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Introduction

Despite the many advances in tissue engineering (TE) 

approaches, scientists still face significant challenges 

in repairing or replacing soft tissues such as tendons, 

ligaments, skin, liver, nerve, and cartilage to improve 

the quality of life for people. The conventional thera-

peutic treatments targeted to reconstruct injured tissues 

or organs have some limitations such as donor limita-

tions and graft rejections. Based on the principles of TE 

(Langer and Vacanti, 1993; Lanza et al., 2000), alternative 

therapeutic strategies have been developed as current 

treatments involving biodegradable constructs contain-

ing specific populations of living cells and growth factors. 

For example, skin can be regenerated using epidermal 

sheets, dermal replacements, and complex skin sub-

stitutes (Metcalfe and Ferguson, 2007; MacNeil, 2007; 

Barbul, 2001), while cartilage defects can be treated 

with cells seeded on three-dimensional (3D) matrices 

(Chung and Burdick, 2008; Temenoff and Mikos, 2000; 

Hutmacher, 2000). Nature-inspired routes involving 

the creation of polymer-based systems of natural origin 

(e.g. polysaccharide-protein) constitute an interesting 

alternative to produce novel materials that can fulfil 

all the necessary requirements for the success of these 

approaches. However, the properties of these systems 

will depend on the choice of the composition of the sys-

tem, the intrinsic characteristics (e.g. molecular weight, 

charge) of each component, their degree of interaction, 

and their miscibility (McClements, 2006; Turgeon et al., 

2003). Both polysaccharides and proteins exhibit the rel-

evant characteristics such as their availability in nature, 

chemical diversity, biodegradability, and may be modi-

fied relatively easily (Damodaran, 1997; Lloyd et al., 1998; 

Gomes et al., 2008; Mano et al., 2007). These features 
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when combined have proven to be a useful route to 

obtain bioengineered biomatrices with better mechani-

cal and biological properties compared to their individual 

components. In this review, attention has been focused 

on polymer-based systems of natural origins composed 

mainly of chitin/chitosan, glycosaminoglycans, alginate, 

and cellulose combined with different proteins, which 

have been recently proposed for applications for soft tis-

sue repair and regeneration.

Natural origin polymers and their 
combinations

Most of the current researchers have headed towards 

studying the use of natural biodegradable polymers such 

as collagen (Gomes et al., 2008; Stark et al., 2006; Pieper 

et al., 2002), chitosan (Gomes et al., 2008; Kumar, 2000; 

Kim et al., 2008; Madihally and Matthew, 1999; Suh and 

Matthew, 2000), hyaluronic acid (Gomes et al., 2008; Yoo 

et al., 2005; Aigner et al., 1998; Kogan et al., 2007), cel-

lulose (Gomes et al., 2008; Pulkkinen et al., 2006), starch 

(Malafaya et al., 2006; Gomes et al., 2008; Gomes et al., 

2006; Oliveira et al., 2007; Santos et al., 2007; Silva et al., 

2007a), soy protein (Gomes et al., 2008; Vaz et al., 2002; 

Vaz et al., 2003), gelatin (Gomes et al., 2008; Kang et al., 

1999), silk fibroin (Gomes et al., 2008; Vepari and Kaplan, 

2007; Altman et al., 2003; MacIntosh et al., 2008; Unger 

et al., 2004), and alginate (Gomes et al., 2008; Eiselt et al., 

2000) separately, or combined them for TE applications 

(Gomes et al., 2008; Malafaya et al., 2007; Mano et al., 

2007; Seal et al., 2001; Chang et al., 2003a; Funakoshi et al., 

2005; Lee et al., 2005; Liao et al., 2007; Ma et al., 2003). The 

material choice for a particular application depends upon 

the type of material required, the nature of the tissues to 

be regenerated, and their regeneration time. Besides that, 

the wide variety of structures and the unique biological, 

chemical or physical functionalities of these polymers 

can be associated, allowing one to create interesting 

materials such as membranes, hydrogels, scaffolds, and 

micro/nanospheres. These natural origin polymer-based 

materials offer advantages such as the creation of new 

opportunities for mimicking the tissue microenvironment 

and can stimulate the appropriate physiological responses 

required for cellular regeneration. It seems that all these 

features associated with a controlled biodegradation rate 

and the biocompatibility of these naturally based-systems 

can be advantageous when compared to synthetic poly-

mers. Figure 1 shows some devices organized according to 

their geometrical dimensions. The polymeric matrices can 

be produced using several techniques. For example, mem-

branes can be obtained by solvent casting of polymeric 

solutions, while hydrogels can be processed by traditional 

synthesis, including cross-linking reactions and copolym-

erization reactions (Kopecek and Yang, 2007; Hennink and 

van Nostrum, 2002). However, some methods are limited 

with respect to the control of their resulting structures 

due to side reactions, unreacted pendant groups, and 

entanglements. Scaffolds are usually prepared by freeze-

drying techniques, emulsion freeze-drying methods, 

salt leaching methods, rapid prototyping, fiber bonding, 

melt based methodologies, among many others (Gomes 

and Reis, 2004; Mano et al., 2007; Mikos and Temenoff, 

2000; Correlo et al., 2007a; Chen et al., 2002; Lee et al., 

2009). Among these, the freeze-drying technique is the 

most widely used method (Correlo et al., 2007a; Suh 

and Matthew, 2000) to produce scaffolds with different 

shapes, porosities, and pore size distributions by varying 

the parameters such as the polymer concentration, type of 

solvent, freezing temperature, and type of molds. Also, the 

electrospinning process has become a promising method 

for the preparation of 3D porous mats with large surface 

areas, and high porosity, which can mimic the extracel-

lular matrix (ECM). Other advantages of this method are 

the possibility of large-scale production, easy processing, 

easy functionalization, and the availability of advanced 

modes of electrospinning (Agarwal et al., 2009; Lee et al., 

2009). Recently, electrospun polyblend nanofibers have 

been prepared from a combination of polymers, which 

take advantage of the varying strengths, bioactivities, and 

degradation rates of all the components involved (Gunn 

and Zhang, 2010). Using this approach, the solubilization 

and electrospinning issues of some natural polymers have 

been overcome, allowing their production in nanofiber 

technology.

