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Abstract 
 

This paper presents a method for extracting 
MFCC parameters from a normalised power 
spectrum density.  The underlined spectral 
normalisation method is based on the fact that the 
speech regions with less energy need more 
robustness, since in these regions the noise is more 
dominant, thus the speech is more corrupted. Less 
energy speech regions contain usually sounds of 
unvoiced nature where are included nearly half of 
the consonants, and are by nature the least reliable 
ones due to the effective noise presence even when 
the speech is acquired under controlled conditions. 
This spectral normalisation was tested under 
additive artificial white noise in an Isolated Speech 
Recogniser and showed very promising results [1]. 

It is well known that concerned to speech 
representation, MFCC parameters appear to be 
more effective than power spectrum based features.  
This paper shows how the cepstral speech 
representation can take advantage of the above-
referred spectral normalisation and shows some 
results in the continuous speech recognition 
paradigm in clean and artificial noise conditions. 

 
1. Introduction 

 
Noise robustness can be accomplished either at the 
feature representation level using robust 
parameterisation or at the model compensation level. 
Some approaches maintain that the corrupting noise is 
by nature unknown, thus it is meaningless trying to 
compensate for it. Therefore, the search for a robust 
speech representation that diminishes the distortions 
caused by the environment seems to be the most 
promising solution to deal with noise conditions. 
However, in spite of the effort dedicated in these last 
years in the robust parameterisation field, conceiving 
systems with acceptable performance in environments 
for which they were not trained has been far too 
difficult. 

In [1] it is argued that a proper spectral normalization, 
which concentrates essentially on the speech regions of 
less energy, could improve significantly the robustness 
of speech recognition systems when operating under 
additive noise conditions. Spectral regions with small 
energy would need a large degree of noise robustness 
since, assuming that the noise is speech independent, 
they are more corrupted. The spectral regions of small 
energies usually correspond to unvoiced sounds regions, 
which are spectrally not very well defined. Roughly 
speaking nearly half of the consonants can be classified 
as unvoiced, while the other half and the vowels are 
generally classified as voiced. Generally the importance 
of the vowels in classification and representation of 
written text is very low; however, most practical 
automatic speech recognition systems rely heavily on 
vowel recognition to achieve high performance, 
forgetting the speech regions of small energy, which 
perhaps contains the most important degraded 
information regarding to speech recognition tasks.  

However, speech representation motivated by the human 
auditory system knowledge has been the approach more 
successful used for robust speech representation. This paper 
proposes to incorporate the spectral normalisation suggested in 
[1] in the MFCC parameters extraction, in order to take 
advantage of both the effectiveness of the MFCC speech 
representation and the additive noise robustness of the spectral 
normalisation. In order to join these two potential 
advantages we propose a minor change in the MFCC 
extraction scheme, which consists in normalising the 
mel-scale filter bank outputs according to the algorithm 
proposed in [1]. We call this technique SNMFCC given 
that the MFCC parameters are extracted from a Spectral 
Normalisation instead of from the conventional power 
spectrum density. This paper also proposes a method for 
compensating additive noise distortions, which 
improves the performance under additive artificial 
noise. This compensation is performed in the spectral 
normalization domain thus before the MFCC parameters 
computation. Hence the effectiveness of the spectral 
normalisation can be complemented by the good 
behaviour of the MFCC parameters concerned to speech 
parameterisation.  



 
 

 

 

2. Baseline Spectral 
Normalisation 

 
The distribution of the amplitudes of the relative 

spectral energy seems to be more useful for speech 
classification than its absolute counterpart, since this 
last one becomes very dependent on the speech level. 
This is undesirable given that we are only interested in 
the classification of the speech message independently 
of the speech level. The above comment, regarding to 
the distribution of the relative energy suggests that a 
feature extraction method based on a mathematical 
division can be adequate in order to emphasize the 
relative spectral variations relatively to its absolute 
counterpart. Concentrating on unvoiced speech 
segments, which can be roughly characterized by white 
noise we can make some assumptions, for instance the 
signal power can be considered as a constant by 
considering the segment large enough and the process 
stationary in the segment duration. This fact is a direct 
consequence of the variance of the sum of k random 
variables independents and identically distributed is 
reduced approximately by 1/k. This result is well known 
in the estimation theory and was used by Bartlett to 
reduce the variance of the periodogram. Therefore, 
concerned to the unvoiced speech regions, the energy of 
a speech segment, being almost constant can be used for 
extracting only the spectral energies relative to the 
speech energy.  

