appear to be 

regulated by HRR, once they were affected in hrr mutant in many of the developmental stages 

analysed. The up-regulation of Em1, Em6 and HSP101 in HRR over-expression line also supported 

this HRR role. The stability and integrity of stress-related transcripts would be crucial for seed 

development and germination, where dessication and osmotic stress conditions are stabilished.  

 

3.3.2.4 ABA and GA metabolism genes 

 

The seed development process is determined by hormonal regulation, not only by the ABA levels, 

but also by other phytohormone levels, such auxins, cytokinins and GAs (Toh et al. 2008). In 

particular, the development of seed maturation traits is determined by a tight balance between 

bioactive GAs and ABA. A feedback response mechanism controls the expression levels of rate-

limiting enzymes involved in ABA and GA biosynthesis and catabolism, being thus dependent on the 

hormonal level fluctuations (Xiong and Zhu 2003; Sun 2008). For studying the possible involvement 

of HRR in post-transcriptional regulation of transcripts from ABA and GA metabolism components 

(ABA1, NCED9, CYP707A1, GA3ox1 and SPY), a semi-quantitative expression analysis was 

performed in developing and germinating seeds of wild-type Ler and hrr mutant (Figure 3.33). 
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Figure 3.33 Expression analysis of ABA metabolism (ABA1, NCED9, CYP707A1) and GA metabolism (GA3ox1, 
SPY) related genes during seed development and germination. Transcript levels were evaluated by semi-
quantitative RT-PCR from mRNA extracted (A) from flower/silique tissues, according to defined seed development and 
maturation stages (Figure 3.25) or (B) from germinated seeds with one or two days upon sowing in MS-agar medium. 
For comparison experiments were performed in wild-type Ler and hrr mutant. As internal control, the transcript levels of 
Actin2 (Act2) were analysed. Numbers on the right correspond to the expected sizes of PCR products. The pair of 
primers and PCR conditions are described in Annexes III and IV, respectively. 

 

The importance of a fine tune regulation between ABA and GA hormones is revealed by 

ubiquitous expression of ABA- and GA-related proteins in all seed development stages (Figure 

3.33A). ABA1 (or ZEP), codes for a zeaxanthin epoxidase, which is involved in early steps of ABA 

biosynthesis, in plastids. ABA1 is expressed in the embryo from globular to desiccation stages 

(Audran et al. 2001). NCED9 belongs to a family of more four NCED genes (NCED2, NCED3, 

NCED5, NCED6), which codes for 9-cis-epoxycarotenoid dioxygenase (Xiong and Zhu 2003). This 

enzyme catalise the rate-limiting step in the ABA biosynthesis pathway, indicating its involvement in 

ABA biosynthesis regulation in seeds (Xiong and Zhu 2003). During seed development, NCED9 is 
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expressed abundantly in immature seeds, in embryo and endosperm (Lefebvre et al. 2006). The ABA 

deactivation enzyme CYP707A1 corresponds to an ABA 8’-hydroxylase. Its coding gene is expressed 

during seed development, being also induced during post-germination growth (Kushiro et al. 2004; 

Okamoto et al. 2006).  

Concerning ABA metabolism, the CYP707A1 presented higher transcript levels in early stage 

of seed development than ABA1 and NCED9 ones. At late stage of seed maturation (stage 6) the 

NCED9 and ABA1 presented much higher levels, comparing with ABA-catabolic transcripts 

CYP707A1. During the seed development, the ABA1 and NCED9 transcripts are expressed during 

different stages of seed development (Xiong and Zhu 2003). The obtained results are in according 

with those previously suggested for ABA1 and NCED9 gene expression. Temporal increasing of 

NCED9 transcripts was observed, whose highest levels culminate in the later stages of seed 

development (stages 5 and 6). It was also in stage 6 that ABA1 transcripts reached the highest 

levels. Although the ABA action is predominant during the mid seed maturation stages (stages 4 and 

5), ABA content decline to lowest levels in late stage of seed maturation. The highest expression of 

ABA biosynthesis genes in these maturation stages could be related with the synthesis of LEA 

proteins. Between mid- and late-maturation stages occurs ABA accumulation, that induces LEA 

protein genes, preparing the embryo for desiccation (Xiong and Zhu 2003). The expression profile of 

CYP707A1 in seed development and germination is coincident with the crucial seed transition 

phases, where the ABA levels need to be strictly regulated (Yamaguchi et al. 2007). The up-

regulation of this gene in early stages of seed development (stage 1) allows the regulation of ABA 

levels in a development stage where the high levels of GA are essential for embryo growth 

(Finkelstein 2010). During seed maturation stages, the levels become reduced, which is coincident 

with the increasing levels of ABA crucial for seed maturation and desiccation. 

GA3ox1 genes codes for the GA3-oxidase, which catalises the conversion of an intermediate 

GA compound (GA9) in a bioactive gibberellin (GA4) (Sun 2008). GA3ox1 is transiently induced 

during early embryogenesis and highly expressed in seeds imbibed in light (Mitchum et al. 2006). 

SPY codes for a protein with significant similarity to O-linked GlcNAc transferase (OGT) from 

animals (Tseng et al. 2001). SPY has been suggested as a negative regulator of GA signalling, once 

the knockout of the SPY gene leads to elevated GA responses (Swain et al. 2001). This transferase 

promotes the post-translational modification (addition of GlcNAc monossacharide) of components of 

GA signalling pathway (Qin et al. 2011). In case of GA-related genes, GA3ox1 and SPY were 

expressed during early embriogenesis stages. The GA30x1 transcript levels decreased during later 

stages of seed maturation (stages 5 and 6), whereas the SPY transcript levels leaned to increase. 

Then, the GA3ox1 transcript levels drop during seed maturation stages (stages 5 and 6), coincident 
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with the increasing levels of ABA. The SPY expression profile during seed development shares 

some similarities with ABA1 and NCED9 expression profiles. In addition of its negative regulatory 

roles in GA metabolism and signalling, SPY appears to be an activator of other hormonal signalling 

pathways (Olszewski et al. 2002). The SPY expression profile could thus indicate the importance of 

this regulator in the controlling GA levels during seed development, in those stages where ABA is 

synthesised. For this instance, an interaction between SPY and some components of ABA 

metabolism and signalling could be then predicted (Lovegrove and Hooley 2000). 

During germination process, the ABA-related genes, ABA1 and NCED9 presented less 

expression during seed germination, being ABA1 transcript levels almost undetectable (Figure 

3.33B). In contrast, the gene expression of CYP707A1 was highly up-regulated after the first day of 

germination, exhibiting a slight decrease afterwards. A similar expression profile was detected for 

GA3ox1, though presenting lower transcript levels at the second day. As observed for seed 

maturation, the SPY expression profile was similar to those for ABA1 and NCED9. The SPY 

transcript levels were also expressed at the first day of germination and were abruptly reduced at 

second day. These results corroborate with GA and ABA crosstalk during germination process. In 

the early stages of germination occurs a transient increasing of ABA levels, which promotes the 

osmotic adaptation of new seedling (Lopez-Molina et al. 2001). For this, it is observed an increasing 

of NCED9 expression levels in first day of germination. With raising levels of GA, occurs an 

increasing in expression of ABA catabolic CYP707A1 and GA biosynthetic GA3ox1 genes.  

The expression analysis revealed some expression differences between wild-type Ler and hrr 

mutant. ABA1, NCED9 and SPY expression levels were slighty impaired in hrr mutant, during seed 

germination (Figure 3.33B). This suggests that HRR could be involved in regulation of these 

transcripts during transition phases from seed dessication to seed germination. Hence, these results 

suggest that HRR could be involved in stability regulation of ABA biosynthesis (ABA1 and NCED9) 

and SPY transcript levels, whose proteins are involved in crucial rate-limiting reactions of ABA and 

GA metabolism (Xiong and Zhu 2003). 

To study the effect of HRR on the expression of the same ABA- and GA-related genes, a 

similar analysis was performed in imbibed seeds from wild-type Ler, hrr mutant and HRR over-

expression lines, either submitted or not to HS (Figure 3.34). When comparing the expression of 

wild-type Ler and hrr mutant seeds, only CYP707A1 and SPY presented a slight impairment in hrr 

mutant seeds, under control conditions. However, all analysed ABA and GA metabolism-related 

genes were up-regulated in HRR over-expression lines.  An up-regulation of ABA1, GA3ox1 and 

SPY genes was observed in JP9 seeds, in relation to L2 seeds. However, when subjected to HS 

treatment, mainly the ABA1 and SPY transcript levels were higher in L2 seeds than in JP9 seeds. 
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These results suggest the importance of HRR accumulation in regulation of ABA biosynthesis and 

SPY transcript levels during seed thermoinhibition phenomenon. This mechanism is characterised by 

temperature-induced accumulation of ABA levels in seeds, which delays the germination and plays a 

protective role at high temperature (Toh et al. 2008). Hence, the control of ABA biosynthesis and GA 

negative regulator transcript levels by HRR protein under high temperatures could be fundamental 

for further seed germination viability, during recovery period. 

 

 
 
Figure 3.34 Expression analyses ABA metabolism (ABA1, NCED9 and CYP707A1) and GA metabolism (GA3ox1 
and SPY) related genes, in imbibed seeds, subjected or not to HS. Transcript levels were evaluated by semi-
quantitative RT-PCR from mRNA extracted from imbibed wild-type Ler, hrr and HRR over-expression (JP9 and L2) 
mutant seeds, which were subjected to HS treatment (50ºC for 60 min) or were maintained at standard conditions (23ºC). 
As internal control, the transcript levels of Actin2 (Act2) were analysed. Numbers on the right correspond to the expected 
sizes of PCR products. The pair primers and PCR conditions are depicted in Annexes III and IV, respectively. 

 

Globally, these results suggest that HRR could be involved in stability regulation of key 

transcripts associated to ABA and GA metabolism. This might be depicted when in first seed 

germination day, the ABA metabolism (ABA1 and NCED9) and SPY transcripts were down-regulated 

in hrr mutant. Due to hormonal adjustments during seed germination, the expression of ABA and GA 

metabolism genes is extremely regulated. Hence, the regulated turnover of these transcripts 

becomes crucial for transcriptome remodelation during germination, where HRR could be part. 

Moreover, during imposition of HS, HRR could play some function in control of the positive feedback 

of ABA biosynthesis and in negative regulation of GA synthesis. Further, this reflects in resistance to 

thermoinhibition and germination ability of Arabidopsis seeds.  

 

3.3.5 mRNA decay analysis of alternative-spliced HRR transcripts 

 

As previously discussed, an alternative transcript of HRR was detected in seedlings (HRR.2), under 

HS conditions (section 3.3.1). This transcript harbours the first intron sequence and results from an 
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intron retention process. Consequently, HRR.2 possesses an in-frame PTC and was suggested to 

be a potential target for NMD. Depending from developmental and/or environmental signal input, the 

remodelation of transcriptome could be greatly affected by drastic alterations at level of pre-mRNA 

processing, producing many alternative transcripts, which could harbour PTC. This sort of transcripts 

normally are usually considered potential targets for NMD, which has been described as being the 

principal control system of  aberrant transcripts and mRNA turnover (Shyu et al. 2008). NMD is one of 

the mRNA surveillance used by eukaryotic cells to control the quality of mRNA function, by eliminating 

abnormal transcripts (Maquat 2004). In recent years, some mechanism of NMD have been proposed in 

plants, mostly based in mammallian and yeast models. The most attractive model is based in distance 

between the PTC and other sequences that are usually present within the 3’UTR (Kerényi et al. 2008). If 

they are too far from the PTC, the PTC-containing transcript would be driven for NMD. The NMD is 

triggered by a core of trans factors (UPF1, UPF2, UPF3) that, together with the exon junction 

complex (EJC), bind to aberrant transcripts and eventually move them to degradation (Hoof and 

Green 2006). 

For understanding the decay mechanism of HRR.2, an analysis of mRNA half-life of HRR 

alternative transcripts was performed, making use of transcription and translation inhibition 

treatments with actinomycin D (ActD) and cycloheximide (CHX), respectively. ActD binds to DNA 

and inhibits the elongation executed by RNA polymerase. The use of ActD allows to determine if the 

levels of transcripts are only dependent of gene transcription activity. CHX is a translational inhibitor 

that interferes with the peptidyl transferase activity of 60S ribosomal subunit, promoting the stabilisation of 

polyribosomes-RNA complexes (Anderson and Kedersha 2002; Hori and Watanabe 2008). Since NMD is 

considered a translation-dependent pathway, the use of CHX allows the evaluation of mRNA 

degradation-dependent on polyribosome release. ActD and CHX treatments were performed just after 

imposition of HS treatment (38ºC during 60 min) to wild-type Ler seedlings (16-days-old). For 

comparation, the same inhibition treatments were performed in seedlings at standard conditions 

(23ºC). Control samples corresponded to HRR expression profile in wild-type Ler seedlings under 

standard growth conditions (23ºC) and under HS treatment (38ºC, 60 min) (Figure 3.35). 

When wild-type Ler seedlings were grown at standard conditions (23ºC), no expression of 

HRR occurred (Figure 3.35). However, heat-stressed (38ºC, 60 min) seedlings exhibited high levels 

of HRR.1 and HRR.2 transcripts, though a greater amount of HRR.2 transcript was evident. These 

results were similar to those previously observed (Figure 3.22). When seedlings growing in standard 

conditions were treated with ActD or CHX, none or basal expression of HRR gene was observed 

(Figure 3.35). The immediate ActD treament (after HS) promoted the reduction of HRR.2 transcript 

levels, in relation to HRR.1. However, HRR.1 transcript levels upon ActD treatment are very similar 
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to those upon HS condition. The constant HRR.1 transcript levels suggest its increased stability. 

Moreover, as the application of ActD interrupts the production of transcripts, the results suggest that 

the regulation of HRR.2 transcript levels is mostly determined by transcription rate of HRR gene. 