The selection of the design and processing techniques 

to create adequate scaffold architectures allows the prepa-

ration of porous structures with controlled porosity, pore 

size, and interconnectivity, as well as tissue matching 

mechanical properties (Gomes and Reis, 2004). However, 

these requirements will depend on the tissue to be regen-

erated (Lanza et al., 2000). For example, successful nerve 

regeneration requires tissue-engineered scaffolds that 

provide not only mechanical support for the growing neu-

ritis, but also the biological signals to direct the axonal 

growth cone to the distal stump (Schmidt and Leach, 

2003; Huang and Huang, 2006). This is particularly true 

for osteochondral defects, where the use of single scaf-

folds to regenerate cartilage may not be effective, and the 

employment of bilayered constructs has been proposed 

as an alternative solution (Mano and Reis, 2007; Malafaya 

et al., 2005; Oliveira et al., 2006; Gao et al., 2002). This 

approach consists of developing a 3D porous structure 

that combines a mechanical support resembling the 

subchondral bone, while also providing a chondrogenic 

support for cartilage repair.

In this review, the characteristics of the main biopoly-

mers and their combinations are described in the following 

sections, and the tables (Tables 1 to 4) summarize the most 

frequently proposed blend systems (e.g. polysaccharide-

protein) as applications for soft tissue repair. These tables 

also include the methods for production for blend systems, 

the matrix shape, the aimed TE application, the biologically 
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active biomolecule to be delivered, and the source of the 

cell used for the in vitro tests. When applicable the animal 

model used is also indicated.

Chitin/chitosan
Chitin is the second most abundant natural polymer in 

nature, it is found in the shell of crustaceans, the cuti-

cles of insects, and the cell walls of fungi (Kumar et al., 

2004; Kurita, 2001; Kumar, 2000). Structurally, chitin 

is composed of β(1-4)-linked N-acetyl-D-glucosamine 

(Kumar, 2000). This polymer has bacteriostatic and 

fungistatic activities, which are favorable for promoting 

rapid dermal regeneration and for accelerating wound 

healing (Kumar, 2000; Peniche et al., 2008). However, 

the applications of chitin have been limited due to its 

insolubility in water and also in most of the common 

organic solvents (Kumar, 2000). Nevertheless, chitin is 

soluble in hexafluoroisopropanol, hexafluoroacetone 

and dimethylacetamide containing 5% lithium chloride 

(Kumar, 2000). Therefore, some researchers have inves-

tigated the use of some types of chitin-based materials 

(filaments, granules, sponges, and films) as components 

for wound management products (Koji et al., 1987; Fox 

and Allen, 1996). Despite the intrinsic properties of chi-

tin, some studies have suggested that an improvement 

in the biocompatibility of chitin for use in appropriate 

dressings can be achieved by associating the chitin 

with other polysaccharides or proteins (Lee et al., 2004;  

Hirano et al., 2001), or by creating chitin derivatives (e.g. 

carboxymethyl chitin, water-soluble chitin, dibutyl chitin) 

(Pielka et al., 2003; Muzzarelli et al., 2005; Cho et al., 1999) 

using chemical modification.

Chitosan is a polysaccharide obtained by the alkaline 

deacetylation of chitin (Kumar, 2000; Kumar et al., 2004). 

This polymer has many properties such as its polyelec-

trolyte and cationic nature, mucoadhesion, hemostatic 

action, film-forming ability, biodegradability, bacte-

riostatic, and fungistatic activity (Kumar, 2000; Peniche 

et al., 2008). Besides, the presence of functional groups 

(hydroxyl, amine) it has been beneficial for chemical 

modification to introduce the desired properties into 

chitosan, which can be useful for specific uses in diversi-

fied fields (Kumar et al., 2004; Kim et al., 2008; Jayakumar 

et al., 2005; Mourya and Inamdar, 2008). Because of the 

stable crystalline structure, chitosan is normally insoluble 

in water, but soluble in dilute aqueous acidic solutions. 

These solutions have been used in the production of gels, 

membranes, microparticles, nanofibers, porous struc-

tures, and tubes, which combined with its pH sensitivity 

and high charge density (positive electrical charge) has 

allowed the development of drug delivery devices, com-

posites, polyelectrolyte complexes, and implants for tissue 

engineering applications. Several chitosan-based matri-

ces have been developed to be used as dermal substitutes, 

wound dressings, porous structures for cartilage repair, 

and other TE applications (see Table 1). Considering 

that chitosan promotes good protection of the wound, 

accelerated wound healing, and an antibacterial action 

(Khor and Lim, 2003; Kim et al., 2008), chitosan mem-

branes have been proposed as simple wound coverings 

or as sophisticated artificial skin matrices, and hydrogels. 

Although the preparation, properties, and characteriza-

tion of both chitosan films and bilayer membranes for 

use as wound dressings have been extensively investi-

gated, (Aoyagi et al., 2007; Khan et al., 2000; Khan and 

Peh, 2003; Azad et al., 2004; Marreco et al., 2004; Azevedo 

et al., 2006; Mizuno et al., 2003; Queiroz et al., 2003;  

Mi et al., 2002b; Ma et al., 2001), a few reports concerned 

with clinical trials have been described in the literature 

(Azad et al., 2004).

With the rise of nanotechnology, chitosan together 

with other macromolecules has been fabricated into vari-

ous bionanocomposites, providing alternative applica-

tions in regenerative medicine and drug delivery vesicles 

(Chen et al., 2008; Zhou et al., 2008; Lee et al., 2009). For 

example, composite nanofibrous membranes of collagen/

chitosan/polyethylene oxide blends have demonstrated 

unique combinations of mechanical, biological, and 

structural properties suitable as wound dressings for skin 

regeneration (Chen et al., 2008). On the other hand, some 

studies have described the complexation of chitosan with 

D
im

en
si

on

0

Nanofiber nets

Fibers

Membrane

1

Particles/microspheres

Hydrogel

2

Scaffold
Hepatocytes

Fibroblasts

Chondrocytes

Keratinocytes

Neuroblastoma

Cells

Cartilage
Skin

Nerve
Liver

& Others

3

Bilayer
construct

Other Cells

Figure 1. Scheme of different polymeric architectures proposed for soft 

tissue repair. 
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selected negatively charged molecules (e.g. proteins, ani-

onic polysaccharides, and nucleic acids) in the design of 

different polymeric matrices for tissue engineering appli-

cations (Liu et al., 2007b; Hamman, 2010; Yu et al., 2005). 