Hence, the proposed baseline normalisation process 
consists in a division of the frequency band in sub-
bands given that usually a very fine detail in frequency 
is not required for western languages speech recognition 
applications. However, if the intonation is relevant, 
which occurs for example in conversational speech, this 
approach must be reconsidered. This issue is not 
however addressed in this paper.  

The features extraction method is based on the power 
spectral density components and consists in dividing the 
speech power inside each sub-band by the total short-
time speech power. The power in each sub-band is 
obtained by summing the power spectrum components 
inside the sub-band. All the sub-bands have the same 
number of spectral components and no one is shared by 
different sub-bands, thus avoiding increases of 
statistical dependence between sub-bands (feature 
components). This kind of normalisation seems to be 
also adequate for dealing with additive distortions since 
the numerator and denominator of the features are both 
increased, though by different values, however this fact 
contributes for stabilising the feature values, which 
means increasing the robustness. 

To best understand this reasoning, consider Si 
denoting the speech power in sub-band i and S denoting 
the short time speech signal power of the considered 
segment. Similarly, let Ni and N denote the power of the 
interfering noise in sub-band i and the short time noise 
power, respectively. So, the ith component of the 
observation vector for clean speech is given by 
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Similarly for noisy speech the next equation holds 
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where the index n stands for noisy speech. Equations 

(1) and (2) are computed in the same way without 
concerning to the noise existence, so they can be viewed 
as the same equation. The denominators of equations (1) 
and (2) represent respectively the power of the speech 
segment in clean and noisy conditions and can be both 
computed by summing all the components of the power 
spectrum density.  

Figure 1 shows the clean speech and noisy speech 
spectral power normalisation features for 240 ms of the 
word “zero” where each sub-band has 16 power spectral 
components. The SNR is 0 dB.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
If the interfering noise has white noise characteristics 

the environment will shift the clean speech vector by a 
noise dependent vector Ci(N), which can be calculated 
by subtracting equation (1) from equation (2). 

 If the noise is stationary then its short time power 
equals its long time power. Note that this does not occur 
for the speech due to its non-stationary property, but as 
an approximation we will consider that the short time 
speech signal power equals the long time speech signal 
power. This seems to be approximately true for 
unvoiced speech segments, where we want to 
concentrate in order to try increasing the noise 
immunity. Under this constraint, S and N can be related 
by the signal to noise ratio (SNR). Therefore the next 
expression holds 
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Let l, the number of components in each sub-band and 

L the FFT length. Then N and Ni, considering flat noise 
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Figure 1. White noise effect in the power 
spectrum density normalization domain in the 
beginning of digit “zero”. Dashed line 
represents noisy speech features. 
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spectrum, are related by the quotient l/L. By using these 
considerations, the calculation of the shift vector 
imposed by the environment to the observed vector 
component i is noise dependent and is accomplished by 
subtracting equation (1) from equation (2)  
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where k is given by  
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and in terms of mean the next expression holds 
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Equation (4) shows that if the speech has a flat power 

spectrum density, which roughly occurs outside the 
voiced regions, the means of Ci(N) become null as Si/S 
equals l/L. Thus, this normalisation process becomes 
optimal in the sense that the environment does not affect 
the means of the speech features, while the variances are 
strongly reduced by the intrinsic mechanism of speech 
energy normalization, which consists of the 
mathematical division of the power in each sub-band by 
the short-time power. This means that this normalisation 
procedure provides some noise robustness to unvoiced 
speech segments, where neither the speech nor the noise 
are spectrally well defined. As a conclusion of this 
section we can state that the advantages of the proposed 
baseline spectral normalisation procedure are: 

1) As a white noise process does not corrupt in terms 
of means other white noise process, which is shown by 
equation (4), this parameterization increases the 
robustness of the unvoiced speech regions, which are 
the most corruptible ones, becoming the robustness of 
the recognizer less independent of the voiced regions 
where are included the vowels. This approach can also 
be useful concerned to conversational speech where 
usually the vowels are reduced or even deleted, thus a 
method that relies on the consonants to increase the 
recognition accuracy can be adequate not only for noisy 
recognition but also for spontaneous speech recognition.    

2) The normalisation helps to extract only the relative 
variations of the spectrum instead of the absolute 
variations, which can help to classify linguistic 

messages independently of the speech or background 
level. 

