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Abstract

In this paper, we investigate the recently defined notion of inverse along an element

in the context of matrices over a ring. Precisely, we study the inverse of a matrix along a

lower triangular matrix, under some conditions.
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1 Introduction

In this paper, R is a ring with identity. We say a is (von Neumann) regular in R if a ∈ aRa. A

particular solution to axa = a is denoted by a−, and the set of all such solutions is denoted by

a{1}. Given a−, a= ∈ a{1} then x = a=aa− satisfies axa = a, xax = a simultaneously. Such a

solution is called a reflexive inverse, and is denoted by a+. The set of all reflexive inverses of a

is denoted by a{1, 2}. Finally, a is group invertible if there is a# ∈ a{1, 2} that commutes with

a, and a is Drazin invertible if ak is group invertible, for some non-negative integer k. This

is equivalent to the existence of aD ∈ R such that ak+1aD = ak, aDaaD = aD, aaD = aDa.

We say R is a Dedekind-finite ring if ab = 1 is sufficient for ba = 1. This is equivalent to

saying invertible lower triangular matrices are exactly the matrices whose diagonal elements

are ring units, and in this case the matrix inverse is again lower triangular.

We will make use of the Green’s relation H in R, see [5], defined by

aHb if aR = bR and Ra = Rb.

b ≤H d denotes b ∈ dR ∩Rd.

In this paper, we will study invertibility along a fixed element, as defined recently in [12]

in the context of semigroups.
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the project PEst-C/MAT/UI0013/2011.
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Definition 1.1. Given a, d in R, we say a is invertible along d if there exists b such that

bad = d = dab and b ≤H d. If such an element exists the it is unique and is denoted by a‖d.

The inverse along an element reduces to von Neumann, group and Drazin inverses (see

[12]) by a‖1 = a−1, a‖a = a#, a‖a
k

= aD.

In this paper, the existence of a‖d by means of a unit in the ring R as studied in [13] will

allow us to study invertibility of some matrices along lower triangular matrices. We will give

an alternative proof for the sake of completness. In order to do so, we state a well known

preliminary result.

Lemma 1.2 (Jacobson). 1 − xy is a unit if and only if 1 − yx is a unit, in which case

(1− xy)−1 = 1 + x(1− yx)−1y.

We refer the reader to [3] and [4] for a similar result with Drazin inverses.

Theorem 1.3. Let a, d ∈ R such that d is a regular element of a ring R, and let d− ∈ d{1}.
Then the following are equivalent:

1. a‖d exists.

2. u = da+ 1− dd− is a unit.

3. v = ad+ 1− d−d is a unit.

In this case,

a‖d = u−1d

= dv−1.

Proof. (2) and (3) are equivalent by writing u = 1−d(d−−a), v = 1− (d−−a)d and applying

Lemma 1.2.

Suppose now a‖d exists, that is, there is b ∈ R such that bad = d = dab with b = dx = yd,

for some x, y ∈ R. Since (dadd−+ 1−dd−)(dxd−+ 1−dd−) = 1 = (ydd−+ 1−dd−)(dadd−+

1− dd−) then dadd−+ 1− dd− is a ring unit. Note that we can write u = dd−da+ 1− dd− =

1 + dd−(1− da) and therefore u is a unit if and only if dadd− + 1− dd− = 1− (1− da)dd− is

a unit, using Lemma 1.2.

Conversely, suppose u, and therefore, v are units. Since ud = dad = dv then u−1d = dv−1

and d = (u−1d)ad = da(dv−1). Taking b = u−1d = dv−1 then obviously b ∈ Rd ∩ dR.

Therefore a‖d = b = u−1d = dv−1.

The previous theorem shows, in particular, that given d regular then 1‖d exists if and only

if d# exists, using [18] and Lemma 1.2.
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2 The inverse of a lower triangular matrix along another lower

triangular matrix

Let D be a regular lower triangular matrix and suppose B = A‖D exists, with A lower

triangular. Write D =

[
d1 0

d2 d3

]
and A =

[
a 0

b d

]
. According to [14], the regularity of D

is equivalent to the regularity of w = (1− d3d+3 )d2(1− d+1 d1) for one and hence all choices of

reflexive inverses d+1 and d+3 of d1 and d3, respectively. Using [14], there is D− such that

DD− =

[
d1d

+
1 0

(1− ww−)(1− d3d+3 )d2d
+
1 d3d

+
3 + ww−(1− d3d+3 )

]
.