Upon CHX treatment, heat-stressed seedlings presented an up-regulation of HRR, presenting much 

higher HRR.1 transcript levels than HRR.2 (Figure 3.35). This result suggests an even higher 

stabilisation of HRR.1 transcripts upon CHX treatment, due to the CHX role in freezing of transcripts 

into polyribosomes (Anderson and Kedersha 2002). As HRR.2 transcripts were not stabilised as 

HRR.1 transcripts in polyribosomes, a NMD process would be important for HRR.2 transcript decay. 

While HRR.2 transcripts could be driven for degradation through nuclear and cytoplasmic NMD 

mechanisms, the HRR.1 transcripts are maintained under steady-state conditions. 

 

 

 

Figure 3.35 Evaluation of alternative spliced HRR transcripts decay, after heat stress imposition. HRR.1 and 
HRR.2 transcript levels were evaluated by semi-quantitative RT-PCR from mRNA extracted from treated wild-type Ler 
seedlings with 16-days-old. After HS treatment (38ºC, 60 min), seedlings were treated with either 100 µg.ml-1 
actinomycin D (ActD) or 20 µM cycloheximide (CHX). Controls were prepared in the same way but without inhibitor 
supplementation. For comparation, similar treatments were performed in non-heat treated seedlings (23ºC). As internal 
controls, the transcript levels of Actin2 (Act2) were analysed. Numbers on the right correspond to the expected sizes of 
PCR products. The pair of primers and PCR conditions are described in Annexes III and IV, respectively. 

 

Considering some homology between human and plant processes, it is likely that CHX might 

influence the transcription and improve the stability of HRR.1 transcripts, under HS conditions. Some 

studies in animal cells reported that the CHX treatment could lead to the superinduction and high 

stabilisation of IL-6 mRNA levels and IL-6 accumulation (Hershko et al. 2004). This suggests that 

protein synthesis inhibition do not seems to be exclusively a inducer of protein and transcript 

degradation mechanisms. Regarding this, it is likely that CHX treatment could induce the 

transcription of HRR and increase the levels of HRR.1 transcripts under HS conditions, possibly 

through prolongated activation of signalling components and stress-related TFs.  

 The alternative-spliced HRR.2 transcripts are unstable molecules due to the presence of the 

PTC that, in turn, could provide a sort of cellular toxicity. For this reason, HRR.2 transcripts could 

bind to specific nuclear proteins that drive them to nuclear mRNA surveillance processes. Recently, 

Kim et al. (2009) described that UPF2 and UPF3 bind to plant aberrant transcripts, accumulating 

them in the nucleolus where they will be probably processed through a NMD-like mechanism. Once 
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in cytoplasm, the recognition of PTC in HRR.2 could be due to the fact of EJC still bound HRR.2 

transcripts (close to last exon-exon junction and downstream of PTC) and avoid the recognition of cis 

elements in 3’UTR, when occur the premature termination of translation. Then, the association of 

NMD factors (namely the phosphoregulated UPF1, together with UPF2 and UPF3) with premature 

terminating ribosome is postulated to facilitate the recruitment of decapping and degradation factors 

(Amrani et al. 2006; Schwartz et al. 2006; Kerényi et al. 2008).  

Globally, the results suggest that HRR.2 is a potential target for NMD or other RNA 

degradation mechanism. Although a more accurate assay would be necessary mRNA half-life of 

both transcripts, the preliminary results using ActD and CHX suggest that HRR.2 transcript is driven 

for degradation. HRR.1 transcripts appeared to be more stable than HRR.2 transcripts. Hence, the 

recruitment of mRNA degradation machinery to remove HRR.2 transcripts resulting from inaccuracy 

of pre-mRNA processing mechanism seems to be important for HS responses.   

 

3.3.6 Histochemical analysis of HRR 

 

The β-glucuronidase gene (gusA) has been extensively used as a reporter gene for histochemical 

analysis of gene expression. To access in which organs/tissues the HRR expression occurs, the 

predicted HRR promoter sequence (pHRR) was fused to the gusA gene. The resulting transgenic 

plants (wild-type Ler background) were used to detect the GUS expression occurring by HRR 

promoter activation. GUS activity was evaluated by the observation of a blue signal, resulting from 

the degradation of the GUS specific substrate (X-Gluc), thus indicating the HRR expression location. 

The GUS assay was performed either on ectopic GUS (p35S::GUS) or pHRR::GUS transgenic 

seedlings (seven-days-old). The pHRR::GUS seedlings were heat-stressed (38ºC, three hours), 

such as wild-type Ler ones, whereas the p35S::GUS were not heat-stressed but maintained at 

control conditions (23ºC).  

Only the transgenic seedlings ectopically-expressing GUS have developed a blue signal, 

resulting from GUS activity over the substrate X-Gluc. When pHRR::GUS transgenic seedlings were 

submitted to HS treatment, no GUS signal was detected. The same result was obtained using 

different independent pHRR::GUS transgenic lines, as well as using wild-type Ler seedlings 

samples. As expected, non-heat-stressed samples, both wild-type Ler and pHRR::GUS transgenic 

seedlings, did not also exhibit GUS signal (data not shown).  
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Figure 3.36  Histochemical localisation of HRR promoter activity in Arabidopsis seedling tissues. Transgenic (in 
Ler background) seven-days-old seedlings, expressing the pHRR::GUS fusion were subjected to the GUS assay (37ºC, 
overnight). As control, wild-type Ler seedlings were analysed in similar conditions. As positive control, transgenic 
seedlings harbouring the p35S::GUS fusion were directly subjected to GUS assay (without heat treatment, 23ºC). The 
blue signal indicates the GUS expression driven by the HRR promoter or by the constitutive CaMV 35S promoter (p35S). 
Under constitutive expression, GUS expression is observed in all tissues. None HRR promoter activity is observed after 
heat-stress treatment, being the signal similar to that wild-type Ler, under same experimental conditions. Scale: 0.5 cm. 

 

Although the HRR expression, under HS conditions, is relatively low when compared with other HS-

responsive genes, the absence of an evident GUS signal is questionable. At least, some HRR 

promoter activity would be expected to be detected in roots of pHRR::GUS transgenic seedlings. 

However, even with HS treatment, no GUS signal was detected (Figure 3.36). The presence of cis-

elements in HRR exons and introns could be necessary for induction of HRR promoter. Recent 

reports have described the existence of cis-acting elements in intron sequences that could promote 

the gene expression enhancement (Parra et al. 2011). These enhancing introns are tipically located 

within the transcribed sequences, near the 5’ end of the transcript and are compositionally distinct 

from downstream introns. These effectors of intron-mediated enhancement (IME) mechanisms could 

appear in 5’UTRs or in the coding regions near the transcription start site. If the HRR promoter 
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regulation is enhanced by a similar mechanism, the absence of intronic and/or exonic cis-acting 

elements in the transgene would promote a reduction on HRR promoter activity. The high expression 

of HRR gene could be possibly assisted by combinatorial influence of both types of cis-elements. 

Ultimately, this influences all transcriptional machinery, as well as subsequent post-transcriptional 

and translation mechanisms. The absence of GUS activity could be also due to the production of the 

gusA primary transcripts with unfavourable conformations, thus compromising downstream 

mechanisms, such as mRNA processing and translation processes. 

 

Taken together, these results suggest that HRR is highly expressed during HS imposition, 

corroborating the predicted bioinformatic data (section 3.1). Moreover, HRR seems to be involved in 

the stability regulation of a specific set of transcripts induced during HS conditions, as well as during 

seed maturation and germination.  

In contrast to the predicted bioinformatic data, under experimental HS conditions, HRR 

expression was subjected to an alternative splicing process. Hence, two alternatively-spliced HRR 

transcripts were produced: the canonical HRR.1 and the intron-retained transcript HRR.2. However, 

in HS-treated seeds, only HRR.1 transcript was expressed. By possessing a PTC, HRR.2 transcripts 

were suggested to be a potential target of NMD. Indeed, the results obtained from mRNA decay 

analysis suggest that HRR.2 transcripts are driven for degradation, possibly through NMD 

mechanism. The fast removing of these aberrant transcripts is fundamental to avoid cellular toxicity 

(imposed by accumulation of aberrant transcripts and truncated proteins) and prolonged 

homeostasis imbalance during thermotolerance responses. 

Under HS conditions and in specific plant development processes, HRR could be crucial for 

the regulation of HS-responsive HSF and HSP transcripts. Particularly, HRR appears to be involved 

in the stability of HSFA2 transcripts during HS imposition and recovery periods. Considering that 

HSFA2 is a pivotal and amplifier factor in induction of other HSF and numerous HSP genes, the tight 

control of HSFA2 expression levels is extremely important under HS conditions. The possible 

involvement of HRR in the stability of HSFA2 transcripts could be crucial for an adequate 

thermotolerance response, which could depend on intensity and duration of HS input. 

In addition to the direct HS-induced genes (HSFs and HSPs), HS also affects the hormonal 

homeostasis. HRR appears to play a function in the regulation of ABA biosynthesis (ABA1 and 

NCED9) and signalling (ABIs) transcripts, as well as SPY (GA negative regulator) transcripts upon 

HS treatment. The stability regulation of such transcripts is ultimately reflected in the seed 

thermoinhibition level under HS conditions, which further reveals the seed germination ability in 

recovery period. Also, during seed germination, in addition to ABI5 regulation of transcript levels, 
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HRR appears to be involved in the stability regulation of ABA biosynthesis (ABA1 and NCED9) and 

SPY transcripts. The regulation of ABA-related transcripts also reinforces the premise that HRR 

could be a positive regulator in ABA metabolism and signalling. As seed germination is mainly 

determined by hormonal balance between ABA and GA levels, the regulation of expression levels of 

ABA metabolism-related genes, particularly those coding for rate-limiting enzymes (NCEDs), is 

important to control the positive feedback pathway in ABA biosynthesis. 

During plant development, HRR was expressed in the later stages of seed maturation, seed 

imbibition and germination (first day). This result suggests that HRR could regulate transcriptomes 

associated to seed maturation, desiccation and germination programmes. Consistent with HRR 

expression profile, the expression analyses of ABI5, Em6, HSFA9 and HSP101 revealed that these 

transcripts could be regulated by HRR, during later seed maturation and in first day of germination. 

In these stages, where an increasing of ABA levels also occurs, ABI5 acts as master regulator in 

ABA signalling, being the main responsible for the induction of Em genes. The correct accumulation 

of Em proteins (and other LEA proteins) and HSPs during seed maturation ultimately determines the 

seed longevity and post-embryonic development. In addition, HSFA9 is the unique HSF involved in 

seed expression regulation of HSP and sHSP genes, particularly HSP101. Thus, considering the 

transcriptional network between ABI5, Em6, HSFA9 and HSP101, the stabilisation and integrity of 

respective transcripts promoted by HRR could be important to overcome the stress osmotic 

conditions during seed desiccation and germination.  

Regarding these facts, HRR could be a determinant RNA-binding protein involved in the 

stabilisation and accumulation of transcript levels of pivotal regulators (HSFA2, ABI5) and rate-

limiting enzymes (NCED9). Ultimately, the regulation of these transcript levels could influence the 

downstream gene expression, under HS conditions and during seed development and germination. 
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3.4. Subcellular dynamics of HRR proteins: perspectives on functional 

roles 

 

For predicting the possible function of HRR.1 and HRR.2, through the understanding of their possible 

cellular target, the subcellular localisation of HRR.1 and HRR.2 proteins was determined using 

different approaches. The transient ectopic expression of HRR.1 and HRR.2 fusions (either N- or C-

terminal to protein) was performed into epidermial cells of Nicotiana benthamiana. This allowed at 

first instance to analyse which are the most probable subcellular compartments where these proteins 

could be targeted. The stable transformation on cell suspension cultures of Nicotiana tabacum BY2 

(Bright-Yellow 2) was performed using the same GFP fusion constructs under the control of HRR 

promoter (pHRR). Using BY2 cell cultures, a more versatile experimental system was designed for 

studying the effects of HS and chemical treatments on subcellular localisation of HRR proteins. Even 

lossing or modifying some functional mechanisms due to cellular undifferentiation, these cell cultures 

respond to diverse signals in a physiological manner similar to the responses observed in whole plant.  

 

3.4.1 Subcellular localisation of over-expressed HRR.1 and HRR.2 proteins 

 

For determining the subcellular localisation of HRR proteins, epidermial cells of N. benthamiana 

were transformed with HRR.1 and HRR.2 GFP6 ectopic transgenes. The transient over-expression 

of GFP6-HRR.1 and GFP6-HRR.2 (N-termini) and HRR.1-GFP6 and HRR.2-GFP6 (C-termini) 

fusions was evaluated two days after transformation (Figure 3.37). 

The results for GFP6-HRR.1 protein fusion was uniformly detected in the nucleoplasm and 

associated to a sort of cytoplasmic network, which seems to be cytoplasmic granules associated to 

cytoskeleton (Figure 3.37A, solid and dashed red arrows, respectively). This fusion was also evident 

in the sub-nuclear region, most likely the nucleolus (Figure 3.37B, orange arrow). The GFP6-HRR.2 

fusion was detected in small cytoplasmic granules, less intense than for GFP6-HRR.1 fusion (Figure 

3.37E). The most intensive signal was detected in the nucleus, as nuclear speckles (C and D). These 

nuclear speckles were found either distributed throughout the nucleoplasm (Figure 3.37C) and/or 

localised close to the nuclear periphery (white asterisks, Figure 3.37D). The C-terminal HRR.1 and 

HRR.2 fusions (HRR.1-GFP6 and HRR.2-GFP6, respectively) displayed different GFP6 signals 

comparing to the corresponding N-terminal fusions (Figure 3.37F and H). The HRR.1-GFP6 fusion 
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Figure 3.37. Subcellular localisation of ectopic HRR.1- and HRR.2 fusions in Nicotiana benthamiana epidermial 
cells. Transient expression of p35S::GFP6-HRR.1/HRR.2 and p35S::HRR.1/HRR.2-GFP6 transgenes was performed in 
leaf epidermial cells of N. benthamiana. Shematic representations of the fusion constructs used in each assay are 
displayed on the left. Images were obtained two days after transformation, using a fluorescence microscope. Different 
expression patterns of GFP6-HRR.1 (A-B), GFP6-HRR.2 (C-E), HRR.1-GFP6 (F) and HRR.2-GFP6 (H) fusions are 
depicted. The transient expression of p35S::GFP (pBIN) was performed in the same experimental conditions, being used 
as positive control (G). As negative control, non-transformed N. benthamiana epidermial cells were used (I). The * 
indicate nuclear speckles; solid red arrow indicates nucleus; dashed red arrow indicates cytoplasmic granules; orange 
arrow represents the nucleolus. 
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presented the majority of GFP6 signal in the nucleus, which was uniformly detected in nucleoplasm 

(Figure 3.37F). The GFP6 signal of HRR.2-GFP6 fusion was considerably weak, being only fairly 

detected in cytoplasmic granules and nucleus (Figure 3.37H). All N- or C-terminal fusion signals 

were significantly different from over-expressed GFP in control (p35S::GFP), where the typical 

distribution of GFP6 signal throughout the whole intracellular compartments was evident (Figure 

3.37G). 