However, the main drawback associated with the 
proposed baseline normalization method is that it has 
not been possible to develop an algorithm that can help 
to preserve the spectral peaks structure against additive 
distortions. As the speech segments frequently contain 
parts of voiced and unvoiced sounds a post-processing 
algorithm which goal is to restore the spectral peaks 
structure of the speech spectrum is needed. This 
algorithm is described in the two following sections.  

 
3. Accounting for Additive 
Distortions in the Power Spectral 
Density Domain  

 
The environmental distortions that frequently occurs 

in speech recognition applications are frequently 
considered of two different nature; additive and 
convolutional. Convolutional noise is mainly due to the 
frequency response of communication channels and the 
different frequency response of the microphone used for 
collecting the training and testing speech. By 
considering the frequency response of these components 
sufficiently smooth, which roughly occurs for the most 
common cases, we can assume that its effect on the 
peak structure of the speech spectrum is not very 
significant.   

Additive distortions are essentially due to the 
background, which includes competitive speech, or 
noise induced in the communication channel by both 
external sources such as electromagnetic induced noise, 
or internal sources such as crosstalk. The additive noise 
effect on speech has been studied with some detail and 
one of its most undesirable effects is the changing on 
the peaks structure of the speech spectrum. Hence we 
propose trying to restore the peak structure of the 
degraded speech spectrum by assuming that the 
majority of these changes are due to additive distortions. 
A second type of spectral normalization also 
independent on the corrupting noise and based on 
certain characteristics of the baseline spectral 
normalization can constitute a reasonable solution to 
deal with additive distortions in general. 

Figure 1 shows that the noise effect, in the proposed 
power spectral baseline normalisation domain, is raising 
the “flat” spectral zones while the “peaked” spectral 
ones are “flatten”. In fact equation (2) (in noisy 
conditions) shows that, for sub-bands with high speech 
power, as the amount of noise in the sub-band is much 
smaller than the total amount of noise, the speech 
features in that regions are decreased proportionally to 
the amount of contaminating noise. For sub-bands with 
small speech power the opposite happens, given that the 
sum of all the coefficients extracted in each segment is 
unitary. As the spectral flattening is proportional to the 
amount of contaminating noise, for low signal to noise 
ratios the “peaked” spectral regions almost disappear, 



 
 

 

 

which is the main origin of degradation in performance 
under noisy conditions.  

The main goal of a robust features extraction method 
is providing robustness against noise or other sources of 
variability by ignoring its presence. Although the noise 
can be compensated, the effectiveness of this approach 
becomes very dependent on the accuracy of the noise 
estimate, which is a very hard task in practical 
situations. Hence our main goal was searching for a 
robust feature extraction process, which must be ideally 
independent of the noise level or characteristics, 
although the proposed baseline normalisation assumes a 
wide band additive noise for maximal performance. 
More details can be found in [1]. 

In this context we propose the following two steps 
approach: 

1) For task uniformity in clean and in noisy 
conditions the clean database must be considered lightly 
contaminated. Trying to clean completely the database, 
which can be viewed as another kind of normalisation, 
represents a procedure compatible with the noise 
compensation paradigm, however if the procedure is not 
particularised for any kind of noise, it can be used 
without concerning to the noise existence. Hence, under 
noisy conditions the features extraction method can 
compensate for the noise existence taking into account 
the noise level, which can be estimated in a frame-by-
frame basis, becoming the procedure compatible with 
real time applications. We propose estimating the noise 
power in each segment, which can be viewed as a 
second normalisation factor (the first normalisation 
factor is behind the normalisation procedure in the 
baseline system) by taking the value of the lowest 
component of the power spectrum density in each 
speech frame. Our reasoning is based on the heuristic 
rule that the smaller spectral components have minor 
speech dependence. By considering wide band noise all 
the spectral components are roughly equally dependents 
on the noise process. Therefore a speech spectrum 
normalization, which preserves as most as possible the 
speech spectral content must be based on the smaller 
spectral component of the speech spectrum. 

2) We propose alleviating the noise effect by using 
the estimated noise level (smaller spectral component) 
and taking into consideration the kind of distortion 
caused by the noise in the spectral normalisation of the 
baseline system, that is taking into account that the 
“peaked” spectral regions are “flattened” and the “flat” 
spectral regions are “raised” by the noise effect. This 
type of procedure presumes an efficient peak detector. 