Consider now the matrix

U = DA+ I −DD−

=

[
d1a+ 1− d1d+1 0

d2a+ d3b− (1− ww−)(1− d3d+3 )d2d
+
1 d3d+ 1− d3d+3 − ww−(1− d3d+3 )

]

The existence of A‖D is equivalent to the invertibility of U .

Futhermore, using Definition 1.1 together with Theorem 1.3, if A‖D exists then

D(V −1A)D = A‖DAD = D = DAA‖D = D(AU−1)D

and therefore AU−1, V −1A ∈ D{1}.

Lemma 2.1. Given M =

[
m1 0

m2 m3

]
with regular diagonal elements, then M has a lower

triangular von Neumann inverse if and only if (1−m3m
+
3 )m2(1−m+

1 m1) = 0.

Proof. Writing M =

[
m1 0

0 m3

]
+

[
0 0

m2 0

]
= A+B, let Y = (I−AA+)BU−1(I−A+A),

with U = I + A+B =

[
1 0

m+
3 m2 1

]
. By [8, Corollary 2.7], M has a lower triangular von

Neumann if and only if Y = 0, that is, (1−m3m
+
3 )m2(1−m+

1 m1) = 0.

Theorem 2.2. Suppose R is Dedekind-finite and let A and D be as above. Then A‖D exists

if and only of a‖d1 and d‖d3 exist and (1− d3d+3 )d2(1− d+1 d1) = 0.

In this case,

A‖D =

[
a‖d1 0

v−1d2(1− d+1 )a‖d1 + d‖d3(b+ d+3 d2d
+
1 )a‖d1 + v−1d2 d‖d3

]
,

with v = d3d+ 1− d3d−3 .
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Proof. Note that if A‖D exists then U is invertible and AU−1 ∈ D{1}. Since U is a lower

triangular invertible matrix and R is Dedekind-finite, then U−1 is again lower triangular, and

so is AU−1. Applying Lemma 1.2, and since AU−1 ∈ D{1}, then w = (1−d3d+3 )d2(1−d+1 d1) =

0. The matrix U then has the form

U =

[
d1a+ 1− d1d+1 0

d2a+ d3b− (1− d3d+3 )d2d
+
1 d3d+ 1− d3d−3

]
.

Using the Dedekind-finiteness of R, the invertibility of U is equivalent to its diagonal elements

being ring units. This in turns means a‖d1 and d‖d3 exist.

In order to give the expression for A‖D, we will compute U−1. Setting u = d1a + 1 −
d1d
−
1 , x = d2a + d3b − (1 − d3d+3 )d2d

+
1 and v = d3d + 1 − d3d−3 , the inverse of U is U−1 =[

u−1 0

−v−1xu−1 v−1

]
. This gives

A‖D = U−1D =

[
u−1d1 0

−v−1xu−1d1 + v−1d2 v−1d3

]
.

Now

u−1d1 = a‖d1 ,

v−1d3 = d‖d3

and

v−1xu−1d1 + v−1d2 = v−1d2a
‖d1 + d‖d3ba‖d1 − v−1(1− d3d+3 )d2d

+
1 a
‖d1 + v−1d2

= v−1d2a
‖d1 + d‖d3ba‖d1 − v−1d2d+1 a

‖d1 + d‖d3d+3 d2d
+
1 a
‖d1 + v−1d2

= v−1d2(1− d+1 )a‖d1 + d‖d3(b+ d+3 d2d
+
1 )a‖d1 + v−1d2

which gives the desired expression.

Theorem 2.3. Given a Dedekind-finite regular ring R, let A = [ai,j ] and D = [di,j ] be

lower triangular matrices over R. If A‖D exists then all a
‖di,i
i,i exist and A‖D is again lower

triangular.

Proof. Set di = di,i, ai = ai,i and write D =

[
d1 0

∗ D1

]
, A =

[
a1 0

∗ A1

]
. From Theorem

2.2, a
‖d1
1 and A

‖D1

1 exist. Applying the same reasoning to A1 and D1, we obtain the existence

a
‖d2
2 . Repeating this process on a finite number of steps, the desired result follows. By

induction, and since A‖D =

[
a‖d1 0

∗ A
‖D1

1

]
, then A‖D is again lower triangular.

Applying the previous result to A‖A = A# and A‖A
m

= AD, we obtain known implications

([15, Proposition 4.2, Corollary 4.1]). That is, given a group invertible [resp. Drazin invertible]
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n×n matrix M over a Dedekind-finite regular ring, then its diagonal elements are necessarily

group invertible [resp. Drazin invertible] and M# [resp. MD] is again lower triangular.