Different subcellular patterns detected for each GFP6 fusion could result from the effect of 

constitutive promoter activity in global cellular homeostasis. The presence/absence of functional 

domain in HRR proteins and different terminal GFP6 fusions could also have resulted in different 

expression patterns. A comparative work of C- and N-terminal GFP fusions for subcellular 

localisation studies demonstrated that all tested C-terminal tagged proteins localised correctly, in 

contrast to N-terminal tagged proteins (Palmer and Freeman 2004). Accordingly, the authors 

suggested that N-terminal tagging of a protein can cause the targeting sequence to be masked. As 

proteins first emerge from the ribosome into the cytoplasm by the N-terminus and chaperones 

prevent their folding until a whole protein domain is exposed (50-300 amino acids long), the GFP6 

will be firstly folded in N-terminal fusions. This could culminate in disruption of the correct folding of 

the protein of interest and its correct localisation. Also, the protein of interest may disrupt the folding 

of the GFP6 itself. In case of C-terminal fusions, as the folding of GFP6 occurs at the end, it will not 

influence the native folding of protein and the functional features of the protein of interest are 

expected to be maintained.  

The different intracellular targeting of HRR.1 and HRR.2 could result in part from the 

interference of GFP6 tagging in the activity of predicted HRR domains, RRM and PABP-1234. Both 

N-terminal GFP6 fusions could interfere with the RRM domain activity, eventually affecting the 

binding to RNA molecules or interaction with other factors. As both N-terminal fusions (GFP6-HRR.1 

and GFP6-HRR.2) were detected in apparently uniform cytoplasmic granules (in size and shape), 

they could be associated to processing bodies (P-bodies, PBs), or even to stress granules (SGs). 

PBs have been described as cytoplasmic mRNPs aggregates mostly constituted by protein 

components involved in RNA degradation and turnover (DCP decapping enzymes, VARICOSE and 

XRN4) (Xu and Chua 2011). SGs are compositionally different from PBs, being composed by 

mRNAs that are stalled in the process of translation initiation producing a complex with translation 

initiation factors (eIFs), the 40S ribosomal subunit and PABPs (Balagopal and Parker 2009). These 

cytoplasmic structures normally assemble upon cellular homesostatic disturbance. SGs have been 

described by their temporal and spatial composition, size and activity of constituent factors 

(Weber et al. 2008). Once the present experimental approach corresponds to the over-expression of 
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HRR.1 and HRR.2 transcripts and corresponding proteins, such a stressful condition could have 

resulted in the assembling of SGs.  

The presence of GFP6-HRR.2 fusion in nuclear speckles suggests that HRR.2 could modulate 

of protein-protein interactions between splicing factors, mRNA decay processes, chromatin 

remodelation or even modifications in rRNA transcription and processing. Nuclear speckles, also 

known as interchromatin granule clusters (IGCs), are well described in mammalian cells and 

comprise irregularly shaped structures that vary in size (Fang et al. 2004; Biamonti and Vourc’h 

2010). These sub-nuclear domains are located in the interchromatin regions of the nucleoplasm and 

were suggested to be sites for pre-mRNA splicing factors storage and/or reassembly. Splicing 

factors are recruited from these compartments to the sites of active transcription (Fang et al. 2004). 

The same subnuclear localisation was also described for some Arabidopsis SR proteins (SR1, 

SR30, SR33), whose sizes and number of speckles vary considerably with development and in 

different tissues (Ali and Reddy 2008b). Since these nuclear compartments are in constant 

interchanging, HRR.2 could be important for the regulatory nuclear roles. Hence, HRR.2 could 

interfere in the modulation of transcription (co-interaction with transcription machinery and chromatin 

reposition), post-transcription (expression of SR- and spliceosome-related transcripts) or post-

translation (modifications in protein-protein interactions between SR and other spliceosome proteins). 

The nucleoplasm localisation of HRR.1-GFP6 fusion suggests a possible nuclear role in 

transcript stabilisation during 5’-capping and 3’ end-polyadenylation, such as the role played poly(A)-

binding proteins (PABPs). The PABPs are highly conserved proteins between eukaryotes (Mangus 

et al. 2003). Single-celled eukaryotes only have a single PABP coding gene, whereas humans have 

five and Arabidopsis has eight. These proteins are mostly associated with mRNA maturation 

processes, where they play roles in synthesis of 3’poly(A) tail, mRNA export, translation initiation and 

termination and recycling of ribosomes. They are not only important for definition of poly(A) tail 

length during mRNA processing, but also their binding prevents the deadenylation, a step that 

normally results in mRNA decay (Mangus et al. 2003). HRR.1 could interact with PABPs during the 

nuclear mRNA maturation and cytoplasmic regulation of translation process. This hypothesis is in 

part corroborated with the predicted protein interaction and co-expression/regulation with PAB6 

(Section 3.1.3). 

The HRR.2-GFP6 fusion resulted in a weak GFP signal, which was detected in cytoplasmic 

granules and nucleus. In contrast, the HRR.1-GFP6 fusion presented a uniformly distributed GFP 

signal within the nucleus (Figure 3.37H and F, respectively). Altogether, the results suggest that 

HRR.1 and HRR.2 are both present in nucleus and cytoplasmic granules. However, they seem to 

have different subcellular accumulation in the nucleus. Comparing both GFP intensity signal, HRR.2 
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appears to be less accumulated in nucleus than HRR.1. This difference could be due to the 

presence of PABP-1234 functional domain in HRR.1 and not in HRR.2. The importance of 

presence/absence of specific functional domains were already reports for the U-rich binding proteins 

RBP47 and UBP1 (Weber et al. 2008). In this work, truncated proteins lacking the RNA binding 

domain or its prior domain differed in subcellular localisation as compared to native proteins. The 

functional PABP-1234 domain, present in HRR.1, could be important for transcript maintenance. 

Once the PABPs are normally associated to mRNA 3’UTRs, their C-terminal functional domains 

vastly interacts with other factors regulating several steps of RNA metabolism (polyadenylation, 

nuclear export, initiation and termination of translation, mRNA decay) (Mangus et al. 2003). In the 

absence of such functional domain in HRR.2 protein, essential protein interactions with other factors 

and stability of transcripts could be compromised. Predicting such conditions, both HRR.2 proteins 

and transcripts could be subjected to degradation processes.  

To gain more insight into the expression and dynamic organisation of HRR.1 and HRR.2 

proteins in the cell, their expression under the control of their endogenous native promoter was 

followed. Instead of the highly active constitutive 35S promoter, new constructs harbouring the 

predicted HRR promoter (pHRR) for controlling the expression of N-terminal GFP6-HRR.1 and 

GFP6-HRR.2 fusions were obtained. Nicotiana tabacum cell suspensions of Bright-Yellow 2 line 

(BY2 cells) were used for the subcellular localisation analysis of expressed pHRR:GFP6-HRR.1 and 

pHRR:GFP6-HRR.2 transgenes (Figure 3.38). BY2 cells are easily transformed by Agrobacterium 

and present high sensitivity and capacity to withstand stress conditions, in comparation with 

Arabidopsis culture cells (Koroleva et al. 2009). 

Under standard growth conditions (23ºC), both transformed BY2 cell lines displayed low levels 

of protein expression. When heat-stressed at 38ºC for 60 minutes, the GFP6 signal was much more 

intense. A stressful condition is thus necessary for the induction of these transgenes. In this plant 

model and after HS treatment, GFP6-HRR.1 fusion was detected in the nucleus (thick orange arrow) 

and cytoplasmic granules (light orange arrow), whereas GFP6-HRR.2 was only detected in 

cytoplasmic granules. These cytoplasmic granules are likely to be SGs or PBs. PBs have been 

described as spheric and uniform aggregates in size and shape, which increase in number and size 

in response to stress, while SGs are morphologically more heterogeneous and are assembled under 

stressful conditions (Weber et al. 2008). Accordingly, it appears that HRR.1 seems to be 

predominantly found in SGs, whereas HRR.2 seems to be found in PBs. However, the possibility of 

both proteins are present as in SGs as in PBs should not be excluded. 
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Figure 3.38 Subcellular localisation of native HRR.1 and HRR.2 fusions in tobacco (Nicotiana tabacum) cell 
suspension culture. Transformant tobacco Bright-Yellow2 (BY2) cells, harbouring the pHRR::GFP6-HRR.1 and 
pHRR::GFP6-HRR.2 transgenes were observed using fluorescence microscope. Transformant tobacco BY2 cells, under 
normal growth conditions, depicted basal expression (A and C, for HRR.1 and HRR.2, respectively). The intracellular 
localisation of HRR.1 and HRR.2 was detected after imposition of a HS treatment (HS, 38ºC for 60 minutes) (B and D, 
respectively). (E) Non- transformant tobacco BY2 cells were used as negative control. (F) DAPI fluorescence in non-
transformed tobacco BY2 cells was used as a nuclear marker. (G) GFP fluorescence in transformant tobacco BY2 cells 
expressing p35S::GFP transgene was used as positive control. Orange arrows indicate cytoplasmic granules; thick 
orange arrow indicates the nucleus. 

 

These results are somewhat similar to the corresponding ectopic expressions (Figure 3.37), 

except for GFP6-tagged HRR.2 protein. In this case, when natively expressed, HRR.2 fusion protein 

was only observed in cytoplasmic granules (SGs and/or PBs), not being observed its presence in 

nuclear speckles. Collectively, these results suggest that native expression of HRR proteins is HS-

dependent. However, the different subcellular localisation for both proteins, under different promoter 

activities, suggests the importance of cellular physiology state for determination of HRR proteins 

targeting. 
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3.4.2 Functional dynamics of HRR under HS treatment  

 

In an attempt to understand the dynamics under HS treatment, the transformed pHRR::GFP6-HRR.1 

BY2 cells were HS-stressed for different periods, ranging from 15 to 60 min (Figure 3.39). The GFP 

signal was followed to observe the SG assembly dynamics of cytoplasmic granules and association 

of HRR.1 with them.  

After 15 min of HS treatment, HRR.1 fusion was still fairly detected. Hereafter, at 30 min of HS 

treatment, the HRR.1 fusion was detected in the nucleus, but also in the cytoplasm. After 60 min of 

HS treatment, the GFP signal was evident a broad quantity of GFP6-HRR.1 was observed in 

cytoplasmic granules. 

 

 

 

Figure 3.39 Intracellular dynamics of HRR.1 fusion protein in cytoplasmic aggregates after heat stress 
impositions. Transformant tobacco BY2 cells, harbouring the transgene pHRR::GFP6-HRR.1, were observed using a 
fluorescence microscope after imposition of 38ºC, for 15, 30 and 60 min (Leica DM 5000 B).  

 

The temporal expression of HRR.1 fusion corresponds to the previous HRR expression analysis, 

where the highest HRR expression levels were reached one hour after HS treatment (Section 3.3.1). 

Although using different biological systems, both transcripts and protein reached highest levels after 

one hour of HS treatment (Figure 3.22 and 3.39). These results suggest that HRR is recruited in 

early stages of HS response.  Even before, the GFP signal distribution during the first 30 min of HS 

treatment could be due to the association of HRR.1-containing granules to cytoplasmic 

microfilaments. In mammalian cells, the increasing of SG size was suggested to be facilitated by the 

transport of smaller SGs along microtubules with subsequent fusion of them (Nadezhdina et al. 

2010). Hence, these results suggested that HRR.1 protein is expressed in early stages of HS 

imposition and could be progressively required for SG assembling. At this moment, it is impossible to 
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conclude if these cytoplasmic granules correspond to SGs or PBs. Following previous reported 

results, SGs are rapidly induced (15-30 min) in response to environmental stress and are 

heterogenous in size and shape (Anderson and Kedersha 2006). As the cytoplasmic foci reveal such 

morphological aspect and temporal formation, HRR.1 could be suggested to make part of SG 

composition. However, due to the interchangeable dynamic activity between SGs and PBs, HRR.1 

could also be present in PBs.  

Even before their description in mammalian cells, SGs were observed in cytoplasm of tomato 

cells subjected to HS treatment, being referred to heat stress granules (HSGs). At that time, the 

HSGs were described as cytoplasmic aggregates containing HSPs and untranslated housekeeping 

mRNPs, formed during long-term HS treatment (Nover et al. 1989). When first described in 

mammalian cells, the SGs presented a different composition, comprising stalled 48S preinitiation 

complexes (untranslated poly(A)+ mRNA bound to small ribosomal subunit), associated to core 

assembling RNA-binding proteins TIA-1 (T-cell internal antigen-1) and TIAR (TIA-related protein) 

(Kedersha et al. 1999; Kedersha et al. 2000). More recently, similar structures were characterised in 

plants. These granules contain 48S pre-initiation complexes associated to early translation factors 

(eIF4E) and many RNA-binding proteins (RBP47 and UBP1) (Weber et al. 2008). In contrast, PBs 

have a different composition, comprising a core enzymatic complex involved in mRNA decapping 

and 5’-3’ exonucleotidic activity (DCP1, DCP2, DCP5, XRN4 and some components of NMD, as 

UPF1), as well as 3’-5’ exosome-associated mRNA degradation (Souret et al. 2004; Potuschak et al. 