The chitosan-based complexes have an excellent ability to 

be processed into sponges and bilayer scaffolds for use as 

dermal equivalents, especially with collagen or alginate, 

(Ma et al., 2003; Ma et al., 2007) and also for skin regen-

eration. With regard to collagen/chitosan complexes, the 

presence of collagen resulted in the improvement of the 

cell compatibility of these matrices, where the additional 

use of cross-linking agents increased the biostability of 

the chitosan/collagen (CC) composite scaffolds (Ma et al, 

2003). Interestingly studies have suggested that the poly-

electrolyte complex (PEC) between alginate and chitosan 

should be mechanically stronger at a lower pH where chi-

tosan dissolves (Hamman, 2010). Chitosan also interacts 

with gelatin to provide thermosensitive hydrogels for the 

controlled release of proteins (Chang et al., 2009) or in 

microspheres loaded with basic fibroblast growth factor 

(bFGF) to increase the production of laminin by human 

fibroblasts, which may be helpful for angiogenesis in 

skin regeneration (Liu et al., 2007a). Some examples of 

PEC systems formed by chitosan-alginate or chitosan-

heparin, and others are shown in Table 1. Many papers 

have been concerned with chitosan/heparin complexes 

as nanoparticles (Liu et al., 2007b), and multilayer thin 

films (Lundin et al., 2010). Considering that heparin is 

well-known for its anti-coagulant activity and for having 

a high negative charge density due to its carboxyl and 

sulfonate groups (Salmivirta et al., 1996), the result-

ing matrices may have potential therapeutic uses for 

enhanced tissue regeneration. Some researchers (Kratz 

et al., 1997; Kweon et al., 2003; Jin et al., 2007) have sug-

gested that the heparin-chitosan complex stimulates 

re-epithelialization of a full-thickness wound in human 

skin, in a heparin dose dependent effect (Kratz et al., 

1997). Recent investigations have focused on the inter-

actions between chitosan and other proteins, besides 

gelatin, as pathways to investigate matrices with suitable 

mechanical properties, biodegradability, and good bio-

compatibility for skin applications (Kweon et al., 2001; 

Silva et al., 2005; Tanabe et al., 2002). In our group, Silva 

and co-workers (Silva et al., 2005; Silva et al., 2007b) 

have explored the blending of chitosan with soy protein 

isolate, the major component of the soybean (Vaz et al., 

2002), in the development of a series of blended mem-

branes. The chitosan/soy protein (CSS) blended systems 

are not completely miscible and in situ chemical cross-

linking with glutaraldehyde solutions has been used to 

enhance the degree of interaction between chitosan and 

the soy protein, and thus overcome the drawback of its 

immiscibility. As a consequence, the fibroblast-like cell 

attachment on cross-linked CSS membranes was found 

to be enhanced in comparison with chitosan membranes 

(Figure 2). Subsequent in vivo studies (Santos et al., 2010) 

demonstrated that the CSS membranes accelerated skin 

wound healing in rats after two weeks of dressing. All 

these findings support the suitability of CSS membranes 

as wound dressing materials.

Chitosan seems to be a good candidate particularly for 

cartilage tissue engineering applications, in that its struc-

ture and characteristics resemble those of glycosaminogly-

cans (GAGs), which are well known constituents of the 

cartilage extracellular matrix, and it also has a critical 

role in supporting chondrogenesis both in vitro and  

in vivo (Suh and Matthew, 2000). Even considering these 

characteristics, the development of an ideal chitosan 

scaffold for cartilage TE remains a challenging task. The 

most well known method to prepare chitosan scaffolds 

is freezing and then lyophilizing chitosan solutions in 

appropriate molds (Suh and Matthew, 2000; Oliveira 

et al., 2006; Silva et al., 2006; Madihally and Matthew, 

Table 4. Cellulose-based matrices proposed for application in soft tissue repair. 

Composition

Processing 

methodology Matrixtype

Active  

substance

Potential TE 

application

Cell type  

(source/line) Animal model Reference

Cellulose-silk 

fibroin

Wet spinning Fibers _ Wound dressing _ _ (Strobin et al., 

2006)

ORC-collagen Freeze-drying 

Cross-linking 

(dehydrothermal)

Scaffolds _ Clinical settings  

in wound repair

Fibroblasts 

(human)

Diabetic mouse (Hart et al., 

2002)

Freeze-drying 

Cross-linking 

(dehydrothermal)

Scaffolds PDGF Clinical setting  

in acute wounds

_ Sprague-Dawley  

rats

(Jeschke et al., 

2005a)

Freeze-drying 

Cross-linking 

(dehydrothermal)

Scaffolds PDGF Chronic wounds _ _ (Cullen et al., 

2002b)

ORC: oxidised regenerated cellulose; GA: glutaraldehyde; PDGF: platelet-derived growth factor.

200 m 200 m

A B

Figure 2. SEM micrographs of L929 cells cultured on chitosan membrane 

(a) and chitosan/soy protein blended membrane cross-linked with 0.1 M 

Ga (b). Culture time: 3 days. (Unpublished results). 

C
ri

tic
al

 R
ev

ie
w

s 
in

 B
io

te
ch

no
lo

gy
 D

ow
nl

oa
de

d 
fr

om
 in

fo
rm

ah
ea

lth
ca

re
.c

om
 b

y 
19

3.
13

7.
16

.1
15

 o
n 

08
/2

5/
10

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y.