Let R be a ring with elements u,w such that uw = 1 6= wu. Consider the 2 × 2

matrices over R defined as A = I and D =

[
u 0

1 w

]
. Note that D is invertible with

D−1 =

[
w 1− wu
−1 u

]
. Therefore, A‖D = I, which is lower triangular, and still 1‖u and

1‖w do not exist. Indeed, 1‖u exists if and only if u# exists, and 1‖w exists if and only if w#

exists. If u# exists, for instance, then u#u2 = u implies u#u = 1 = uu#, that is, u is a unit.

A similar reasoning can be applied to w#.

3 The inverse of a matrix along a lower triangular matrix

We now consider the inverse of A =

[
a c

b d

]
along the regular D =

[
d1 0

d2 d3

]
, with d1, d3

regular, under a component condition.

Theorem 3.1. For A and D as above such that a‖d1 exists then A‖D exists if and only if

ζ = β − αa‖d1c

is a ring unit, where

w = (1− d3d+3 )d2(1− d+1 d1)
α = d2a+ d3b− (1− ww−)(1− d3d+3 )d2d

+
1

β = d2c+ d3d+ 1− d3d+3 − ww
−(1− d3d+3 ).

In this case,

A‖D =

[
a‖d1 −a‖d1cζ−1d3

−ζ−1αa‖d1 + ζ−1d2 ζ−1d3

]
.

Proof. We know A‖D exists if and only if U = DA+ I −DD− is invertible. Taking D− such

that DD− =

[
u 0

(1− ww−)(1− d3d+3 )d2d
+
1 d3d

+
3 + ww−(1− d3d+3 )

]
, we obtain

U =

[
u d1c

α β

]
,

where u = d1a+1−d1d+1 . Since a‖d1 exists, then u is a ring unit, and using Schur complements

we may use the factorization

U =

[
1 0

αu−1 1

][
u 0

0 ζ

][
1 u−1d1c

0 1

]
.
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Hence, U is invertible if and only if ζ is a ring unit.

In order the compute A‖D, note that

U−1 =

[
1 −u−1d1c
0 1

][
u−1 0

0 ζ−1

][
1 0

−αu−1 1

]
.

Then

A‖D = U−1D

=

[
a‖d1 −a‖d1cζ−1d3

−ζ−1αa‖d1 + ζ−1d2 ζ−1d3

]

since u−1d1 = a‖d1 .

Take, as an example, the ring R of 2× 2 matrices over Z/8Z, and its elements

D1 =

[
7 5

1 0

]
, D2 =

[
1 1

3 3

]
, D3 =

[
3 6

3 6

]
and

A1 =

[
5 4

1 3

]
, A2 =

[
1 1

2 0

]
, A3 =

[
3 6

3 6

]
, A4 =

[
1 1

6 6

]
.

Note that the matrices A1, D1 are ring units and D3 is idempotent, and as such we can take

D+
3 = D3. Consider the matrices over R defined as D =

[
D1 0

D2 D3

]
and A =

[
A1 A2

A3 A4

]
.

We now follow the notation for α, β, ζ and w of Theorem 3.1. Since A1, D1 are ring units

then A
‖D1

1 exists and w = 0. Also,

α =

[
5 5

7 7

]
, β =

[
0 2

5 5

]
, ζ =

[
4 4

1 3

]
.

Now, the determinant of the matrix ζ is not relatively prime with 8, and therefore ζ is not

invertible, which is equivalent to A‖D does not exist.

Using the same notation as in Theorem 3.1, if d1c = 0, which includes the case A is lower

triangular considered in Theorem 2.2, then the matrix U is lower triangular. If the ring is

Dedekind-finite then the existence of A‖D implies a‖d1 exists.

Corollary 3.2. Let A =

[
a 0

b d

]
, D =

[
d1 0

d2 d3

]
with D, d1, d3 regular, and suppose a‖d1

exists. Then A‖D exists if and only if d‖d3 exists and (1− d3d+3 )d2(1− d+1 d1) = 0.

In this case, A‖D is lower triangular with

A‖D =

[
a‖d1 0

v−1d2(1− d+1 )a‖d1 + d‖d3(b+ d+3 d2d
+
1 )a‖d1 + v−1d2 d‖d3

]
,

with v = d3d+ 1− d3d−3 .
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Proof. Following the same notation for U, u,w, ζ, β as the proof of the Theorem 3.1, if U is

invertible, since it is lower triangular with a unit diagonal element then its inverse is again

lower triangular. So, AU−1 is a lower triangular von Neumann inverse of D, which implies,

using Lemma 2.1, that w = 0. Using Theorem 3.1, ζ = β = d3d+ 1− d3d+3 is a unit, that is,

d‖d3 exists.