2006; Xu et al. 2006; Goeres et al. 2007; Brogna et al. 2008). In addition to RNA decay, P-bodies 

also function in translation regulation (Xu and Chua 2011). Considering that UBP1 is one of strong 

candidates to interact with HRR.1 protein (section 3.1.3), it is likely that HRR.1 could mainly exert 

their functions in SGs. 

 

3.4.3 Determination of the putative HRR role on the biogenesis of cytoplasmic 

aggregates 

 

Taking into account that HRR.1 and HRR.2 could be targeted to SGs and/or PBs and the assembling 

of both structures depends on non-translated transcripts flux, the requirement of HRR proteins for 

assembling of such cytoplasmic RNA granules was investigated. For this, the assembly and putative 

dynamic exchange of components between these cytoplasmic mRNP-containing complexes was 

disrupted by chemical treatment. The application of cycloheximide (CHX) would inhibit the translation 

by blocking the mRNA release from polysomal complexes. Conversely, the application of another 
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translation inhibitor, puromycin (PUR), would have an inverse effect of CHX, by destabilising of 

polysomes and releasing the transcripts that were being translated. While CHX application promotes 

the ribosomes stalling on transcripts and inhibits the formation of stress granules, PUR application 

promotes the SG assembling. These results have been explained by the requirement of the inhibition 

of translation initiation, for SG formation (Anderson and Kedersha 2002; Weber et al. 2008). 

When tobacco BY2 cells transformed with pHRR::GFP6-HRR.1 and pHRR::GFP6-HRR.2 

transgenes were treated with CHX, under standard conditions (23ºC), the expression of HRR.1 and 

HRR.2 fusions slightly increased (Figure 3.40, C and D), comparing with non-treated BY2 cells 

(Figure 3.40, A and B). As previously observed (Figures 3.38 and 3.39), under HS treatment (38ºC, 

60 min), a high number of fluorescent cytoplasmic aggregates was detected on pHRR::GFP6-HRR.1 

and pHRR::GFP6-HRR.2 transgenic BY2 cells (Figure 3.40, E and F). However, when both 

transformant BY2 cells were treated with CHX and subsequently heat-stressed, a marked reduction 

in size and number of cytoplasmic granules was observed (Figure 3.40, G and H). The same 

transformant BY2 cells when treated with PUR and then heat-stressed, they displayed a re-

assemblying of cytoplasmic granules (Figure 3.40, I and J)  

In standard conditions, the exposition of transformant BY2 cells to CHX promoted a small 

accumulation of both tagged HRR proteins. In part, these results corroborate with bioinformatics data 

(BAR browser), which predict that HRR is margely up-regulated under CHX treatment (10 µM, by 

three hours). Besides cycloheximide treatment, HS condition also influences the HRR activity. Such 

as previously shown, a large amount of cytoplasmic granules was observed in both transformant 

BY2 cells (Figure 3.38). However, the spatial distribution of both HRR fusion proteins was different.  

GFP-HRR.1 fusion-containing granules were mostly found close to nuclear periphery and in 

cytoplasm, while GFP-HRR.2 fusion was more randomly dispersed in the cytoplasm. These results 

suggest that HRR proteins possess specific subcellular dynamics. The presence of HRR.1 fusion 

protein close to the nuclear membrane indicates that this protein could be recruited for mRNA 

nuclear export or translation initiation process. In mammalian models, the translation initiation is 

characterised as ‘pionner round’, consisting in the ribosomal scanning (searching by PTCs and EJC 

displacing) and remodelating of mRNP (Ishigaki et al. 2001; Chang et al. 2007).  

The HRR.2 fusion, seems to be located in SGs, or PBs or in both, during HS treatment. The 

dynamic of SGs and PBs assembling is mostly dependent from mRNP homeostasis, not only in 

standard conditions as during stressful conditions. Hence, the exposition of transformant BY2 cells 

(GFP6-HRR.1 and GFP6-HRR.2) to translation inhibitors cycloheximide (CHX) and puromycin (PUR) 

allows to infer if HRR proteins are involved in formation of such RNA granules. The CHX treatment 

before HS imposition allows the evaluation of dynamic influx of stalled mRNPs from SGs to PBs,
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through the increase/decrease of PBs number and size. The formation of SGs and PBs has been 

described to be inhibited by application of CHX, in stresses cells (Weber et al. 2008). In addition, 

CHX-treated HeLa cells presented SGs dissociated into their constituents that were dissolved in the 

cytoplasm (Nadezhdina et al. 2010). Occurring the SG dissolution under CHX treatment, the mRNP 

flux between SGs and PBs is interrupted and RNA granules disappear. The decreased number and 

size of cytoplasmic aggregates after CHX treatment and subsequent HS imposition indicates that 

HRR.1 and HRR.2 could be involved in SG and PB assembling. As a result, the composition of PBs 

would change, reducing their size and number. Conversely, the treatment with puromycin promoted 

the cytoplasmic aggregates assembling, after the HS treatment. This translation inhibitor is an 

aminoacyl tRNA analogue that destabilizes polysomes by promoting premature termination 

(Kedersha et al. 2000). Altogether, HRR proteins are suggested to be involved in dynamic flux of 

mRNPs between SG and/or PBs cytoplasmic RNA granules.  

As a conclusion, the results suggest that the products of HRR alternative splicing, HRR.1 and 

HRR.2 proteins, could follow different subcellular pathways, during the thermotolerance responses 

upon HS conditions. Once translated, their targeting and intracellular accumulation appears to be 

somewhat different. In early responses to HS, HRR.1 could promote the SG assembly, participating 

in recruitment of stalled and housekeeping mRNPs, possibly through the protein-protein interactions 

with other RNA-binding proteins. The untranslated mRNPs are then screened for (1) storage, (2) 

reintegration into translation program/process or (3) moved to PBs, where are expected to be 

degraded. All these tasks can only be afforded by a dynamic exchange of components between SGs 

and PBs, in which HRR.1 is likely to be involved. Even though HRR.2 could be early integrated into 

SGs, most of its corresponding GFP6 signal was observed in cytoplasmic granules similar to PBs, 

which were smaller than SGs. HRR.2 could play a regulatory function during mRNA decay and 

transcriptional regulation, upon HS conditions. The modified HRR.2 binding motif (in RRM domain) 

could be sufficient for altering the RNA and protein interaction activities. A specific set of transcripts 

could then be drived for degradation, including their transcripts. In PBs, the transcripts can be 

degraded through 5’-3’ degradation pathway (NMD), or HRR.2 transcripts could be also degraded by 

exosome (3’-5’ degradation), generating small RNAs. Ultimately, these molecules might be recruited 

to the nucleus, where could influence the transcriptional activity. 

 

(Left page) Figure 3.40 Intracellular dynamics of  HRR.1 and HRR.2 fusions under HS conditions and chemical 
treatment (CHX and PUR). Transformant BY2 cells harbouring the pHRR::GFP-HRR.1 and pHRR::GFP6-HRR.2 
transgenes were observed using a fluorescence microscope. Cells were observed under standard conditions (A and B, 
respectively), after being treated with cycloheximide (CHX, 100 µg.ml-1; C and D, respectively) or upon HS treatment 
(38ºC, 60 min; E and F, respectively). The transformant BY2 cells harbouring pHRR::GFP6-HRR.1 (G, I) and 
pHRR::GFP6-HRR.2 transgenes (H, J) were treated with CHX (100 µg.ml-1) (G and H) or treated with puromycin (PUR, 
10 µg.ml-1) prior of HS treatment (I and J), 60 min prior to HS imposition. 
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4.1 Final Remarks 

 

During evolution, plants have developed several survival strategies to cope with environmental cues. 

Particularly, under high field temperatures, plant adaptation is achieved through a broad range of 

morphological, physiological and molecular responses. Plant responses to HS are mainly determined 

by key molecular reorganisations, affecting different levels of gene regulation. Post-transcriptional 

regulation under HS conditions is mostly carried out by RNA-binding proteins. In recent years, some 

RNA-binding proteins (most RRM-containing proteins) have been described, but few studies have 

been achieved in attempt to understand their involvement in HS-associated transcriptome regulation. 

The fundamental knowledge obtained from these studies will contribute for the improvement of crop 

plants of great agronomic and economical interest. The work presented in this thesis allowed to 

uncover the molecular roles of an Arabidopsis RNA-binding protein that is highly and specifically 

expressed under HS conditions. This will allow to get new insights on plant adaptive post-

transcriptional mechanisms during HS imposition.  

The availability of Arabidopsis transcriptomic data, provided by ATH1 Gene Chip experiments, 

allowed the previous selection of several heat-responsive genes. Among them, HRR (Heat-Responsive 

RNA-binding protein) gene encodes a putative RNA-binding protein that could be involved in binding 

transcripts and other RNA-binding proteins during heat stress, thus representing a potential determinant 

gene for thermotolerance. The principal objective of this thesis was to functionally characterise the 

HRR protein, using bioinformatic, phenotypic and molecular approaches. 

HRR is a RNA-binding protein that contains a N-terminal RRM domain and a C-terminal 

PABP-1234 functional domain. The presence of this functional domain suggests putative roles on 

transcript stabilisation, transport of mature mRNAs and/or translation initiation. The phylogenetic 

alignment of HRR with different Arabidopsis RRM-containing proteins (belonging to different functional 

groups) and potential metazoan HRR orthologues revealed that HRR is closest to GR-RBPs and 

oligouridylate-binding proteins. Although structurally different at C-terminus, the phylogenetic relationship 

of HRR with AtGR-RBPs may indicate related functions. The AtGR-RBPs are actually the RRM-

containing proteins that display well-characterised stress-related functions (Kwak et al. 2005; Kim and 

Kang 2006; Kim et al. 2007; Kim et al. 2008b). The majority of AtGR-RBPs already investigated appear to 

be involved in responses to different stress conditions, namely cold, salinity and drought. AtGR-RBP2, 

AtGR-RBP7 and AtRZ-1a (which possesses a RNA helicase activity) have been described as being 

crucial in promoting seed germination and seedling growth under cold stress and their over-expression 

confers freezing tolerance (Kim et al. 2007; Kim et al. 2008b; Kim et al. 2010). GR-RBPs have been 
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indicated as important regulators in pre-mRNA processing and/or stability of mRNAs. They promote the 

better RNA conformation for RNA transport and translation processes enhancement under those 

conditions (Zdravko J 2009). Although the different physiological and molecular features between HS 

and other abiotic stress conditions, HRR could play similar functions under HS conditions. In addition 

to GR-RBPs, the phylogenetic closeness of HRR with oligouridylate-binding proteins (UBA, UBP and 

RBPs) could also reveal mRNA stability functions for HRR. U-rich binding proteins were early 

characterised as being involved in maturation of plant pre-mRNAs, promoting the stabilisation of 

transcripts by recognition of AU-rich sequences present in 3’UTR (Lambermon et al. 2000; Lambermon et 

al. 2002). Indeed, they appear to be involved in recognition and stimulation of intron splicing (Lorkovic et 

al. 2000). More recently, these proteins have been implicated in responses to environmental cues. 

Through immunofluorescence studies, Weber et al. (2008) reported that, under HS conditions, 

RBP47 and UBP1 proteins are involved in cytoplasmic stress granules formation associated with 

untranslated poly(A)+ mRNAs. Thus, HRR could be suggested to play a role in the stability of HS-

induced transcripts, most likely through the interaction with other RNA-binding proteins. The 

presence of stress-inducible cis-elements in HRR promoter (RAV/AP2, MYB and bZIP) and 

predicted HRR co-interaction with oligouridylate-binding proteins, spliceosome factors, RanGAP and 

PABP6 suggests that HRR could interfere in several steps of RNA metabolism, regulating HS-

induced transcripts. Their putative role in different stages of RNA metabolism could occur due to the 

interaction with other RNA-binding proteins, probably playing crucial regulatory functions in different 

mRNP complexes. 

Phenotypic analysis of hrr knockout and HRR over-expression mutants showed that HRR is 

strongly involved in seed thermotolerance responses. The phenotype observed in early stages of HS 

treatment (up to 60 min) suggests that HRR could play a role in the transition to a HS-specific 

response. Accordingly, the highest HRR expression levels were observed after 60 min of HS 

treatment. The involvement of HRR in the early HS responses is also corroborated by the down-

regulation of HRR in the HSFA1 quadruple mutant (QK) (Liu et al. 2011). Considering that HSFA1 

TFs are early master regulators in HS response, it is possible that HRR could be indirectly up-

regulated by these factors, being requested for post-transcriptional regulation of downstream genes. 

HRR was also suggested to be involved in the stability of HSFA2 transcripts, during HS treatment 

and recovery periods. HSFA2 has been described as a pivotal regulator factor in the expression of 

an extensive broad range of HS-related genes, promoting the acquired thermotolerance response 

(Schramm et al. 2006). As the tight and coordinated regulation of HSFA2 expression levels is of 

extreme importance in response to a specific stressful input, the HRR function in the HSFA2 

transcripts stabilisation would be possible. Besides the germination impairment of hrr mutant seeds 
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detected after subjecting seeds to a heat treatment, a germination deficiency was also observed 

under salt stress and combination of heat and salt stress conditions. These results suggest that HRR 

could be involved in responses to the ionic imbalance imposed by salt stress. The possible 

cumulative effect between heat- and salt-induced stress responses may indicate that HS- and salt-

signalling pathways play in parallel and HRR could regulate or protect a common set of stress-

responsive (HSPs, LEA, antioxidant and osmolyte synthetic enzymes, calcium sensors, kinases and 

Na+/H+transporters) transcripts. Hence, HRR could be essential for the stability of such transcripts, 

whose products are important for cellular integrity under extreme conditions. The HRR involvement 

in salt responses and combination of stresses (HS and salt) is corroborated by the possibility of HRR 

be induced by TFs, which are up-regulated and act during early imposition of HS and salt stress 

conditions. DREB2A and DREB2B (ERF/AP2 transcription factors) are highly induced by salt/drought 

and high temperature responses (Sakuma et al. 2006b). These factors are up-regulated by HSFA1s 

and are involved in transcriptional regulation of later HS-induced HSFA2 and HSFA3 genes 

(Schramm et al. 2008). Considering that HRR could be indirectly induced by HSFA1, it is likely that 

DREB2A/2B factors up-regulate HRR expression, both under HS and salt conditions. Ultimately, 

HRR could promote the stability of HS- and/or salt-related transcripts. However, it should be 

considered that HS and salt-responsive transcriptomes might be different from the transcriptome 

associated to the combination of heat and salt stresses. For instance, the HRR function in all these 

experimental situations could be slightly different.  