An efficient peak detector must be able to distinguish 
peaks of voiced nature (pitch) from weak peaks 
occurring in the speech regions of low energy, where 
the baseline system is efficient concerned to the 
attenuation of the additive noise effect. The upper part 
of figure 2 shows strong peaks due to the pitch, which 
can be classified as peaks by the peak detector, given 
that they occur in voiced regions just the regions 
“forgotten” by the baseline system, while the lower part 
of the figure shows weak peaks (right side of the figure) 

proceeding from unvoiced regions that must be ignored. 
This peak classification suggests the use of thresholds, 
where the key question is how to calculate the threshold 
level? 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Based only in practical considerations especially in 
the inspection of the selected peaks we concluded that 
roughly speaking a peak which energy is above at least 
three times the mean of the rest of components in the 
frame must be classified as a true peak. Otherwise the 
selected peak must be ignored in order to preserve the 
benefits of the baseline normalisation on low energy 
segments.  

 
4. Proposed Noise Compensation 

 
To cope simultaneously with the noise effect on the 

“peaked” and on the “flat” spectral regions we have to 
consider two types of compensation procedures, once 
that the distortions caused by the noise are of different 
nature for the two types of considered regions. 

The “flat” spectral regions are raised by the noise 
effect, so we suggest subtracting to each component of 
the observed vector the lowest one, according to the 
second normalisation procedure. Of course we are 
implicitly considering wide band noise and the 
procedure must be improved in the future to account for 
narrow band noise. To account for the second type of 
normalisation maintaining however compatibility 
between the two types of normalisation equations (1) 
and (2) must be changed respectively so that 
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Figure 2. White noise effect in the power 
spectrum density normalization domain in a 
voiced segment (upper part) and in an 
unvoiced segment (last 2/3 of the lower part of 
the figure. Dashed line represents noisy speech 
features. 
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or in noisy situations  
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where Sin stands for the noisy speech power contained 

in sub-band i, thus can be written as iiin NSS += . 
Regarding to equations (7) and (8) it is important to note 
that they are computed in the same way without 
concerning to the current background conditions. Thus 
under noisy conditions we are implicitly computing 
equation (8) while in clean speech conditions we are 
implicitly computing equation (7), which means that no 
knowledge concerning background conditions is needed 
in practical situations.  

For wide band noise distortion, Ni is approximately 
constant and the mean of the clean speech coefficient 
equals the mean of the noisy speech coefficient. As in 
[1] this signifies that a white noise process does not 
deteriorate in terms of means another white noise 
process, which means good behaviour of the 
normalisation process in speech regions characterised 
by low energy level. It is important to note that some 
compensation algorithms assume that the compensation 
of the means has a better contribution to the recognition 
performance than the compensation of the variances [2]. 
In the context of the baseline normalisation we have 
automatic compensation of the means. 

The noise compensation in the “peaked” spectral 
regions is performed by increasing the speech 
coefficient that was decreased (flattened) by the noise 
effect. Assuming clean speech (not lightly contaminated 
speech) equation (1) holds and the speech features are 
related by 
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where B is the number of sub-bands. For a speech 

frame where n peaks are detected, these peaks have to 
be increased by a noise dependent factor so that 
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where each cj was previously decreased as shown by 
equation (8). Assuming that each spectral sub-band was 
decreased proportionally to its magnitude, which seems 

to be true by analysing figures 1 and 2 the noise 
compensation can be made by computing cj as follows 
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where Sn is given by 
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Therefore, the energy subtracted in the “flat” spectral 

regions is restored in the “peaked” zone in order to 
invert the additive noise effect whereas the sum of all 
the speech features for each frame is maintained unitary 
as supposed by the baseline spectral normalisation. 

The proposed algorithm for feature extraction works 
as follows: 
First equation (7) or (8) is used to compute all the 
observed vector components. Then as a post-processing 
stage equation (11) is used to recalculate the vector 
components, which are selected as “peaks” by the peak 
detector. Hence the undesirable effect of the additive 
noise in the peak structure of the speech spectrum is 
partially alleviated while a kind of spectral power 
adaptation is automatically achieved, since the 
computation of the feature vector components involves 
a division by the speech power. This division means that 
the speech features are proportional to the relative 
energy contained in the sub-band while state-of-the-art 
feature extraction methods are essentially based on the 
absolute energy contained in a frequency range. 
Therefore alternative approaches, which compensates 
for the difference between speech energy levels in the 
clean and unknown utterances is needed. Usually a 
scaling factor, which is an SNR-matching gain, is used. 
The estimation of this factor can be achieved based on 
samples of the background noise, training data and a 
few samples of the noisy test data [3], which is a very 
hard task in real time applications and needs some 
initial estimate, which then is updated, based on the 
unknown input to the system. This approach, however, 
is not applicable when only noisy signals are available 
for recognition. A more practical approach is suggested 
in [4] where the gain contour of the clean signal is 
estimated from the noisy signal by using HMM’s for the 
gain-normalised clean signals.  This algorithm is a little 
bit computationally expensive, however is beneficial 
even when similar gain conditions exist in training and 
test recordings. In any way adapting spectral power is a 
real challenge in practical situations, though often 
ignored by the scientific community since regarding the 
existing databases the gain conditions are similar in 
clean and noisy speech recordings. The algorithm 
proposed in this paper tries to adapt spectral power 
automatically.  