For the converse, the matrix U in the proof of Theorem 3.1 has the form[
d1a+ 1− d1d+1 0

∗ d3d+ 1− d3d+3

]
,

which is invertible since its diagonal elements are units. Therefore A‖D exists.

From [14], there is

D− =

[
1 0

−d+3 d2 1

][
d+1 (1− d+1 d1)w−(1− d3d+3 )

0 d+3

][
1 0

−(1− d3d+3 )d2d
+
1 1

]
,

with w = (1− d3d+3 )d2(1− d+1 d1) for which choice

D−D =

[
d+1 d1 + (1− d+1 d1)w−(1− d3d+3 )d2(1− d+1 d1) 0

d+3 d2(1− d
+
1 d1)− d

+
3 d2(1− d

+
1 d1)w

−(1− d3d+3 )d2(1− d+1 d1) d+3 d3

]
.

Recall d‖d3 exists if and only if v = dd3 + 1− d+3 d3 is a ring unit, and A‖D exists if and only

if V = AD + I −D−D is an invertible matrix. For the choice of D− above,

V =

[
γ cd3
η v

]
, (1)

where

γ = ad1 + 1− d+1 d1 − (1− d+1 d1)w
−(1− d3d+3 )d2(1− d+1 d1)

η = bd1 + dd2 − d+3 d2(1− d
+
1 d1) + d+3 d2(1− d

+
1 d1)w

−(1− d3d+3 )d2(1− d+1 d1)

Using Schur complements, we may factor V as

V =

[
1 cd3v

−1

0 1

][
ξ 0

0 v

][
1 0

v−1η 1

]
,

where ξ = γ − cd3v−1η. Therefore, V is an invertible matrix if and only ξ is a ring unit.

We now compute

V −1 =

[
1 0

−v−1η 1

][
ξ−1 0

0 v−1

][
1 −cd3v−1

0 1

]

=

[
ξ −ξcd3v−1

−v−1ηξ−1 v−1ηξ−1cd3v
−1 + v−1

]
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which gives

A‖D = DV −1 =

[
d1ξ
−1 −d1ξ−1cd‖d3

d2ξ
−1 − d‖d3ηξ−1 −d2ξ−1cd‖d3 + d‖d3ηξ−1cd‖d3 + d‖d3

]

since d‖d3 = d3v
−1.

We have proved the following result:

Theorem 3.3. For A, D, η, v, w as above such that d‖d3 exists then A‖D exists if and only if

ξ = γ − cd‖d3η

is a ring unit. In this case,

A‖D = DV −1 =

[
d1ξ
−1 −d1ξ−1cd‖d3

d2ξ
−1 − d‖d3ηξ−1 −d2ξ−1cd‖d3 + d‖d3ηξ−1cd‖d3 + d‖d3

]
.

Corollary 3.4. Let A =

[
a 0

b d

]
, D =

[
d1 0

d2 d3

]
with D, d1, d3 regular, and suppose d‖d3

exists. Then A‖D exists if and only if a‖d1 exists and (1− d3d+3 )d2(1− d+1 d1) = 0.

Proof. If a‖d1 exists and (1 − d3d+3 )d2(1 − d+1 d1) = 0, since d‖d3 exists then using Corollary

3.2 the existence of A‖D follows.

Suppose now A‖D and d‖d3 exist. Then the matrix V defined in (1) is a lower triangular matrix

with invertible diagonal elements. Therefore V −1 is invertible. Since V −1V −1A ∈ D{1} then

(1− d3d−3 )d2(1− d−1 d1) = 0.

4 Remarks

Theorem 1.3 collapses to known characterizations of group and Moore-Penrose invertibility.

Indeed, when a = 1 then we obtain [17], and when a = d, we obtain an equivalent condition

to [18], since d3d−+ 1− dd− is a unit if and only if d2 + 1− dd− is a unit, by Lemma 1.2 and

by d3d−+1−dd− =
(
d2d− + 1− dd−

)2
. It could be of interest to link to the characterization

of group invertibility given in [11]. When a = d∗ we obtain the characterization given in

[16]. Finally, it is not clear how to relate the inverse along an element with the adugate of an

operator matrix, as defined in [6].
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