Hormonal sensitivity germination assays revealed that HRR could act as a positive regulator in 

ABA metabolism and signalling. In contrast, HRR appears to exert negative regulatory effects in GA 

pathway components. The lower ABA sensibility displayed by hrr mutant seeds in comparison to 

wild-type Ler could be explained by the accumulation and enhanced stability of ABA-related 

transcript levels, promoted in part by HRR (Figure 4.1). HRR is expressed during the later stages of 

seed maturation and germination. As ABI5 levels were impaired in hrr mutant during later stage of 

seed maturation and at germination, HRR appears to be important for the regulation of ABI5 transcript 

levels. This bZIP transcription factor is known to act as a master regulator in ABA signalling pathways, 

regulating the transcription of many ABA-related downstream genes, such Em genes that code for LEA 

proteins (Carles et al. 2002). Simultaneously, HRR could also regulate the HSFA9 transcripts, whose 

product is responsible for the induction of HSP genes, namely HSP101 (Figure 4.1). Indeed, hrr 

mutant seeds display lower levels of HSP101 transcripts during germination compared to wild-type 

Ler seeds. The accumulation of LEA proteins, HSP101 and other protective proteins during seed 

maturation and early events of germination is crucial for proteins integrity and determine the seed 

longevity and germination ability.  
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Equally important for seed germination is the regulation of the positive feedback mechanism 

established during ABA biosynthesis. This regulation is extremely important and mainly occurs 

during seed germination, where the increasing GA levels counteract the early raising of ABA levels 

(Figure 4.1). At this stage, hrr mutant displayed lower levels of ABA metabolism (ABA1 and NCED9) 

and GA signalling (SPY) transcripts than wild-type Ler, suggesting a putative role of HRR on the 

stability and possibly the turnover rate of these transcripts. This would ensure the tight control of 

ABA-related enzymes, including the rate-limiting ABA biosynthetic (NCED9) enzyme levels. Under 

HS conditions, the accumulation of ABI and ABA biosynthesis transcripts in hrr mutant seeds reveals 

the importance of HRR in the control of seed thermoinhibition. This defense mechanism should be 

tightly regulated, once it could dictate the seed germination ability at recovery period. 

 

 
 

Figure 4.1 Proposed model for HRR expression and its possible role during seed development and germination. 
During seed development, two ABA peaks occur (1). The first occurs after the cell division arrest and promotes the 
synthesis of storage-related mRNAs and proteins. The second ABA peak occurs during mid-maturation stage and may 
stimulate the synthesis of LEA proteins and prepare the embryo for desiccation. Based on the results from gene 
expression analysis, HRR appears to be up-regulated during the second ABA peak, being possibly involved in the 
metabolism of ABI5, HSFA9, HSP101 and LEA protein transcripts (inside a grey box). During early stages of seed 
germination (seed imbibition), HRR is again up-regulated and coincident with a transitory increase of ABA levels (2). 
Under tight regulation of ABA/GA homeostasis, HRR could be responsible for the stability and turnover regulation of ABA 
metabolism (ABA1, NCED9) and signalling (ABI5), as well as SPY (GA negative regulator) transcripts. Indeed, HRR 
could be involved in regulation of seed-stored and new synthesised mRNAs. Seed development comprises the following 
stages: EM (Embryo Morphogenesis), MEM (Mid Embryo Maturation) and LEM (Late Embryo Maturation).  
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Altogether, HRR is proposed as a positive regulator component in ABA metabolism and 

signalling pathways, possibly regulating key transcript levels during the positive feedback loop in 

ABA biosynthesis during germination. This RNA-binding protein could directly or indirectly promote 

the stability of transcript levels corresponding to ABA biosynthesis enzymes (ABA1, NCED9) and 

ABA signalling proteins (ABI5), as well as stress-related proteins (LEA proteins and HSPs). The 

absence of HRR in hrr mutant during seed maturation may be in part responsible for the lack of post-

transcriptional regulation of crucial transcripts, whose products would be important to regulate the 

transition phases from seed dormancy to germination. 

In contrast to ABA, HRR seems to exert negative effects in the post-transcriptional regulation 

of GA metabolism. The hypersensitivity of hrr mutant under exogenous GA treatment could be in part 

correlated with the low levels of SPY transcripts during seed germination process in comparison to 

wild-type Ler transcript levels. Together with DELLA proteins, this GA negative regulator is 

responsible for the negative control of GA biosynthesis (Olszewski et al. 2002). The involvement of 

RNA-binding proteins regulating transcripts of GA-related genes, either directly or indirectly, have 

never been reported. Nevertheless, as GA homeostasis in different developmental stages is 

controlled by a negative feedback mechanism, some RNA-binding proteins are likely to regulate the 

transcript levels of GA metabolism and signalling genes.  

Globally, the results indicate that the HRR functional role could be influenced by the plant 

hormonal balance. HRR could play important roles during the transition of developmental stages, 

mostly from dormant to germinated seed. During this transition, a tight control of gene expression 

and a fine tune balance between the ABA and GA hormones would be crucial for further plant 

development. Other RNA-binding proteins are also regulated by ABA levels. The AKIP1 protein (a Vicia 

faba RBP that interacts with kinase AAPK) binds with high affinity to dehydrin transcripts under stress 

conditions (Li et al. 2002). In addition, AKIP1 is partitioned to nuclear speckles under ABA treatment. The 

same phenomenon was observed with its closest Arabidopsis homologue UBA2a, which is an interacting 

partner of hnRNP-like UBP1 protein (Lambermon et al. 2000; Lambermon et al. 2002; Riera et al. 2006). 

The transgenic plants expressing the constitutively nuclear UBA2a-GFP also formed nuclear speckles 

after ABA treatment. Since the nuclear speckles of mammalian systems are implicated in storage of 

splicing components, pre-spliceosome assembling, mRNA stability and active RNA processing, AKIP1 

and UBA2a proteins are likely to be involved in similar molecular mechanisms (Melcak et al. 2001). As 

UBP1 is functionally complexed with UBA1 and UBA2 proteins (Lambermon et al. 2002) and is predicted 

to co-interact with HRR, it is possible that HRR also takes part of such oligouridylate-binding protein 

complex during some steps of RNA metabolism involving ABA-related transcripts. 
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After HS imposition in seedlings, HRR expression was subjected to an alternative splicing 

process, originating the canonical HRR.1 and the intron-retained HRR.2 transcripts. By possessing 

an in-frame PTC, the HRR.2 alternative transcripts are good targets for degradation (mostly through 

NMD mechanism). However, the occurrence of alternative splicing does not always occur. For 

instance, in non-stressed and HS-treated imbibed seeds, only HRR.1 transcripts were expressed. 

This could suggest that the role of each HRR protein could not be exactly the same at different plant 

development stages and under different environmental conditions. In vitro analysis of HRR fusion 

proteins revealed that both proteins possess different functional dynamics and could follow different 

subcellular pathways, under HS treatment. HRR.1 appears to be located in the nucleus, nuclear 

periphery and cytoplasmic granules, while HRR.2 was mostly associated to cytoplasmic granules. 

Cytoplasmic granules has been proposed to be SGs and/or PBs. SGs function as triage cytoplasmic 

compartments that accumulate untranslated mRNPs, while PBs are associated with mRNA turnover 

and translation regulation. Due to their heterogeneity level, HRR.1 appears to be more associated to 

SGs, while HRR.2 seems to be related to PBs. However, as the PB activity depends from SG 

biogenesis and activity, HRR.1 is possibly interchanged between SGs and PBs.  

The different subcellular localisations of both HRR proteins could be related with the 

presence/absence of the functional domain PABP-1234 in HRR.1 and HRR.2, respectively. The 

results obtained in this work could suggest a model for the cellular functional role of each HRR 

protein, under HS conditions (Figure 4.2). Due to the presence of PABP-1234 domain, HRR.1 could 

be involved in the nuclear mechanisms of mRNA processing, stability and mRNA export of 

housekeeping and HS-induced transcripts. The presence of HRR.1 fusion protein close to the 

nuclear membrane also suggests a possible role on mRNA nuclear export or translation initiation 

process. In addition, through protein-protein interactions with other RNA-binding proteins present in 

SGs, HRR.1 could participate in different roles of SGs, such as (i) regulation of stalled polyribosomes 

and non-translated housekeeping mRNPs, (ii) triage of mRNPs, keeping them in SGs, re-introducing 

them in the translation process or driving them for PBs for degradation, and (iii) regulation of 

dynamic interchange of RNA-binding proteins and other related factors between SGs and PBs. 

Concerning the HRR.2 transcript, the presence of a PTC predicts its instability and premature 

translation termination. Indeed, the HRR.2 transcript levels are determined by the transcription rate 

of HRR gene. Due to their higher instability, HRR.2 transcripts are less trapped in polysomes upon 

CHX treatment, suggesting that at least part of HRR transcripts are retained and degraded in 

nucleus through a NMD mechanism. 
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Figure 4.2 Proposed model for the functional roles of HRR.1 and HRR.2 under HS conditions. After HS perception, 
HSFA1s promote the induction of HS-responsive TF genes, which could induce the HRR expression. In turn, the 
spliceosome machinery is susceptible to successive cycles of phosphorylation/dephosphorylation, altering its splicing 
activity over HRR transcripts. From this process, two alternative transcripts are produced: HRR.1 and HRR.2. During 
nuclear export, HRR.1 and HRR.2 transcripts could follow different pathways, depending on the “pioneer round” 
translation process. Once translated, HRR.1 could participate in the biogenesis and activity of SGs (1), possibly being 
responsible by stabilisation and translocation of housekeeping and HS-induced transcripts (3) HRR could also be 
recruited to the nucleus or be integrated in the complex involved in mRNA quality control performed during mRNA 
nuclear export (2). Due to the presence of an in-frame PTC, HRR.2 transcripts, could still be retained in the nucleus, 
being further degraded (4). Those HRR.2 transcripts that skip the mRNA scanning control could be translated in the 
cytoplasm producing the HRR.2 protein. This truncated protein could interact and interfere with PBs and SGs activity (5). 
Both HRR.1 and HRR.2 could interchange between SGs and PBs (6). EJC, exon junction complex; hnRNPs, 
heterogenous ribonucleoproteins; RBPs, RNA-binding proteins; eIFs, eukaryotic initiation translation. 
 

 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

146 
 

The biogenesis of cytoplasmic RNA granules is not strictly connected with perception of 

stressful conditions. Contrary to SGs, PBs not only are functionally requested during stressful 

situations, but also appear to be present during the plant development transition phases where they 

tightly regulate the gene expression. Recently, PB components (DCP1, DCP2, DCP5, VARICOSE 

and XRN4) from Arabidopsis were reported to be required for post-embryonic development (Xu et al. 2006; 

Xu and Chua 2011). As HRR could be involved in the regulation of specific transcripts during the later 

stages of seed development and germination, it is likely that HRR could interact with PB components 

during these transition phases. In this case, HRR could be integrated with PB components, 

promoting the triage selection of transcripts for storage or degradation. During seed maturation 

process until desiccation, many mRNAs are known to be stored, including the SSP mRNAs which 

have been reported as PB substrates. Indeed, SSP transcripts were highly accumulated during early 

germination in the decapping mutants dcp1-1, dcp2-1 and dcp5-1 (Xu et al. 2006). Possibly, HRR 

could interfere in the RNP metabolism, during transition from dormant seed to germinating seed, 

promoting the stability of transcripts or cooperating in the decapping and degradation of specific sets 

of transcripts. 

The existence of a flux of HRR proteins between SGs and HSGs (heat stress granule) 

components should not be excluded. In previous plant thermotolerance studies, HSP101 was 

reported as possessing RNA-binding activity (Hong and Vierling 2001). Taking this into account, for 

longer periods of HS treatment, a specific set of HSPs and sHSPs could aggregate with specific HS-

induced transcripts, enhancing their translational activity under stressful conditions. Once HRR appears 

to be involved in stability regulation of HS-responsive transcripts (HSFA2 and HSPs), HSGs could be 

assembled in which HRR would promote the stability of HSP transcripts. 

 

The sequence of possible events involving the predicted HRR proteins could culminate in a 

profound remodelation of transcriptome in response to HS imposition. The HRR intervention in 

transcriptome modulation could be promoted by the selection and stability of transcripts that will 

proceed to pre-mRNA processing, mRNA transport, translation initiation and decay mechanisms. 

Being HS an environmental factor with a tremendous impact in plant gene regulation, the 

homeostasis re-establishment is in part powered by the cellular ability in removing aberrant 

transcripts and truncated proteins through the most diverse decay and turnover cellular mechanisms. 

The failure in regulation of such mechanisms could culminate in high level of cellular toxicity, thus 

compromising the cellular viability under extreme conditions.  
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4.2 Future perspectives 

 

The putative HRR function in transcripts stability and regulation suggests an important biological 

role, both under HS conditions and during seed development and germination. Further experiments 

will help to fill the gap between described molecular associations and the way they can affect the 

plant homeostasis. Some results from this work could be confirmed to give more information about 

HRR.  

 The phenotypic analysis of HRR over-expression lines: salt stress, exogenous ABA and GA 

should be reproduced and the quantitative expression analysis of HRR and specific-

responsive genes should be performed. This phenotypic analysis could include different 

experimental approaches, by differential combination of HS and salt stresses (HS treatment 

prior or after salt stress imposition). This analysis will allow to better define the involvement 

of HRR in abiotic stress- and phytohormonal-responsiveness pathways.  