 



 
 

 

 

5. Markov Models Composition in 
the Baseline Spectral Normalisation 

Domain.  
 

Previous section describes a spectral normalization 
method, which attenuates the additive distortions effect 
on speech over a baseline spectral normalisation 
described in section 2. The suggested normalisation 
method was obtained by only assuming the spectral 
characteristics of both the corrupting and corrupted 
processes. In other words the goal was to lessen the 
noise effect on the speech features given some previous 
knowledge of the speech spectral properties, namely 
those concerned to the voiced and unvoiced segments. 
This method seems to be adequate for the most common 
practical situations where the noise is not known and 
can’t be accurately estimated. However, concerned to 
the noise compensation in robust speech recognition, it 
is frequently common to assume that the noise is 
additive and can be usually accurately estimated in a 
segment without speech or by an accurate speech/pause 
detector which permits to separate signal segments 
containing only the background. If the noise is known it 
can be compensated usually by two different ways; 
compensating the incoming feature vectors or 
compensating the internal distributions of the HMM’s. 
It is reported in [5] that compensating the internal 
distributions is superior than compensating the income 
vectors. 

Compensating the internal distributions is achieved 
by using the HMM composition technique, where the 
HMM’s for noisy speech are derived from the HMM’s 
of the clean speech and the HMM which models the 
background. Without loss of generality it is frequently 
assumed that the HMM for the background has only one 
state, which means stationary environments, however 
practical situations are frequently characterized by non-
stationary environments.    

The basic idea of the HMM composition is to 
recognise concurrent signals simultaneously. Parallel 
HMMs are used to model the concurrent signals while 
the composite signal is modelled as a function of their 
combined outputs. To perform Markov models 
composition one has to know the composite signal 
distribution and the statistical model of the corrupting 
environment. It is usually assumed that the speech and 
noise are additive in the linear power domain and we 
will consider stationary noise, thus a single state noise 
model is sufficient. Mel-frequency cepstral coefficients 
derived from the baseline spectral normalisation 
presented in section 2 are used in the recognition 
system. The front end is shown in figure 3. 

 
 
 
 
 
 
 

Let xc, xl and xI represent the observation vectors in 
the cepstral, log, and linear domain, respectively. 
Suppose the signal modelled in the cepstral domain by a 
Gaussian mixture, thus with density function 
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where G(.) denotes the Gaussian distribution, with µc 

and Σc as its mean vector and covariance matrix for the 
c-th component of the mixture.  

The mapping from the cepstral domain to the log 
domain is the inverse discrete cosine transform, which 
is a linear transformation represented by 
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Then the distribution in the log domain is still a 

Gaussian mixture, i. e., 
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When transforming xl to xI in the linear domain, it can 

be shown that the density function in the linear domain 
is a lognormal mixture i. e.,   
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The distributions parameters are related by the 

following equations 
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The above mapping process suggests that if the signal 

can be modelled by a Gaussian mixture in the cepstral 
domain, then in the linear domain its distribution is a 
lognormal mixture.  

Let fx
I and fn

I denote the density functions for the 
clean speech and the noise in the linear domain, 
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Figure 3. Front-end of the recognition system 
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According to the assumption that in the linear domain 

the speech and noise are additive and considering that 
they are independent, then Si/S and Ni/N are also 
independent. If the convolution of two log normal 
functions is assumed to be approximately log normal as 
is assumed in the single mixture PMC [2], then the 
distribution of noisy speech y will be the convolution of 
equations (19) and (20), the number of mixture 
components for noisy speech is C=Cx x Cn and the 
density is 
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Noisy speech parameters can be derived from equation 
(4), and for the mean the next expression holds 
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where k is given in equation (5). The noisy speech 
means are then 
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The covariance matrix of the corrupted process can be 

similarly calculated as 
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The noisy speech covariance matrix can be then 
calculated as 
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Therefore, the noise compensation process is 
straightforward. Given the HMM’s for clean speech and 
noise in the cepstral domain, their model parameters in 
the linear domain can be calculated using equations (16) 
and (18). Then compensation of the clean speech model 
by the noise model in the linear domain according to 
equations (23) and (25) is performed to get the model 
for noisy speech. The model parameters in the cepstral 
domain can be calculated by inverting equation (18) and 
(16).  