210 Simone S. Silva et al.

1999) and several other methods such as melt processing 

(Correlo et al., 2007b; Correlo et al., 2009), sol-gel tech-

nique (Silva et al., 2006), and electrospinning (Lee et al., 

2009) have all been used to produce chitosan scaffolds 

with different geometries and porosities, interconnectiv-

ity and so on. Promising results have also been obtained 

by associating chitosan with other biomacromolecules 

or bioactive agents in order to promote cartilage regen-

eration (Silva et al., 2008; Medrado et al., 2006; Lee et al., 

2004). In addition, multi-component chitosan scaffolds, 

whose composition mimics the natural cartilage matrix, 

have been proposed to facilitate the formation of articular 

cartilaginous both in vitro and in vivo (Yan et al., 2007). 

It has also been reported that porous collagen/chitosan/

GAG loaded with transforming growth factor-β1 (TGF-β1) 

provided the controlled release of TGF-β1 and promoted 

cartilage regeneration (Lee et al., 2004). Although the 

combination of chitosan with biomacromolecules, as 

well as technologies used in the creation of chitosan scaf-

folds have demonstrated some successful findings, other 

approaches using chitosan hydrogels/gels as injectable 

scaffolds for cartilage repair have also been widely studied 

(Hao et al., 2010; Nettles et al., 2002; Tan et al., 2009). For 

instance, some strategies involved the reconstruction of 

the tissue-engineered cartilage in vitro using injectable 

temperature-responsive hydrogel chitosan (Hao et al., 

2010), while others have demonstrated that chitosan 

composite hydrogel matrices supported cell survival  

retaining the chondrocytic morphology (Tan et al., 

2009).

Apart from the promising findings of chitosan-based 

matrices for skin and cartilage regeneration, their appli-

cations and benefits have also been expanded to liver 

regeneration. The role of a hepatocyte-specific 3D scaf-

fold involved the creation of a microenvironment that 

mimicked the organized architecture of the native liver. 

Bearing this in mind, researchers suggested that col-

lagen/chitosan (CC) matrices (Wang et al., 2003) can 

create an appropriate environment for the regeneration 

of liver cells. Nevertheless, the low mechanical strength 

and poor blood compatibility of these natural polymers 

have limited their further use in liver TE. Other research-

ers (Tai et al., 2010) have proposed the delivery of liver-

differentiated human mesenchymal stem cells (hMSCs) 

from RGD-modified chitosan-alginate fibrous scaffolds 

as a potential therapy to aid in liver regeneration. In 

view of the complexity of the liver, some approaches 

have focused on the design of complex 3D architectures 

with predefined internal vascular channels to favor 

angiogenesis (Jiankang et al., 2007; Yan et al., 2005; He 

et al., 2009). Following these strategies, chitosan/gelatin 

scaffolds with well organized architectures and highly 

porous structures have been fabricated and combining 

rapid prototyping, microreplication, and freeze drying 

techniques. With respect to nerve regeneration, various 

studies have focused on nerve guidance conduits made 

from polyelectrolyte complexes between chitosan and 

alginate (Pfister et al., 2008) as well as the associations 

of chitosan with proteins (collagen, albumin, and gela-

tine) or poly-L-lysine (Cheng et al., 2003a; Cheng et al., 

2003b) as promising alternatives to the conventional 

treatments. More details about these systems are shown 

in Table 1. Furthermore, applications of chitosan-based  

blended systems to tendon and ligament TE have been 

recently reported (Majima et al., 2007; Funakoshi et al., 

2005).

Glycosaminoglycans (hyaluronic acid and  
chondroitin-sulfate)
Glycosaminoglycans (GAGs), including hyaluronan (HA) 

and chondroitin sulfate (CS), are amino sugar contain-

ing polysaccharides that are present in the extracellu-

lar matrix (ECM) of all vertebrates (Kirker et al., 2002). 

Hyaluronic acid or hyaluronan (HA) is a linear polysac-

charide with a repeating disaccharide structure composed 

of glucuronic acid and N-acetyl glucosamine residues 

(Kogan et al, 2007). This water soluble polysaccharide is 

widely distributed throughout the ECM of all connective 

tissues in humans and other animals (Kogan et al., 2007) 

and has various important biological functions. Based 

on its positive biological effects on cell behavior in vitro, 

HA have participated in many polymeric systems for dif-

ferent TE applications, as listed in Table 2. There have 

been several studies involving HA alone or mixed with 

collagen and gelatin for skin applications (see Table 2). 

In some cases, the collagen/HA mixture was cross-linked 

to stabilize the materials, and then their performance was 

improved (Tang et al., 2007; Taguchi et al., 2002; Koller 

et al., 2000; Koller et al., 2001; Bakos and Koniarova, 1999; 

Kubo and Kuroyanagi, 2003; Park et al., 2003). Park et al. 

(2003) showed that dermis treated with EDC-cross linked-

collagen-HA matrix was thicker than the control (porous 

polyurethane matrix), and that epithelial regeneration 

was accelerated in vivo. The presence of growth factors 

into collagen-hyaluronan matrices significantly enhanced 

wound healing (Park et al., 2004). As commented previ-

ously, the matrices from combinations of HA and collagen 

have been actively developed for wound repair. However, 

these and other HA-based combinations have been sug-

gested for both cartilage and neural repair (see examples 

in Table 2).

Chondroitin sulfate is quite water soluble, and for 

this reason it has been frequently combined with other 

polymers (see examples listed in Table 2). In fact, its ani-

onic nature enables efficient interaction with cationic 

molecules to form interesting structures for soft tissue 

repair. For skin regeneration, Yannas and Burke (Yannas 

and Burke, 1980; Burke et al., 1981) developed a bilayer 

artificial skin from the association of chondroitin sulfate 

with collagen, which is known as Integra® (Integra Life 

Sciences Holding, New Jersey). Similarly, bi-layered gela-

tin-chondroitin sulfate-HA constructs with different pore 
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sizes on either side were prepared to mimic the composi-

tion of skin and to create an appropriate microenviron-

ment for cell growth, differentiation, and migration (Wang 

et al., 2006). As a component of cartilage ECM, chondroi-

tin sulfate has a stimulatory potential on both cell-pro-

liferation and matrix retention, in turn this polymer has 

been used as an interesting component in the produc-

tion of multi-component scaffolds for use in cartilage TE.  

