39th European Physical Society Conference on Plasma Physics
16th International Congress on Plasma Physics
Stockholm, Sweden, 2-6 July 2012

The Local Organizers take pleasure in welcoming you to the 2012 EPS/ICPP conference which will be held in the capital of the Kingdom of Sweden, Stockholm – island city.

Held at a world class venue in the heart of the city, near a breathtaking archipelago with 24,000 islands, long mid-summer days with average temperatures around 25°C will make your experience before, during and after the conference truly unique and memorable.

WELCOME!

IMPORTANT INFORMATION: Contributed papers are now online at http://confs.ciemat.es/epsicpp2012/psp.html
Capacitively coupled rf plasmas in N\textsubscript{2}-H\textsubscript{2} mixtures

A. Mahjoub1, A. Gouveia2,3, N. Carrasco1, C.D. Pintassilgo2,3, L. Marques2,4, M. M. D. Ramos4, G. Cernogora1, L.L. Alves2

1LATMOS-UVSQ-CNRS 11 Bd d’Alembert 78280 Guyancourt, France
2Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
3Departamento Engenharia Física, Faculdade Engenharia, Universidade do Porto, R. Dr. R. Frias, 4200-465 Porto, Portugal
4Centro de Física da Universidade do Minho, Universidade do Minho, 4710-057, Braga, Portugal

This paper studies the modifications induced in low-pressure radio-frequency (rf) capacitively coupled nitrogen plasmas, by the addition of a few amount of hydrogen (up to 5\%). The work is of interest for material processing, such as the nitriding or the etching of low-k substrates, as well as in planetary studies, namely when N\textsubscript{2}-CH\textsubscript{4} plasmas are adopted.

The plasmas are studied using both experiments and simulations. The experimental setup is a parallel-plate reactor (driven at 13.56 MHz frequency), surrounded by a cylindrical metallic grid to confine the discharge [1]. Electrical diagnostics allow measuring: (i) the electron density, by using a resonant cavity method; (ii) the effective rf power coupled to the plasma, by using the subtractive method [2]. Optical emission spectroscopy diagnostics are used to study the evolution, with the working conditions, of: (i) the First Negative System with the N\textsubscript{2}+ band; (ii) the atomic hydrogen H\textsubscript{\beta} line at 486.1 nm; (iii) the atomic argon line at 811.5 nm (Ar is used here as an actinometer). Simulations use a hybrid code that couples a 2D (r, z) time-dependent fluid-type module, describing the transport of the charged particles, to a very complete 0D kinetic module, for the nitrogen-hydrogen mixture. Results reveal that the electron density increases with the amount of injected H\textsubscript{2}, at constant coupled power.

References

Acknowledgements
Work supported by a PICS Cooperation Program, financed by the Portuguese FCT and the French (CNRS). A. Mahjoub thanks the ANR program (ANR-09-JCJC-0038 contract) for a post-doctoral position.