 The HRR.2 transcript instability should be assessed using qPCR approaches. After an initial 

HRR induction by HS, the alternative HRR transcripts decay should be followed in the 

presence of chemical inhibitors and for extended HS treatment periods. This analysis will 

allow to determine whether HRR.2 transcripts are degraded through nuclear RNA 

degradation mechanisms or degraded via NMD mechanisms in cytosol.  

 

In an attempt to complement the developed tools for the functional characterisation of HRR, other 

strategies could be followed, such as: 

 Transcriptomic analysis of hrr and/or HRR over-expression mutant lines, under HS and 

during seed development and germination. The identification of down- or up-regulated genes 

could give new hints about the targets of HRR function. From this knowledge, new mutants 

could be obtained to understand which the potential targets of HRR are, thus describing a 

possible regulatory pathway. 

 RNA-protein (RNA immunoprecipitation) and protein-protein (yeast two-hybrid) interaction 

studies, both under HS conditions and during seed maturation and germination. From RNA 

immunoprecipitation analyses, it will be possible to know if HRR is involved in the direct 

binding to RNA molecules and which type of RNAs are bound. Following this strategy, the 

identification of immunoprecipitated RNAs could be achieved. From yeast two-hybrid 

interaction studies, the most probable HRR interacting partners could be predicted. This 
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would be useful for predicting the most probable cellular compartment in which HRR is 

integrated.  

 In vitro co-localisation of HRR protein fusions with oligouridylate-binding proteins (UBPs, 

UBAs and RBPs), as well as RNA degradation-related proteins (DCP1 and DCP2, XRN4) 

and initiation translation factors (eIF4E). This analysis should be performed in wild-type Ler 

and hrr mutant Arabidopsis protoplasts, under standard and HS conditions. Furthermore, the 

subcellular localization of HRR protein fusions in HS-treated seedlings of RNA degradation 

mutants (upf, dcp and xrn4 mutants) could also be performed. These studies will define in 

which cytoplasmic granules HRR proteins are (SG, PB and/or HSG) and determine their 

functional roles in SG and PB biogenesis and activities, during HS imposition.  

 

Performing these proposed tasks, a better acknowledge about the functional roles of HRR under HS 

conditions and during seed development/germination could be obtained. 
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ANNEX I: RRM-CONTAINING PROTEINS and HRR ORTHOLOGUES 

 

Protein sequences of A. thaliana RRM-containing proteins and HRR orthologue used in this work 

were obtained from NCBI (UniGene database) through the respective accession codes depicted in 

table A.  

 

Table A. Representative A. thaliana functional groups of RRM-containing proteins and HRR orthologues used in this 
work and their accession codes for nucleotide and protein sequences.  

Functional group Name AT code/ Nucleotide ID 
(NCBI) 

Protein ID 
(NCBI) 

Poly(A)-binding proteins 
(PABPs) 

AtPABP1/PAB
6 

At3g16380 NP_188259 

AtPABP2 At4g34110 NP_195137 

AtPABP2a At5g10350 NP_196597 

AtPABP3 At1g22760 NP_173690 

PABP4 At2g23350 NP_179916 

PABP5 At1g71770 NP_177322 

PABP6/PABP
7 

At2g36660 NP_181204 

PABP8/PAB7 At1g49760 BAB11475 

PABP9 At1g45100 NP_175125 

Serine/Arginine-rich 
proteins  

    (SR proteins) 

 

AtSCL28 At5g18810 NP_197382  

AtSCL30 At3g13570 NP_187966.1 

AtSCL30a At3g13570 NP_187966.2 

AtSCL33 
(SR33) 

At1g55310 NP_564685 

atSC35 At5g64200 NP_201225 

SR45 At1g16610 NP_173107 

Small nuclear 
ribonucleoproteins 

(snRNPs) 

AtU1A At2g47580 NP_182280 

At70K At3g50670 NP_190636 

AtU2B At2g36260 NP_180585 

AtU2AF35a At1g27650 NP_199096 

AtU2AF35b At5g42820 NP_174086 

AtU2AF35-like At1g10320 NP_172503 

AtU2AF65a At4g36690 NP_195387 

AtU2AF65b At1g60900 NP_176287 

 

 

 

 

http://www.ncbi.nlm.nih.gov/protein/30687014
http://www.ncbi.nlm.nih.gov/protein/15219287


CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

174 
 

 

Oligourydilate-binding 
proteins 

 

RBP45a At5g54900 NP_568815 

RBP45b At1g11650 NP_172630 

RBP45c At4g27000 NP_567764 

RBP47a At1g49600 NP_175383 

RBP47b At3g19130 NP_188544.1 

RBP47c At1g47490 NP_175180 

RBP47c’ At1g47500 NP_175181 

UBP1a At1g54080 NP_175810 

UBP1b At1g17370 NP_564018 

UBP1c At3g14100 NP_188026 

UBA2a At3g56860 NP_567042 

UBA2b At2g41060 NP_181639 

UBA2c At3g15010 NP_188119 

UBA1a At2g22090 NP_565525 

UBA1b At2g22100 NP_565526 

UBA1c At2g19380 NP_565450 

Glycine-rich RNA-binding 
proteins (GR-RBPs) 

GR-RBP1  At2g16260 NP_179222 

GR-RBP2 At4g13850 NP_193121 

GR-RBP3 At5g61030 NP_200911 

GR-RBP4 At3g23830 NP_189025 

GR-RBP5 At1g74230 NP_177563 

GR-RBP6 At1g18630 NP_173298 

GR-RBP7 At2g21660 NP_179760 

GR-RBP8 At4g39260 NP_195637 

 AtHRR At5g53680 NP_200179.1 

 

 

 

HRR orthologues 

SUP-12 

(C. elegans) 
NM_001136466.1 NP_001129938 

XSEB4 

(X. laevis) 
NM_001089144.1 NP_001082613 

RBM38 

(M. musculus) 
NM_019547.2 NP_062420 

RBM38b 
isoform  

(H. sapiens) 

NM_183425.1 NP_906270 

 
  

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=NP_188544.1
http://www.ncbi.nlm.nih.gov/protein/15238805
http://www.ncbi.nlm.nih.gov/nuccore/212648573
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ANNEX II: STANDARD PROTOCOLS 

 

1. Seed sterilisation and germination 

 

Arabidopsis seeds were stratified (4ºC, 2 days), in the dark. Seed sterilisation was performed as 

described in (Weigel and Glazebrook 2002), with some modifications. The stratified seeds were 

washed in 1 ml of ethanol 80% (v/v), for 5 min. Ethanol was replaced by 1 ml of sterilisation solution 

[15% (v/v) commercial bleach with 3.5% (w/v) effective chloride; 0.2% (w/v) SDS] and seeds were 

incubated for 10 min, with occasional vortexing. Seeds were then washed with 1 ml of sterile distilled 

water for three times. Between water washings, seeds were centrifuged at 13,000 g for 20 sec, for 

the appropriate removing of solutions. An additional water washing was performed and seeds were 

further incubated for 5-10 min, to remove the hypochlorite remains. After water discarding, seeds 

were resuspended in sterile 0.25% (w/v) agarose solution and sown onto Murashige and Skoog (MS) 

medium (Murashige and Skoog 1962), containing 1x basal salt mixture (Duchefa), 1.5% (w/v) 

sucrose, 0.5 g.L-1 MES (pH 5.7) and solidified with agar [0.8% (w/v) for horizontal growth or 1.2% 

(w/v) for vertical growth]. The plates were sealed with parafilm to prevent desiccation and placed in 

the growth room, under a long photoperiod (16 h light/ 8 h dark) with 80 µE.m-2.s-1 light intensity, at 

23ºC. All procedures were performed under aseptic conditions in a horizontal laminar flow chamber 

(OSN). 

 

2. Cultivation of plants on soil for bulk seed production 

 

Seedlings (8-10 day-old) of wild-type Ler and mutant lines (hrr, HRR over-expression) were 

transferred into individual pots containing 4:1 mixture of soil (Siro) and vermiculite (Asfaltex). For the 

soil acclimation, the pots were covered with a plastic wrap to maintain the moisture level and kept in 

the growth room in the same conditions. After three days, the plastic wrap was removed and plants 

were watered every day, until approximately seven weeks of growth. When the siliques appeared 

desiccated (~ eight weeks), the seeds were harvested using a metallic sieve with a small mesh 

diameter for better separation from other senescent plant tissues. Harvested seeds were stored in 

the dark, at room temperature, in well-sealed individual tubes to prevent fungal contamination and 

rehydration.  
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3. Isolation of genomic DNA from Arabidopsis 

 

Single leaves were placed in microtubes and ground to a fine powder with a micropestle and liquid 

nitrogen (N2). To each tube, 500 µl of CTAB extraction buffer [2% (w/v) CTAB, 0.1 M Tris-HCl, 

pH 8.0; 1.4 M NaCl; 0.02 M EDTA, pH 8.0; 0.1% (v/v) 2-mercaptoethanol] were immediately added. 

Following an incubation at 65ºC (Thermomixer, Eppendorf), for 20 min (with agitation at each 5 min), 

an equal volume of chloroform was added. Microtubes were gently inverted and centrifuged at 

13,000 rpm, for 5 min (Heraeus Pico21 Centrifugue, Thermo Scientific). Genomic DNA was 

precipitated by addition of 1 vol of chilled isopropanol. After gently swirling, the microtubes were 

centrifuged at 13,000 rpm, for 10 min. Precipitated DNA was washed by addition of 300 µl of 70% (v/v) 

ethanol and recovered by centrifugation. Finally, the resultant pellet was air-dried and resuspended in 

25 µl TE buffer (10 mM Tris-HCl, pH 8.0; 1 mM EDTA, pH 8.0) and RNase treated (100 µg.ml-1, 

Fermentas; during 30 min at 37ºC). The DNA was diluted to a final concentration of 100 ng.µl-1 and 

stored at -20ºC. 

 

4. Isolation of total RNA from Arabidopsis vegetative samples  

 

Frozen vegetative tissue samples (50-100 mg) were ground in N2 and homogenized with 1 ml of 

Trizol® reagent (Invitrogen). After homogenisation, samples were incubated at room temperature for 

5 min and 200 µl of chloroform were added. The samples were vigorously shaked for 15 sec and 

then incubated for 2-3 min at room temperature. The samples were then centrifuged at 12,000 g for 

15 min, at 4ºC (Sigma 2K15). Following centrifugation, aqueous phase was recovered and 500 µl 

isopropanol were added. The samples were gently mixed for 10 min and centrifuged at 12,000 g for 

10 min, at 4ºC (Sigma 2K15). The resulting pellet was washed with 75% (v/v) ethanol. An additional 

centrifugation was performed (7,500 g,  for 5 min, at 4ºC, Sigma 2K15) and RNA was air-dried for 

15-20 min. Total RNA pellet was resuspended in 20 µl RNase-free water (pre-treated with DEPC, 

Sigma) and incubated for 10 min at 55-60ºC. RNA was kept at 4ºC (for immediate downstream 

procedures) or stored at -80ºC.  

 

 

 

 

 



CHARACTERISATION OF ARABIDOPSIS HRR GENE: MOLECULAR ROLES IN PLANT THERMOTOLERANCE AND DEVELOPMENT 

 

 

177 
 

5. Isolation of total RNA from Arabidopsis seeds and silique samples 

  

The total RNA from Arabidopsis seeds and siliques was extracted as described in Oñate-Sánchez 

and Vicente-Carbajosa (2008). Siliques, stratified and germinated seeds samples (100-250 mg) were 

ground in liquid N2 and homogenised with 550 µl of extraction buffer [0.2 M Tris pH 8.0; 0.4 M LiCl; 

25 mM EDTA, 1% (w/v) SDS]. After a briefly mix, 550 µl of chloroform were immediately added. The 

sample was vortexed during 15 sec and kept in ice until all samples were ready. After centrifugation 

(13,000 rpm, 3 min), the supernatant was transferred to a new microtube and 500 µl of water-

saturated acidic phenol was added. The samples were thoroughly mixed and 200 µl of chloroform 

were added. After three to five minutes of incubation, with continuous and gently mixing, the samples 

were centrifuged at 13,000 rpm, during 3 min (Sigma 2K15). The supernatant (~600 µl) was 

transferred to a new microtube, cooled 8M LiCl was added to a final concentration of 2M and solution 

was mixed gently. To precipitate nucleic acids, the samples were incubated overnight, at 4ºC. The 

samples were then centrifuged at 16,000 rpm, during 30 min, at 4ºC (Sigma 2K15). The resulting 

pellet was dissolved in 22 µl of DEPC-water, added 3 µl buffer and 5 µl (5 U) of DNase I (Sigma). 

The incubation was taken into one hour, at 37ºC. The reaction was stopped by adding 5 µl of Stop 

solution (50 mM EDTA, Sigma), further incubated at 70ºC during 10 min and immediately chilled in 

ice. After five minutes of incubation in ice, 470 µl of DEPC-water, 7 µl of 3M NaAc pH5.2 and 750 µl 

of absolute ethanol was added. The samples were well mixed and centrifuged at 16,000 rpm, during 

10 min at 4ºC to precipitate carbohydrates. The supernatant was transferred to a new microtube and 

43 µl of 3M NaAc pH5.2 and 750 µl of absolute ethanol were added. The samples were well mixed 

and incubated at -20ºC for three to four hours and then were centrifuged at 16,000 rpm, during 20 

min at 4ºC (Sigma 2K15). The resulting pellets were washed with 500 µl of 70% (v/v) ethanol and let 

to air-dry for 15-20 min. The RNA samples were resuspended in 20 µl of DEPC-water and kept at 

4ºC (for immediate downstream procedures) or stored at -80ºC.   