For instance, chondrocytes seeded on gelatin/chon-

droitin sulfate/hyaluronan scaffolds were evenly dis-

tributed in matrices, secreted new ECM, retained their 

phenotype, and secreted type II collagen (Chang et al., 

2003a). Moreover, TGF-β1 was immobilized onto the 

surface of gelatin/hyaluronic acid/chondroitin-6- 

sulfate (GHCS) to suppress any undesired differentia-

tion during cartilage growth in vitro (Chou et al., 2006). 

As proposed by Murray et al. (Murray et al., 2003), the 

addition of selected growth factors to medium for an  

implantable collagen-glycosaminoglycan (CGG) scaf-

fold may enhance ligament cell behavior within the CG 

scaffold.

Alginate
Alginate is a polymer derived from sea algae, formed by 

linear block copolymers of 1-4 linked β-D-mannuronic 

acid and L-guluronic acid. It is water soluble at room tem-

perature and in the presence of certain divalent cations, 

such as calcium, barium, and strontium; it forms stable 

hydrogels that have been explored for a broad range of 

biomedical applications (Gomes et al., 2008; Eiselt et al., 

2000; Hunt and Grover, 2010). One of the drawbacks of 

alginate hydrogels can be that degradation occurs via 

a slow and unpredictable dissolution process in vivo 

(Boontheekul et al., 2005; Bouhadir et al., 2001). Alginate 

has been used as a wound dressing (Qin, 2008; Suzuki 

et al., 1998; Chiu et al., 2008), delivery vehicles for drugs 

(Hunt et al., 2009), and cell encapsulation (Hunt and 

Grover, 2010). Furthermore, combinations of alginate 

with another polysaccharide have led to the formation 

of biopolymeric matrices for soft tissue repair (see Table 

3). Most of these have been based on the addition of one 

or two components of ECM to alginate in order to create 

composites that mimic the properties of natural tissues 

and then to enhance the functionality of the engineered 

materials. For instance, a commercial collagen-alginate 

topical wound dressing (FIBRACOL PLUS Dressing, 

Johnson & Johnson Gateway®) has demonstrated its effi-

cacy and safety in the treatment of diabetic foot ulcers 

(Donaghue et al., 1998). Although these strategies are of 

interest for TE, the inclusion of other biomacromolecules 

such as silk fibroin to alginate could also contribute use-

ful properties for wound treatment (Roh et al., 2006). In 

cartilage studies (Gerard et al., 2005), beads composed of 

alginate-hyaluronan that combine the gel forming ability 

of alginate with the healing properties of hyaluronan have 

been proposed. However, studies involving alginate-based 

systems have also been expanded towards liver regenera-

tion, where conjugations of alginate with galactosylated 

chitosan (Seo et al., 2006b), and also with heparin (Seo 

et al., 2006a) have been suggested to enhance their 

liver specific function for the design of bioartificial liver 

devices.

Cellulose
Cellulose is the most abundant organic polymer in the 

world. It is insoluble in most solvents due to its strong 

intra or intermolecular hydrogen bonding (Klemm et al., 

2005). Despite this, it is still used in the mass production 

of conventional dressing materials (Boateng et al., 2008). 

Cellulose derivatives can be associated with proteins (e.g. 

silk fibroin, collagen) with the formation of sponges for 

cartilage tissue engineering (Pulkkinen et al., 2006), and 

as scaffolds in clinical settings for wound repair (Hart 

et al., 2002; Jeschke et al., 2005; Cullen et al., 2002) (see 

Table 4). Oxidized regenerated cellulose and its blends 

have been applied as a wound dressing, this is because 

oxidized cellulose has proved be an effective hemostat 

and also has antibacterial activity (Martina et al., 2009). 

For instance, in the presence of chronic wound exudates, 

ORC/collagen forms a soft, conformable, and biodegrad-

able gel that physically binds and inactivates the matrix 

metalloproteases (MMPs), stabilizing their levels and 

contributing to a positive effect on the wound healing 

process, since a high level of MMPs in chronic wounds 

may lead to the degradation of important proteins and 

inactivate growth factors (Hart et al., 2002; Cullen et al., 

2002). Promogran® is an example of a spongy matrix 

containing oxidized regenerated cellulose (45% ORC) 

and collagen (55%), which has been introduced to both 

the USA and EU markets. Recently, room temperature 

ionic liquids have been proposed as possible new sol-

vents for the derivatization of cellulose, opening new 

paths for the shaping of cellulose through its precipita-

tion with an excess of polar solvents like water, acetone 

or a combination of these (Pinkert et al., 2009). Also, 

cellulose composites in different shapes (films, beads, 

scaffolds) can be obtained by changing the composition, 

the precipitation method and conditions, which have a 

potential use in tissue engineering. Cellulose can also 

be produced by Gluconacetobacter xylinus (Acetobacter 

xylinum) (Klemm et al., 2005; Svensson et al., 2005; 

Czaja et al., 2007). Although identical to the cellulose 

of plant origin in terms of molecular formula, bacte-

rial cellulose is characterized by a crystalline nano and 

microfibril structure that determines its extraordinary 

physical and mechanical properties (Czaja et al., 2007; 

Klemm et al., 2005). Bacterial cellulose or microbial 

cellulose has unique properties, including high purity, 

high crystallinity, moldability in situ, biocompatibility, 

and high water holding ability. In addition to its cost 

efficient production, it has high mechanical strength in 

the wet state (Czaja et al., 2007; Svensson et al., 2005). 
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Due to its versatility, bacterial cellulose has been stud-

ied as a wound dressing, for tubular implants, and as 

scaffolds for cartilage repair, among other applications 

(Czaja et al., 2007; Svensson et al., 2005; Klemm et al., 

2005). Bacterial cellulose/chitosan wound dressings have 

good antibacterial and barrier properties; they also have 

mechanical properties in the wet state and optimal mois-

ture conditions for rapid wound healing without irrita-

tion (Ciechanska, 2004). In cartilage studies (Svensson 

et al., 2005), bacterial cellulose has been shown to be a 

potential scaffold for cartilage TE since the chondrocytes  

maintained their differentiated form and the scaffold 

supported cell ingrowth.