 
6. Experimental Results 

 
This paper suggests two methods for alleviating the 

noise effect in speech recognition applications. Both 
methods are based on MFCC parameterisation obtained 
from a normalised spectrum.  

The first method described in sections 2, 3 and 4 tries 
to alleviate the noise effect mainly based on heuristic 
rules and on the most known properties of both speech 
and noise. The algorithm does not assume noise 
existence and the extraction parameters procedure is 
optimised for wide band noise. The main drawback of 
this method can be the need of a peak detector, which is 
based on a threshold level obtained from inspection and 
heuristic rules.  

The second method described in sections 2 and 5 is 
the well-known PMC [2] but adapted to the suggested 
spectral normalisation proposed in section 2.  

The purpose of this section is to evaluate comparative 
results among a baseline system with state-of-the-art 
MFCC parameters and our first and second methods. 
The experiments were evaluated in the continuous 
speech recognition framework by using the HTK and 
the TIMIT database. The train procedure and data 
management for all the experiments is described in 
chapter 3 of the HTK book. Computer generated 
(speech independent) white noise was added to the clean 
speech in the noisy experiment set. Table 1 shows the 
system performance.  

 
Table 1 – Comparative performance of the spectral based 

multi-normalisation algorithms. 
 

SNR 
 (dB) 

Baseline 
% Error (D, S, I) 

Method 1 
% Error (D, S, I) 

Method 2 
% Error (D, S, I)

Clean 0.23 (1, 1, 1) 0.23 (0, 0, 1) 0.23 (1, 0, 1) 
15 32.9 (53, 47, 66) 1.3 (2, 1, 3) 1.6 (3, 4, 2) 
10 72.7 (132, 241, 256) 5.6 (6, 10, 8) 2.8 (16, 5, 8) 
5  16.3 (32, 26, 41) 6.7 (18, 21, 12)
 
Table 1 shows that method 1 is more effective than 

the PMC based method even under Gaussian noise for 
high SNR. The performance degradation of method 1 
when compared with method 2 as SNR is decreasing 
can be due to inaccurate peak detection, which perhaps 
is becoming worse as the noise is increasing. However 
method 1 shows an interesting potential concerned to 
practical applications where the noise is frequently 
unknown and non-stationary, however more 
investigation is needed specially concerned to the peak 



 
 

 

 

detector which is too much based on heuristics and 
inspection of the selected peaks. If the noise is known 
and stationary the PMC method (method 2) is adequate, 
however this is not frequently the case in practical 
applications. One important note is that none of the 
algorithms was experimented yet under real noise added 
to speech nor under real noisy speech situations, thus 
these results are very limitative yet concerned to the 
baseline spectral normalisation effectiveness. These are 
the main objectives of the near future developments. 
 
7. References 

 
[1] Lima, C., Almeida, Luís B. and Monteiro, João L. 
(2002). Improving the Role of Unvoiced Speech 
Segments by Spectral Normalisation in Robust Speech 
Recognition. 7th International Conference on Spoken 
Language Processing (ICSLP’2002). 

[2] Galles, M. J. F. and Young, S. J (1993). PMC for Speech 
Recognition in Additive and Convolutional Noise. Technical 
Report 154.  
[3] Beattie, V. L. and Young, S. J. (1992). Hidden Markov 
Model State-Based Noise Cancelation. Technical Report (TR 
92). Cambridge University Engineering Department. 
[4] Ephraim, Y. (1992). Gain-Adapted Hidden Markov 
Models for Recognition of Clean and Noisy Speech. IEEE 
Transactions on Signal Processing, VOL. 40 pp. 1303-1316. 
[5] Moreno, P. J., (1996). Speech Recognition in Noisy 
Environments. Ph. D. Thesis, Department of Electrical 
and Computer Engineering, Carnegie Mellon 
University.  
 
 
 

 
 

 