 

6. DNA and RNA quantification and quality 

 

Nucleic acids quantification and purity were estimated by spectrophotometry using the Nanodrop 

ND-100. DNA or RNA concentration was determinated considering that an A260 nm of 1 is equivalent 

to 50 µg DNA.ml-1 or 40 µg RNA.ml-1. Purity was evaluated by A260 nm/A280 nm and A260 nm/A230 nm 

ratios and quality was determined after fractioning DNA/RNA samples in agarose gel (section 7).  
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7. Agarose gel electrophoresis 

 

DNA or RNA fragments were separated on an agarose gel [1-2% (w/v), prepared in 0.5x TAE buffer 

(40 mM Tris-HCl, pH 8.0; 20 mM acetic acid; 1 mM EDTA. pH 8.0)] stained either with ethidium 

bromide or Sybr Green (Invitrogen). Samples were pre-mixed with 6x Mass Ruler DNA Loading Dye 

(Fermentas) [10 mM Tris-HCl, pH 7.6; 0.03% (w/v) bromophenol blue; 60% (v/v) glycerol; 60 mM 

EDTA] and loaded onto the agarose gel. The ready-to-use Mass Ruler™ DNA Ladder Mix 

(Fermentas) was directly loaded. Electrophoresis was performed at 50-100 V, using a horizontal 

electrophoresis system filled with 0.5x TAE buffer. Fragments were visualised on an UV 

transilluminator (254 nm) and gels were revealed using the GenoSmart Imaging System (VWR) or 

ChemiDoc™ XRS (BioRad). 

 

8. Polymerase Chain Reaction (PCR) 

 

Amplification of DNA fragments was performed by PCR, either as described by Mullis and Fallona 

(1987) or following standard conditions described in user guides provided by manufacturer 

(Platinum® Pfx DNA polymerase, Invitrogen). PCR reaction conditions were prepared as referred in 

table B. PCR conditions are presented in annex IV. 

  

Table B. Preparation of PCR reactions for standard/colony PCR and for cloning methodologies 

 Standard/colony PCR Cloning PCR 

Template 500 ng-1 µg/ colony* 50 pg-1 µg 

5x buffer GoTaq DNA polymerase (Promega) 10 µl - 

10x buffer Pfx DNA polymerase (Invitrogen) - 5 µl 

25 mM MgCl2 4 µl  

50 mM MgSO4 - 2 µl 

10 mM dNTPmix 1 µl 1 µl 

10 µM primers  2 µl (each) 2 µl (each) 

GoTaq DNA polymerase (Promega) (1 U) 0.5 µl - 

Pfu DNA polymerase (1.25 U) - 1 µl 

Double distilled H2O (ddH2O)  up to 50 µl up to 50 µl 

*For performing PCR from E. coli transformed colonies: a single colony was scraped with a sterilised pipette tip and swirled into the PCR mixture. For 

Agrobacterium colonies: a single colony was first incubated in 20 mM NaOH, at 37ºC for 15 min; 5 µl of lysate was used as template in the PCR 

reaction.  
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9. First strand cDNA synthesis 

 

After analysis of RNA concentration and quality, RNA was used as template for the first-strand cDNA 

synthesis using SuperScript First-Strand Synthesis System (Invitrogen). Total RNA (1 µg) was gently 

mixed with 0.5 µg of Oligo(dT)12-18 primer, 1 mM dNTP mix and DEPC-water up to a final volume 

of5 µl. After incubation at 65ºC for 5 min, and then placed on ice for at least 1 min, the cDNA 

synthesis reaction mixture was added (1x RT buffer, 5mM MgCl2, 10 mM DTT, 20U RNase Out 

Recombinant RNase Inhibitor and 25U SuperScript II RT: Invitrogen). The reaction was incubated at 

42ºC for 1.5 h, after which the reverse transcriptase was then deactivated at 85ºC, for 5 min and 

then kept at 4ºC. The reaction mixture was then treated with 1U of E. coli RNase H (Invitrogen) for 

20 min, at 37ºC. The reactions were stored at -20ºC or kept at 4ºC to proceed immediately to RT-PCR 

amplification of cDNA. 

 

10. Gene expression analysis by RT-PCR 

RT-PCR was done as described in standard protocol for PCR reaction (section 8). Gene-specific 

primers pairs used for RT-PCR amplification was performed in same conditions using the constitutive 

Actin2 gene (At3g18780, ACT2) and corresponding specific primers (Annex III). These primers have 

a position that span an intron region, important to detect genomic DNA contaminants. The number of 

cycles that fit into linear amplification zone of each analysed gene were previously optimised (Annex IV). 

The PCR products were analysed by agarose gel electrophoresis (section 7). 

 

11. PCR fragments purification 

 

The Wizard SV Gel and PCR Clean-up System (Promega) was used to purify PCR products directly 

from the PCR reactions and also from agarose gel, in accordance with the manufacturer instructions. 

 

12. Gateway recombination reactions 

 

Gateway BP and LR recombination reactions were prepared as presented in table C, for a final 

volume of 10 µl (according with the supplier instructions, Invitrogen). Both reactions were incubated 

at 25ºC, for 16-18 h. Recombination reactions were stopped with 1µl Proteinase K, at 37ºC, for 

15 min. 
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    Table C. Components used for the preparation of BP and LR recombination reactions 

BP reaction 

attB PCR product 100 fmol 

pDONR™201 100 fmol 1(~200 ng) 

TE buffer (10 mM Tris-HCl pH 

8.0; 1 mM EDTA) 

Up to 8 µl 

BP clonase™ II enzyme mix 2 µl 

LR reaction 

            Entry vector (pENTR)             200 ng 

Destination vector (pDEST) 200 ng 

TE buffer Up to 8 µl 

LR clonase™ II enzyme mix 2 µl 

 

13. Enzyme restriction  

 

Enzymatic reactions were performed in cloning strategy procedures, in attemping to obtain molecular 

constructs for HRR promoter activity analysis and for native expression of HRR.1 and HRR.2 fusion 

proteins. All components used in enzymatic reactions are depicted in table D. All reactions were 

incubated at 37ºC and stopped by adding application buffer (containing EDTA). 

 

Table D. Components used for preparing enzyme reactions.  

Cloning of HRR promoter for pHRR::GFP6:HRR.1/ HRR.2 and pHRR::HRR.1/ HRR.2:GFP6 
constructs 

 N-termini fusion C- termini fusion 

pDNA 3 µg 3 µg 

Buffer SuRE/Cut A (Roche) 2.5 µl  

Buffer SuRE/Cut M (Roche)  2.5 µl 

BSA 10 mg.ml-1 0.25 µl  

Shrimp Alkaline Phosphatase (SAP) (1U.µl-1) (Fermentas) 1 µl 1 µl 

HindIII (10U.µl-1) (Roche) 1 µl 1 µl 

KpnI (10 U.µl-1) 1 µl  

SpeI (10 U.µl-1)  1 µl 

Double distilled H2O Up to 25 µl Up to 25 µl 

 

                                                      
1 For the conversion of DNA femtomoles (fmol) to nanograms (ng)::   (    )( )(         )(         )⁄⁄   where N is the size of 

DNA in bp, for BP reaction. [N- HRR.1(~560 bp); HRR.2 (~633 bp, N-termini fusion or ~308 bp, C-termini fusion)] 
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Cloning HRR promoter in pCAMBIA1303 for pHRR:: gusA construct 

pDNA  4 µg 

SuRE/Cut Buffer M (Roche) 2.5 µl 

HindIII (10 U.µl-1) (Roche) 1 µl 

BglII (10 U.µl-1) (Roche) 1 µl 

SAP (1 U.µl-1) (Fermentas) 1 µl 

Double distilled H2O Up to 25 µl 

 

14. DNA ligation  

DNA ligation reactions between the plasmid and insert were performed using T4 DNA ligase 

(Roche), following the instructions provided by the supplier. The standard ligation reaction was set 

up considering a molar ratio of vector DNA to insert DNA of 1:3, following the next equation: 

 

ng (insert) ng (vector) [ kb si e  insert  kb si e (vector)⁄ ]  molar ratio, insert vector  

 

Linearised DNA vector and insert DNA were thoroughly mixed and diluted with 1 µl of 10x DNA 

ligation buffer, to a final volume of 10 µl. T4 DNA ligase (1 µl) was then added and gently mixed. 

The ligation reaction was incubated for 2 days, at 4ºC. The ligation reaction ixture was directly used 

for the transformation of E. coli competent cells (section 16).  

 

15. Preparation of Escherichia coli competent cells 

 

E. coli1 cells were made chemically competent as performed by Inoue et al. (1990), with some 

modifications. A frozen aliquot (200 µl) of E. coli cells was spread into LB-agar plate, containing the 

selective antibiotic at recommended concentration, and grown overnight at 37ºC. A fresh colony was 

incubated in 8 ml SOB medium [2% (w/v) tryptone; 0.42% (w/v) yeast extract; 10 mM NaCl, 31 mM 

KCl, 10 mM MgCl2, 5 mM MgSO4] and grown overnight at  28ºC, with vigorous shaking (200 rpm). 

The overnight-grown culture was added to 200 ml SOB and grown at 28ºC, shaking vigorously at 

200 rpm and until OD600 was about 0.6-0.7. The cells were shared in separate tubes and cooled on 

ice by 15-20 min. After incubation on ice, the cells were pelleted by centrifugation at 3,000 rpm, for 

15 min at 4ºC (Centrifugue 5804R, Eppendorf). Each resulting pellet was resuspended in 17.5 ml 

cold TB buffer [10 mM PIPES; 15 mM CaCl2; 250 mM KCl; after pH adjustment at 6.7, join 55 mM 

MnCl2] and incubated on ice by 10 min. The cells were collected by centrifugation, in same  

 

1Genotype of E. coli competent cells used: XL1-Blue (recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1  

lac[F’ proAB lacl ZΔM15 Tn10(Tetr)] (Bullock et al. 1987); ccdB Survival T1R, [F- mcrA Δ(mrr-hsdRMS-mcrBC) 80lacZΔM15 

Δlacx74 recA1 araΔ139 Δ(ara-leu)7697 galU galK rpsL (Strr) endA1 nupG tonA::Ptrc-ccdA] 
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conditions described previously. The cells were resuspended with 8 ml cold TB buffer and added 

DMSO, for a final concentration 7% (v/v). After incubation on ice by 20 min, 100 µl aliquots were 

made immediately frozen in N2 and stored at -80ºC. 

 

16. Transformation of E. coli competent cells 

 

DNA (100 ng-1 µg) was gently added and mixed into an aliquot of ice-thawed competent cells and 

incubated for 25 min on ice. Cells were heat-shocked at 42ºC for 60 sec, with gentle agitation and 

immediately incubated on ice at least for 2 min. One millilitre of LB+ medium [LB containing 0.4% (w/v) 

glucose and 20 mM MgCl2] was added to the cell suspension. After incubation at 37ºC for one hour, with 

shaking at 200 rpm, cells were harvested (16,000 g, 1 min) (Heraeus Pico21 Centrifugue, Thermo 

Scientific) and resuspended in 100 µl of supernatant. Cells were spread on LB-agar medium 

supplemented with appropriate selection compound and incubated overnight at 37ºC. 

 

17. Isolation of plasmid DNA  

 

For preparing plasmid DNA for sequencing reactions, small-scale purifications were prepared using 

GenElute™ HP Plasmid Miniprep Kit (Sigma), according to supplier instructions. E. coli cells carrying 

the plasmid were firstly cultivated into 7 ml LB medium supplemented with the suitable antibiotic(s). 

For cloning procedures, the phenol/chloroform/isoamyl alcohol (IAA) method (Serghini et al. 

1989) was used, with some modifications. Firstly, a single E. coli colony was cultivated in 5 ml of LB 

medium containing the appropriate antibiotic(s) and grown was promoted during overnight at 37ºC, 

under continuous shaking (200 rpm). The E. coli culture was then spinned down by centrifugation at 

room temperature, at 16,000 g for 2 min (Heraeus Pico21 Centrifugue, Thermo Scientific). Pelleted 

cells were resuspended in 50 µl TEN buffer (10 mM Tris-HCl pH 8.0; 1 mM EDTA; 100 mM NaCl) 

and vortexing during 2 min. To lyse the cell suspension, 50 µl of phenol/chloroform/IAA (25/24/1, 

v/v/v) was added and briefly mixed using a vortex (2 sec). The lysate was centrifuged at 16,000 g, at 

room temperature for 10 min. After centrifugation, the aqueous layer was recovered and plasmid 

DNA was precipitated adding 17 µl of 7.5 M NH4OAc and 100 µl isopropanol. After being thoroughly 

mixed, the suspension was centrifuged for 2 min, at 16,000 g. The pellet was rinsed with 1 ml of 70% 

(v/v) ethanol and let to dry for 20 min, in the flux chamber. The DNA pellet was resuspended with 

20 µl of 10 mM Tris-HCl, pH 8.0. The final DNA solution was. digested with 100 µg.ml-1 RNase A 
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(Fermentas), at 37ºC during one hour, and stored at -20ºC or kept at 4ºC for downstream 

procedures. 

 

18. Preparation of Agrobacterium tumefaciens competent cells 

 

A single colony of A. tumefaciens EHA105 (Hood et al. 1993) was inoculated into 5 ml LB medium 

supplemented with rifampicin (50 µg.ml-1) and grown overnight at 28ºC with vigorous and constant 

shaking at 200 rpm. Next day, 100 µl of starter culture was diluted into 60 ml fresh LB medium and, 

under same incubation conditions referred above, the culture grown until a OD600= 0.6-1. The cells 

were shared in tubes and left in ice by 10 min, before centrifugation step (3,000 g, at 4ºC for 6 min) 

(Centrifugue 5804R, Eppendorf). The settled cells were resuspended with  one ml of ice-cooled 

20 mM CaCl2 (previously sterilized through 0.2 µm filter) and briefly centrifuged in same conditions 

as described above, for one min. Then the cells were resuspended in one ml of same solution and 

incubated on ice for 20 min. Aliquots of 100 µl A. tumefaciens were made, being either immediately 

frozen into N2 and stored at -80ºC or used for transformation. 

 

19. Transformation of Agrobacterium tumefaciens competent cells 

 

DNA (500 ng- 5µg) was added to 100 µl frozen aliquot A. tumefaciens cells and let to thaw onto ice. 