Consideration of polysaccharide and protein 
interactions

In biological systems, proteins and polysaccharides 

have an important role in the organization of living cells, 

and the interactions between these polymers of natural 

origin leads to the formation of macromolecular struc-

tures through association. Basic information related 

to the phase behavior and the interactions between 

polysaccharides and proteins have been obtained dur-

ing the last three decades, mainly in the field of food 

science (McClements, 2006; Turgeon et al., 2003; Ya and 

Tolstoguzov, 1997; Tolstoguzov, 2000; Doublier et al., 

2000; Kruif and Tuinier, 2001). Mixed systems of globu-

lar proteins and polysaccharides have been widely used 

to control the structure, texture, and stability of food 

products (Musampa et al., 2007; Berthand and Turgeon, 

2007), whereas polymer based systems of natural origin 

can also be used for biomedical applications. Different 

examples of the biomedical applications of these systems 

are shown in Tables 1 to 4. Besides the low cost and ver-

satility of this strategy, the introduction of proteins into 

matrix materials may improve its cell behavior because 

they are able to interact favorably with cells through 

specific recognition domains present in their structure. 

Also, the interaction between natural polymers with dif-

ferent chemical structures through hydrogen bonding 

or electrostatic interactions in nature may reinforce the 

mechanical properties of the materials obtained from 

such mixtures. Nevertheless, most polymer blends are 

immiscible or only partially miscible. Depending on the 

polymer characteristics (molecular weight, polysaccha-

ride/protein ratio, conformation, and charge density), 

and on the solution conditions (pH, ionic strength, total 

concentration, solvent quality, etc.), the association of 

biomacromolecules may result in the formation of a com-

plex or a phase separation (Turgeon et al., 2003). When 

polysaccharides and proteins attract each other through 

electrostatic interactions, the polymers associate exclud-

ing the solvent from their vicinity (complex coacervation), 

thus allowing the formation of soluble complexes or an 

aggregative phase separation (precipitate) (Doublier 

et al., 2000; de Kruif et al., 2004). Sometimes the com-

plex coacervates are highly unstable and a structural 

stabilization by chemical agents can become necessary 

(Sanchez and Renard, 2002). The formation of complexes 

and coacervates induced by electrostatic interactions is 

a fundamental physico-chemical phenomenon, which 

is relevant to a number of known biological processes 

such as protein transcription and antigen-antibody 

reactions (Turgeon et al., 2003). Additionally, protein-

polysaccharide complexes are important in the design of 

multi-layered structures (Noel et al., 2007), encapsula-

tion processes (Xing et al., 2005), and the formation and 

stabilization of food emulsions (Dickinson, 2006). On 

the other hand, the phase separation can occur due to a 

strong repulsion between the polymers caused by similar 

electrical charges or because one or both polymers are 

uncharged (McClements, 2006; Doublier et al., 2000). 

At low concentrations, the polymers can be intimately 

mixed and form a one phase solution. However, when the 

total concentration of the system increases, exceeding a 

certain critical value of about 4% for globular proteins 

and polysaccharide mixtures (Musampa et al., 2007), a 

phase separation occurs. As a result, the system exhibits 

one phase that is rich in protein and the other is rich in 

polysaccharide (Doublier et al., 2000; McClements, 2006). 

Miscibility in a polymer blend is associated with specific 

interactions between the polymeric components. The 

major forces responsible for the polymer interactions 

are electrostatic in nature but other common interactions 

such as hydrogen bonding or hydrophobic interactions 

may be significant in the stabilization of the interactions 

(McClements, 2006; Feldman, 2005). Several authors 

(Taravel and Domard, 1995; Yin et al., 2005; Yin et al., 

1999; Silva et al., 2007b; Berthand and Turgeon, 2007; 

Malay et al., 2007; Palmiere et al., 1999; Naidu et al., 2005; 

Sionkowska et al., 2004) have studied the interactions 

between polymers of natural origin regarding their prom-

ising applications in food formulation, biotechnological, 

and biomedical areas. For example, studies performed by 

Taravel and Domard (Taravel and Domard, 1993; Taravel 

and Domard, 1995) and Sionskowsha et al. (2004) sug-

gested that chitosan/collagen blends are miscible and 

that the interactions between them are electrostatic in 

nature with the formation of low complexes. These matri-

ces have been proposed as films for dermal regeneration 

templates (Gao et al., 2003), as wound dressings (Guan 

et al., 2007), and as scaffolds for liver TE (Wang et al., 

2003). Malay et al. (Malay et al., 2007) investigated the 

formation of pH-induced complexation of silk fibroin and 

hyaluronic acid, while Naidu et al. (Naidu et al., 2005) 

evaluated the compatibility of sodium alginate/hydrox-

yethylcellulose blends both in solution and as solid 

films. One study (Christopoulou et al., 2000) indicated 

that the compatibility between the polymers in solution 

would remain, even when the solvent is absent (“memory 

effect”). Besides the miscibility, the nature and strength 
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of interactions involved between polymer based systems 

of natural origin can be studied using a wide variety of 

analytical techniques. For example, in polymer blend 

solutions, the existence of the thermodynamic interac-

tion (attraction or repulsion) between polymers induces 

a non-ideal mixing, resulting in changes of viscosity. 

Therefore, viscosimetry is an effective, quick, and inex-

pensive method to determine the miscibility of polymers 

(Naidu et al., 2005). Also, the compatibility of a blend 

system can be studied by its glass transition temperature 

(T
g
), which is usually determined by differential scanning 

calorimetry (DSC). An immiscible blend usually exhibits 

the T
gs

 of the  components, while miscible polymers involve  

thermodynamic solubility and should have one phase 

and only a single T
g
. On the other hand, the type of mor-

phology in a blend system is dependent on the nature 

and amount of the polymers in the mixture, viscosity, and 

also on their miscibility (Malay et al., 2007; Koning et al., 

1998). Heterogeneous blends can appear as a dispersion 

of one polymer in the matrix of the other polymer, with 

the formation of co-continuous morphology.

