

39th European Physical Society Conference on Plasma Physics 16th International Congress on Plasma Physics Stockholm, Sweden, 2-6 July 2012

The <u>Local Organizers</u> take pleasure in welcoming you to the 2012 EPS/ICPP conference which will be held in the capital of the Kingdom of Sweden, Stockholm - island city.

Held at a world class <u>venue</u> in the heart of the city, near a breathtaking archipelago with 24,000 islands, long midsummer days with average temperatures around 25°C will make your experience before, during and after the conference truly unique and memorable.

WELCOME!

IMPORTANT INFORMATION: Contributed papers are now online at http://ocs.ciemat.es/epsicpp2012pap/html/

http://ocs.ciemat.es/epsicpp2012pap/html/

Vol. 36F ISBN 2-914771-79-7

39th EPS Conference on Plasma Physics 16th International Congress on Plasma Physics 2 - 6 July 2012

Stocknoim, Sweden	
Home Author index C	S. Ratynskaya, L. Blomberg, A. Fasoli d by: d by: European Physical Society ditor: Prof. O. Scholten, Groningen, The Netherlands g editor: P. Helfenstein, Mulhouse
Editors:	S. Ratynskaya, L. Blomberg, A. Fasoli
Produced by:	B.Ph. van Milligen
Published by:	European Physical Society
Series editor:	Prof. O. Scholten, Groningen, The Netherlands
Managing editor:	P. Helfenstein, Mulhouse
List of conferences	

Capacitively coupled rf plasmas in N2-H2 mixtures

A. Mahjoub¹, A. Gouveia^{2,3}, N. Carrasco¹, C.D. Pintassilgo^{2,3}, L. Marques^{2,4}, M. M. D. Ramos⁴, G. Cernogora¹, L.L. Alves²

¹ LATMOS-UVSQ-CNRS 11 Bd d'Alembert 78280 Guyancourt, France

² Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

 $^{\scriptscriptstyle 3}$ Departamento Engenharia Física, Faculdade Engenharia, Universidade do Porto,

R. Dr. R. Frias, 4200-465 Porto, Portugal

⁴Centro de Física da Universidade do Minho, Universidade do Minho, 4710-057, Braga, Portugal

This paper studies the modifications induced in low-pressure radio-frequency (rf) capacitively coupled nitrogen plasmas, by the addition of a few amount of hydrogen (up to 5%). The work is of interest for material processing, such as the nitriding or the etching of low-k substrates, as well as in planetary studies, namely when N₂-CH₄ plasmas are adopted.

The plasmas are studied using both experiments and simulations. The experimental setup is a parallel-plate reactor (driven at 13.56 MHz frequency), surrounded by a cylindrical metallic grid to confine the discharge [1]. Electrical diagnostics allow measuring: (i) the electron density, by using a resonant cavity method; (ii) the effective rf power coupled to the plasma, by using the subtractive method [2]. Optical emission spectroscopy diagnostics are used to study the evolution, with the working conditions, of: (i) the First Negative System with the N_2^+ band; (ii) the atomic hydrogen H_β line at 486.1 nm; (iii) the atomic argon line at 811.5 nm (Ar is used here as an actinometer). Simulations use a hybrid code that couples a 2D (r, z) time-dependent fluid-type module, describing the transport of the charged particles, to a very complete 0D kinetic module, for the nitrogen-hydrogen mixture. Results reveal that the electron density increases with the amount of injected H_2 , at constant coupled power.

References

- [1] G. Alcouffe et al, Plasma Sources Sci. Technol. 19, 015008 (2010)
- [2] L.L. Alves et al, Plasma Sources Sci. Technol. (submitted, 2012)

Acknowledgements

Work supported by a PICS Cooperation Program, financed by the Portuguese FCT and the French (CNRS). A. Mahjoub thanks the ANR program (ANR-09-JCJC-0038 contract) for a post-doctoral position.