The cell suspension was immediately frozen in N2 for 30 sec and then incubated at 37ºC, for 5 min. 

After thawing, one ml LB medium was added and cells were incubated at 28ºC for three-four hours, 

with vigorous shaking at 200 rpm. After incubation, the cells were spread onto LB-agar medium 

supplemented with rifampicin plus the appropriate construct-selective antibiotic and incubated at 

28ºC for two days.   

 

20. Transformation of Arabidopsis plants by floral dip method 

 

A. tumefaciens clones harbouring the appropriate construct were inoculated into five ml LB medium 

supplemented with rifampicin (50 µg ml-1) plus the appropriate construct-selective antibiotic. Cell 

culture grown at 28ºC, with vigorous shaking at 200 rpm. Next day, one ml starter culture was diluted 

into 200 ml LB medium (pH 5.4), supplemented with construct-selective antibiotic and 

acetosyringone (19.6 µg.ml-1) and incubated in same conditions referred as above, until OD600= 0.6-

0.8. Further, the cells were harvested by centrifugation at room temperature (5,000 rpm, for 15 min) 
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(Centrifugue 5804R, Eppendorf). The pelleted cells were ressuspended in MES buffer (10 mM MES 

pH 5.4, 10 mM MgSO4) and briefly centrifuged in similar conditions mentioned previously. After 

removing supernatant, the pellets were ressuspended into 200 ml of 5% (w/v) sucrose, in which was 

further added 125 µl of 0.05% (w/v) Silwett L-77. The four-week-old plants (on early–middle bolting 

stage) were dipped into solution for one min, rolling gently to mix. Transformed plants were 

horizontally placed in plastic tray and covered with an opaque plastic by one day, in dark. After 

incubation, plants were transferred to the growth room, under standard conditions.  

 

21. Generation and selection of transgenic plants 

 

The HRR over-expression based constructs produced using the Gateway® cloning technology were 

used to transform wild-type Ler and hrr mutant plants. Transformation of Arabidopsis was achieved 

by floral dip method using A. tumefaciens strain EHA105 (section 20) (Clough and Bent 1998). Plant 

growth conditions of transformed plants (T0) and harvesting of their seeds were performed as 

described previously. Arabidopsis T1 seedlings germinate onto MS medium supplemented with 30 

µg.ml-1 hygromycin and 250 µg.ml-1 ticarcilin until 10 days after sowing. The resistant seedlings 

were transferred to soil to obtain T2 seeds. Germinating these seeds onto same selective MS 

medium (40 µg.ml-1 hygromycin and 250 µg.ml-1 ticarcilin) allowed verifying if the transgene was 

segregating under a Mendelian purpose. Once proved, a single insertion of transgene would have 

occurred. With their seeds (T3) a new screening in same MS-selective medium was performed to 

determine the genotype of individual T3 plants (ratio 1:0), using them for further experiments.  
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ANNEX III: OLIGONUCLEOTIDE SEQUENCES 

 

The oligonucleotides (primers, Table E) were synthesized by Metabion Services (Germany). Stock 

primers solutions were prepared to a final concentration of 100 µM in double-distilled water, 

according with suppliers instructions. A working solution of 10 µM was used for PCR amplification. 

 

Table E. Oligonucleotides used in this work for each purpose. The recombinant Gateway sequences and enzyme 
restriction sites are underlined. 

 Sequence  5’ to 3’  

Genotyping for hrr mutants 

HRR_LP TTCTAGGGCTCAGATTGTTCG 

HRR_RP ATCCCGGTGTCGAAAGAAACT 

prbZF_Rv ACTTGCAAAGTCCCGCTAGT 

HRR promoter amplification, for pHRR fusion constructs 

PromotorHRR_fwd (HindIII) ACGAAGCTTGCAGATGAAGCAAGAAAAAGGGAA 

PromotorHRR_rv (BglII) CCTCTAGATGGTACAGAGAAACCTTTCATTTTCTT 

PromotorHRR_rv2 (KpnI) GAGGTACCTCTCTTTGGAAAGTAAAAGAAAGGT 

PromotorHRR_rv3 (SpeI) GAACTAGTTCTCTTTGGAAAGTAAAAGAAAGGT 

HRR cDNA amplification (Gateway cloning) 

HRRcDNA_fw ATGTCTCACCACCACCAAAACT 

HRRcDNA_rv TTAGCGAAGATCCCGGTGTC 

HRR GC1 AAAAAGCAGGCTTAGACATGTCTCACCACCACCAAAAC 

HRR GD1(HRR.1 and HRR.2, N-
terminal fusion) 

AGAAAGCTGGGTGTTAGCGAAGATCCCGGTGTCGAA 

HRR GE1 (HRR.1, C-terminal fusion) AGAAAGCTGGGTAGCGAAGATCCCGGTGTCGAAAG 

HRR GC2 AAAAAGCAGGCTTAGACATGTCTCACCACCACCA 

HRR GE2 (HRR.2, C-terminal fusion) AGAAAGCTGGGTAAACGTGACCTGAAGAAAGATATA 

Gateway BP entry primers (attB adapters) 

attB1(Fw) GGGGACAAGTTTGTACAAAAAAGCAGGCT 

attB2 (rv) GGGGACCACTTTGTACAAGAAAGCTGGGT 

Verification of pENTR vectors 

pdon201 Seq Fw TCGCGTTAACGCTAGCATGGATCTC 

pdon201 Seq Rv GTAACATCAGAGATTTTGAGACAC 
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Verification of pHRR::gusA vectors ( via pCAMBIA1303) 

L35#2 TTGGCCGATTCATTAATG 

R 35S AGTTTTTTGATTTCACGG 

Verification of Gateway LR cloning reaction; genotyping of HRR over-expression transgenic 
plant lines 

pMDC 35S TTCATTTCATTTGGAGAGGACC 

pMDC gfp left TTGGGACAACTCCAGTGAAAAG 

pMDC gfp right GGATTACACATGGCATGGATG 

pMDC32 R2 Flank CGGCCGCTCTAGAACTAGTTAA 

T35S TGATTTTTGCGGACTCTAGC 

P35S TTCATTTGGAGAGGACTCCGGTA 

eFP.R GATCACATGGTCCTGCTGGA 

eFP.L CAGCTCGACCAGGATGGGCAC 

RT-PCR (HS-dependent expression analysis) 

ACT2_F2 AAGATCTGGCATCACACTTTCT 

ACT2_R2 GATGGCATGAGGAAGAGAGA 

HRR_RT_fw CATGTGAACGTCGTTTGTGAT 

HRR_RT_rv CGGTGTCGAAAGAAACTCTG 

HsfA2_fw CCACGTTACTTCAAGCATAGCA 

HsfA2_rv AAGGTTCCGAACCAAGAAAAC 

Hsp18.1_fw ATGTCTCTCATTCCAAGCATTTTTGG 

Hsp18.2_rv TTAGCCCCGGAGATATCGATGGAC 

Hsp25.3_fw ATCTAACATTTGTCGCATCGC 

Hsp25.3_rv TCGGCTCTATGTTCACCTCTT 

Hsa32_fw ATGGCGGCTTACTACAGATGGAAG 

Hsa32_rv TTAAAACAAGAAGTAGGAGGAACTGAG 

HOT1_fw CTCATCTTCTTCACCGCCTGA 

HOT1_rv CTCTGTCTCTCGCCTCATTGG 
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RT-PCR (Seed development and germination, including HS treatment) 

Abi3_RTfw  ACAACAACAACAACAATAATCAGC  

Abi3_RTrv 

Abi4_RTfw 

CTTACTTTAACCCCTCGTATCAA 

ATAACCCGGATCCAGACCCATAG 

Abi4_RTrv TACCGTGGCGTTCGACAAAGAAG 

Abi5_RTfw GACAACTCGGGTTCCTCATCAAT 

Abi5_RTrv CGTTAAGCCCGGTGTCTTCAGAT 

LEC1_RTfw TTCCGTTAATGGAAGACGAAGAG 

LEC1_RTrv TGGAGCTCCCTTCTCTCACTATC 

LEC2_RTfw TCACCACCACTCAAAGTCGTTAA 

LEC2_RTrv GATAACTTCTTACCCTTTCCCTC 

FUS3_RTfw TTCTCAACGGAGCCCAAACCATC 

FUS3_RTrv ATCATCATGGGTTATCGGCGTCT 

EM6_RTfw TTAGGTCTTGGTCCTGAATTTGG 

EM6_RTrv ATGGCGTCTCAACAAGAGAAGAA 

EM1_RTfw ATGGCGTCAAAGCAACTGAGCAG 

EM1_RTrv TCTCCACCAGATTTTTCCATCGT 

HSFA9_RTfw GGCAATTCCAAACGTCGTCGATA 

HSFA9_RTrv CTCGTATTCCCGCTTTGATTGTT 

NCED9.fw CGATCCATTGAATCGACGAAG 

NCED9.rv TTCCGGTGACTGGAACAGTAC 

ABA1.fw TATTTGGCTGCATCGCATGGA 

ABA1.rv ACGCTTTAGCTGCTTTGGAAG 

CYP707A1.fw GATATCTCCGCCTTGTTTCTC 

CYP707A1.rv AAGCGACTCTTAATGTTTCTT 

GA3ox1.fw CCGATTGGTATAGAGGCGATT 

GA3ox1.rv CTTCTCCGCTGCTCCTTCTCC 

SPY.fw TGCCCTTACACACTGTGGTAT 

SPY.rv TGTAAAGTACTCCCAAATTGT 
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ANNEX IV: PCR CONDITIONS 

 

Amplifications by PCR were performed using MJ Mini Gradient Thermal Cycler (Bio-Rad) or 

Mastercycler Gradient (Eppendorf) under the conditions described below (Table F).  

 

Table F. PCR conditions used for genotyping, screening of cloned colony, Gateway cloning steps, 
cloning of HRR promoter and semi-quantitative RT-PCR. 

 Temperature (time) Number of cycles 
Genotyping and colony PCR 

Initial Denaturation 94ºC (5 min) 

31  

Denaturation 94ºC (45 sec) 

Annealing 56ºCª and 60ºCb (45 sec) 

Extension 74ºC (45s -1min 30s) 

Final extension 74ºC (5 min) 

Gateway- based cloning, 1st PCR 
Initial Denaturation 95ºC (2 min)  

 
35 

Denaturation 95ºC (40 sec) 

Annealing  55ºCc and 60ºCd (40 sec) 

Extension 74ºC (1min 30sec) 

Final extension  74ºC (5 min) 

Gateway- based cloning, 2nd PCR 
Initial Denaturation 95ºC (2 min)  

 
5 

Denaturation 95ºC (40 sec) 

Annealing  45ºC (40 sec) 

Extension 74ºC (1min 30sec) 

Denaturation 95ºC (40 sec)  
25 Annealing  55ºCc and 60ºCd (40 sec) 

Extension 74ºC (1min 30sec) 

Final extension  74ºC (5 min) 

Cloning of HRR promoter (pHRR) 
Initial Denaturation 95ºC (2 min)  
Denaturation 95ºC (40 sec)  
Annealing  53ºC (40 sec) 35 
Extension 74ºC (1min 30sec)  
Final extension  74ºC (5 min)  
RT-PCR 
Initial Denaturation 94ºC (5 min)  
Denaturation 94ºC (40 sec)  
Annealing 55 - 58.5ºC (40 sec) n cyclese 
Extension 74ºC (1min 30sec)  
Final extension  74ºC (5 min)  
 

a) hrr mutants and wild-type Ler; Verification of transformants, ectopic expression of HRR in fusion proteins  

b) HRR over-expression lines; Verification of transformants, native expression of HRR in fusion proteins 

c) HRR.1 sequences (N- and C-termini fusions); HRR.2 sequence for C-termini fusion 

d) HRR.2 sequence (N-termini fusion) 

e) Expression analysis during maturation and germination processes: HRR (33), ABI3 (30), ABI5 (31), FUS3 (31), LEC1 (33), 

LEC2 (40), EM1 (29), EM6 (25), ABI4 (35), HsfA9 (30), ABA1 (30), NCED9 (33), CYP707A1 (31), GA3ox1 (31), SPY (32); 

Expression analysis in HS-stressed wild-type Ler, hrr and HRR over-expression mutant  seed lines: HsfA2 (31), Hsp101(27), 

Hsa32 (33), Hsp25.3 (36), Hsp18.1(32), ABI3 (31), ABI5 (31), FUS3 (33), LEC1 (33), EM1 (25), EM6 (25), ABI4 (35), HsfA9 (30), 

ABA1 (30), NCED9 (31), CYP707A1 (31), GA3ox1 (31), SPY (32). 
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ANNEX V: BASE VECTOR MAPS 

 

Maps of the vectors used during the cloning procedures. 

 

 

pCAMBIA1303 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pGEM® T-easy vector system (Promega) 
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pDONR™ 201 

 
 

pMDC43 
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pMDC83 
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ANNEX VI: CLONING STRATEGY  

The production of HRR transgenes for subcellular localisation studies was performed based on 

Gateway cloning technology (Invitrogen). However, some modifications were introduced in the 

system of destination vectors. It was performed a substitution of dual 35S CaMV promoter (in 

pMDC43) by HRR promoter sequence, in attemping to obtain the native expression of HRR proteins. 

The main steps of the cloning strategy used in this work are depicted in Figure A1. 

 

 

 

Figure A1. Overview of the cloning strategy based on Gateway® technology used to obtain HRR.1 and HRR.2 fusion 
transgenes. The fragments of interest were amplified by two-rounds of PCR amplification, in attempting to create attB sites in both 
ends [attB1-orange, attB2- green (with STOP codon, for N-termini fusion) and brown (without STOP codon, for C-termini fusion) ]. 
The fragment of interest was inserted into the donor vector (pDONR™201) by the BP recombination reaction. A subsequent LR 
recombination reaction promoted the insertion of the DNA sequence into the appropriate destination vector (pMDC vectors). The 
generated expression clones were used in plant transformation (p35S::HRR.1:GFP6) and in subcellular localisation studies. 
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