Strategies for compatibilization and surface 
modification on polymeric blends

Compatibilizers and chemical cross-linking treatments
As most polymeric blends are immiscible, compatibiliza-

tion could be required. The compatibilization of polymer 

blends is possible by adding to the system non reactive 

or reactive compatibilizers (Feldman, 2005; Koning et al., 

1998). Reactive compatibilizers chemically react with the 

blend components, while non-reactive compatibilizers are 

block and graft copolymers, having chain segments that 

are identical or similar to the components to be mixed 

(Feldman, 2005; Koning et al., 1998). Graft copolymers 

work as emulsifiers reducing the interfacial tension of 

blends. This leads to a phase size small enough for the 

material to be considered as macroscopically homo-

geneous and consequently improving the mechanical 

properties of the system (Feldman, 2005). Besides the 

usual compatibilizers, cross-linking methods have been 

used to improve the structural stability and mechanical 

properties of binary systems. A particular cross-linker 

should be chosen based on its chemical reactivity, solu-

bility, spacer length, and compatibility of the reaction 

with the application. Glutaraldehyde (GA), formalde-

hyde, 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide 

(EDC), polyepoxide, and polyglycidyl ether are com-

monly used as cross-linking agents (Hennink and van 

Nostrum, 2002; Silva et al., 2005; Park et al., 2003; Park 

et al., 2002; Harriger et al., 1997; Silva et al., 2004; Sung 

et al., 1996). Of these, glutaraldehyde and EDC are the 

most widely used for polymeric systems due to their high 

cross-linking efficiency. However, depending on the con-

centration used, extracts from the cross-linked materials 

can be released into the tissue, resulting in cytotoxicity 

and inflammation. In contrast to glutaraldehyde, water-

soluble carbodiimide (EDC) does not remain as a part of 

the linkage but simply changes into water-soluble urea 

derivatives with low cytotoxicity. Park et al. (Park et al., 

2002) reported that a collagen/HA matrix cross-linked 

with EDC had good resistance to enzymatic degradation 

with acceptable toxicity. Genipin has been considered 

as a natural cross-linking agent with a lower cytotoxicity 

when compared to the alternative cross-linkers like glu-

taraldehyde (Sung et al., 1998). Genipin is obtained from 

its parent compound geniposide, which is extracted from 

the fruits of Gardenia jasminoides Ellis (Koo et al., 2004). 

Genipin has been used to cross-link gelatin (Chang et al., 

2003b; Liu et al., 2004), collagen (Sundararaghavan et al., 

2008), kappa-carrageenan (Meena et al., 2007), chitosan 

(Mi et al., 2002a; Kuo and Lin, 2006; Chen et al., 2005; 

Muzzarelli, 2009), alginate/chitosan (Chen et al., 2006), 

chitosan/gelatin blends (Chiono et al., 2008), and the chi-

tosan/silk fibroin system (Silva et al., 2008). One interest-

ing characteristic of the reaction of genipin with amino 

acids lies in the formation of dark blue pigments, which 

are the result of oxygen radical induced polymerization 

of genipin (Sung et al., 1998). These blue pigments are 

used as a natural colorant in foods (Park, 2002), and can 

also aid in following the evolution of genipin cross-linking 

reactions (Chen et al., 2005). Typically, matrices cross-

linked with genipin present good mechanical properties, 

reduced swelling, a slower degradation rate, and good 

biocompatibility (Chang et al., 2003b; Mi et al., 2002a). 

Proanthocyanidins (PAs) have also been indicated as non-

toxic cross-linkers (Han et al., 2003). PAs are widespread 

in fruits and vegetables, and belong to the category known 

as condensed tannins, which consist of highly hydroxy-

lated structures capable of forming insoluble complexes 

with carbohydrates and proteins (Han et al., 2003). Studies 

have indicated that PAs are less cytotoxic than glutaralde-

hyde, could efficiently cross-link collagen matrices (Han 

et al., 2003), and chitosan/gelatin membranes (Kim et al., 

2005). Kim et al. (Kim et al., 2005) reported that proan-

thocyanidin cross-linked chitosan/gelatin membranes 

have good mechanical properties, thermal properties, and 

a slower degradation rate in vivo with no inflammatory 

reaction found in all the implants that were tested when 

compared to uncross-linked gelatin films and chitosan/

gelatin membranes.

Surface modification
A biomaterial with good bulk properties does not neces-

sarily possess the surface characteristics suitable for a 

given biomedical application. Therefore, modification of 

the biomaterial surface is often needed (Oehr, 2003; Chu 

et al., 2002). Various methods have been employed for 

modifying polymer surfaces including chemical modifica-

tion (Pashkuleva et al., 2005; Tangpasuthadol et al., 2003), 

ultra-violet (UV) (Olbrich et al., 2007; Welle et al., 2005; 

Gumpenberger et al., 2003), gamma irradiation (Yang 
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et al., 2002; Mao et al., 2004), and plasma surface modi-

fication (Oehr, 2003; Pashkuleva et al., 2005; Silva et al., 

2007c; Zhu et al., 2005; Pashkuleva and Reis; 2005; Huang 

et al., 2007; Lopez-Perez et al., 2007; Ratner, 1995). For 

instance, these modifications will determine the possible 

interactions of polymers with bioactive agents, namely 

drugs, growth factors as well as the possibility of allowing 

for their clinical use in the regeneration of hard/soft tis-

sues (Pashkuleva and Reis, 2005; Goddard and Hotchkiss, 

2007; Ratner, 1995). Depending of the chosen method 

and conditions, a surface can be modified to become 

hydrophilic or hydrophobic, be functionalized or only 

be activated for further reactions (Pashkuleva and Reis, 

2005; Goddard and Hotchkiss, 2007).  Chemical etching 

with a potassium permanganate-nitric acid system has 

been shown to enhance the surface energy and wettabil-

ity of starch based blends (Pashkuleva et al., 2005). UV 

irradiation has been used to create patterned polystyrene 

substrates for tissue engineering applications, especially 

in neuroscience (Welle et al., 2005). Plasma surface modi-

fication is a method widely used to tailor surface func-

tionality using different atmospheres (Chu et al., 2002; 

Pashkuleva and Reis, 2005). Usually, plasma treatment 

only affects the outermost layers (2.5–10 nm) of the mate-

rial’s surface, while the bulk properties of the polymer 

remain intact (Oehr, 2003). When a material is exposed to 

a partially ionized gas, its surface is bombarded with ions, 

electrons, and radicals from the plasma. This process 

results in the formation of radicals on the polymer sur-

face. The highly reactive species so formed combine with 

the radicals from the working gas to modify the surface 

(Chu et al., 2002). Depending on the interaction between 

the plasma and the polymer, and on the operating con-

ditions (gas, power, and exposure time), the reactions 

of modification and degradation can occur (Chu et al., 

2002; Oehr, 2003; Khonsari et al., 2003). When degrada-

tion is prominent, etching will take place on the polymer 

surface. An etching reaction occurs when the polymers 

are exposed to plasma for a long period, and the exposed 

layers of the polymers are etched off (Chu et al., 2002). 

As a result, etching produces nano-roughness on the 

polymer surface, which can create the desirable features 

on biomaterials to meet the requirements of biocompat-

ibility in vivo (Chu et al., 2002). Figure 3 shows that the 

prolonged exposure time on chitosan/soy protein mem-

branes to argon plasma (Figure 3B and 3C) promoted an 

increase of the surface roughness when compared to the 

initial surface membrane (Figure 3A). On the other hand, 

plasma can also be used to create functionalized surfaces 

with direct binding of new chemical groups or their inclu-

sion after surface activation by plasma treatment (Chu 

et al., 2002; Lopez-Perez et al., 2007). For example, oxygen 

(-OH, -C=O, -COOH groups) or nitrogen (-NO
2
, -NH

2
, - 

CONH
2
 groups) plasma have been used to increase 

the material hydrophilicity (Inagaki, 1996). As a result, 

A

2 m

B

2 m

C

2 m

Figure 3. SEM micrographs showing the effect of the prolonged time 

exposure to argon plasma on surface of chitosan-soy protein (CSS) based 

membranes; (a) CSS membrane without treatment, (b) CSS after argon 

plasma (40 watts, 5 minutes) and (c) CSS after argon plasma (40 watts, 20 

minutes). (Unpublished results)
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improved adhesion strength, biocompatibility, and other 

relevant properties were observed (Inagaki, 1996; Chu 

et al., 2002). Similar results were obtained in our group 

by Silva et al. (Silva et al., 2007c) who investigated the sur-

face modification of chitosan membranes using nitrogen 

and argon plasma to improve its fibroblast cell adhesion  

in vitro. The proposed modifications would facilitate the 

use of chitosan-based materials as wound dressings. In 

addition, plasma grafting polymerization can be used 

to modify inert surfaces. This includes activation of the 

surface by plasma followed by polymerization reactions, 

resulting from the contact between the activated surface 

with monomers in the liquid or gas phase (Chu et al., 

2002; Pashkuleva and Reis, 2005; Lopez-Perez et al., 

2007; Forch et al., 2005). Therefore, grafted copolymers 

are formed onto the surface. Using such procedures, 

smart surfaces may be produced, where the wettability 

can be responsive to the change of external variables, 

being useful for some biomedical applications (Ando 

et al., 2007; da Silva et al., 2007). Recently, Huang et al 

(Huang et al., 2007) suggested that oxygen plasma is a 

better method to incorporate laminin onto the surface of 

chitosan membrane, resulting in a significant increase of 

the attachment of Schwann cells and to help the affinity 

for directing peripheral nerve regeneration.

Final remarks

Several polymers based on natural origins, either alone or 

in binary or ternary blend systems, are proposed for use in 

soft tissue repair. Among the various tissues that these sys-

tems can target, skin, and cartilage are probably the most 

prominent. The features of a particular blended system, in 

general, must be modulated and designed in an appropri-

ate shape for a determined biomedical application. Most 

of the polymer combinations have been used as a means 

to overcome problems observed in simple systems with 

regard to the mechanical strength of the scaffolds, pro-

liferation ability, and implantation difficulties. Although 

some successful findings have been reported, these sys-

tems still need some improvement in terms of structural 

stability due to water-solubility for some polysaccharides, 

which have been solved through their complexation or 

cross-linking reactions. In addition, the construction of 

adequate surface properties is also important for the tis-

sue/cell interface, making it necessary to apply surface 

modification on the polymer matrix. With regard to tissue 

targets, interesting strategies have been proposed such 

as co-cultures of keratinocytes and fibroblasts on bilayer 

constructs (scaffold/membrane) as dermal equivalents, 

as well as the development of multi-component scaffolds 

with living cells for cartilage repair have shown promise. 

In some cases, a sustained release of a bioactive sub-

stance (drugs or growth factors) incorporated into these 

biomatrices enhanced the cell response, and thus tissue 

regeneration. Moreover, advanced processing techniques 

such as a solid-free form have been proposed to produce 

porous matrices with complex geometric shapes and suit-

able porosities tailored to the tissue target, for example in 

the design of bioartificial livers. Although the approaches 

described have demonstrated promising results both  

in vitro and in vivo, there are still many challenging 

issues to be addressed in order to obtain clinically suc-

cessful materials as well as to create novel therapeutic 

approaches. Bearing this in mind, extensive research 

must be done to develop materials interacting with cells 

on healing tissue and other host processes. Also, further 

study is needed to understand the in vivo interactions 

among biomaterials, cells and growth factors at the 

molecular level. Current trends also suggest that the 

intensification of the development of hydrogel materials 

from blended systems with thermosensitive materials can 

be a powerful tool for the production of multifunctional 

materials that can provide complex biological signals 

and respond to environmental stimuli. For all these 

purposes, it is essential to have collaborative research 

between material researchers, biologists, and clinicians 

which could lead to advanced materials that fulfill all the  

needs of polymer combinations for soft tissue 

regeneration.
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