
Implementation of an Orchestration Language
as a Haskell Domain Specific Language

Marco Devesas Campos1

Nordic DataGrid Facility
Copenhagen, Denmark

L. S. Barbosa2,3

DI-CCTC
Universidade do Minho

Braga, Portugal

Abstract

Even though concurrent programming has been a hot topic of discussion in Computer Science for the past
30 years, the community has yet to settle on a, or a few standard approaches to implement concurrent
programs. But as more and more cores inhabit our CPUs and more and more services are made available
on the web the problem of coordinating different tasks becomes increasingly relevant.
The present paper addresses this problem with an implementation of the orchestration language Orc as
a domain specific language in Haskell. Orc was, therefore, realized as a combinator library using the
lightweight threads and the communication and synchronization primitives of the Concurrent Haskell library.
With this implementation it becomes possible to create orchestrations that re-use existing Haskell code and,
conversely, re-use orchestrations inside other Haskell programs.
The complexity inherent to distributed computation, entails the need for the classification of efficient, re-
usable, concurrent programming patterns. The paper discusses how the calculus of recursive schemes used
in the derivation of functional programs, scales up to a distributed setting. It is shown, in particular, how
to parallelize the entire class of binary tree hylomorphisms.

Keywords: Orc, Coordination Languages, Haskell, Thread-based Programming, Parallel
Divide-and-Conquer Algorithms

1 Introduction

While two decades ago the expression programming-in-the-large was coined to
emphasise modular decomposition in software design, programming-in-the-world
emerged more recently to cater for radically new challenges placed on the nature of

1 Email: devesas.campos@gmail.com
2 Email: lsb@di.uminho.pt
3 Acknowledgment: This research was partially supported by FCT (the Portuguese Foundation for Science
and Technology), under contract PTDC/EIA/73252/2006.

Electronic Notes in Theoretical Computer Science 255 (2009) 45–64

1571-0661/$ – see front matter © 2009 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.10.024

mailto:devesas.campos@gmail.com
mailto:lsb@di.uminho.pt
http://www.elsevier.com/locate/entcs

software composition. Actually, at present, the point is not only to master the com-
plexity of building and deploying a large application in time and budget, but also to
manage an open-ended structure of autonomous components, possibly distributed
and highly heterogeneous. The ubiquity of concurrency, in the double perspective
of distribution and parallelism, entails the need for new approaches and languages
for composing, at runtime, interacting software.

The coordination paradigm [8,17,1], claiming for a strict separation between ef-
fective computation and its control is one such answer. It emerged from the need to
exploit the full potential of massively parallel systems, which requires models able
to deal, in an explicit way, with the concurrent execution and cooperation among
very large number of heterogeneous, autonomous and loosely-coupled components.
Coordination models make a clear distinction between such components and their
interactions, and concentrate on their joint emergent behaviour. Synchronisation,
communication, reconfiguration, creation and termination of computational activ-
ities are, thus, primary issues of concern. Recent languages, such as Reo [2] and
Orc [12,16,22], provide semantically sound frameworks for specifying coordination
strategies and protocols, as well as for implementing and reasoning about such
specifications.

The present paper is a step in this direction: it discusses the implementation of
Orc as as a Haskell [10] domain specific language, to which we gave the unimagina-
tive name of HOrc — available at http://wiki.di.uminho.pt/twiki/bin/view/
Research/HOrc/WebHome. Developed as a combinator library, HOrc programs are
valid Haskell functions, executable by the Haskell runtime: there is no intermediate
representation of programs, nor the need for a separate runtime.

Implemented as a domain specific language in Haskell, Orc becomes available
to a vast community of users and developers. For example, a main motivation for
developing HOrc was the possibility of coupling an Orc animator to CoorInspec-

tor, a tool for extracting coordination scripts (expressed in Orc) from legacy code
[19]. HOrc makes possible to validate such scripts and, eventually, to transform
them.

Clearly, Haskell’s expressiveness, higher-order functions, extensibility and asso-
ciated libraries, make it an ideal means to support domain specific languages. In
particular, the development of HOrc relied heavily on the Concurrent Haskell [11]
native library, which provides the basic concurrency primitives used to code our
combinators: thread manipulation, synchronization and communication primitives.

But Haskell is also associated to program calculus, in the spirit of [3], which
has been extremely effective in classifying, expressing and calculating structural
recursion patterns, such as catamorphisms (which encode inductive schemes) or
hylomorphisms (which combine induction and coinduction). Although the impact
of such a taxonomy has been enormous in the way software is developed, only a few
authors, and usually out of the mainstream, such as [21] and [20], have studied how
to explore the parallelism underlying such recursion schemes.

In this paper we show how to express in HOrc distributed versions of typical
functional combinators: from elementary ones, such as split in which two well-

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6446

http://wiki.di.uminho.pt/twiki/bin/view/Research/HOrc/WebHome
http://wiki.di.uminho.pt/twiki/bin/view/Research/HOrc/WebHome

Expr ::= SiteCall

| FuncCall

| Expr >V ar> Expr

| Expr | Expr

| Expr where V ar :∈ Expr

SiteCall ::= Site(Arg, Arg, . . .)

FuncCall ::= Func(Arg, Arg, . . .)

FuncDef ::= Func(V ar, . . .) = Expr

Arg ::= SiteName

| V ar

| Lit

Lit = String ∪ Int ∪ . . .

V ar = name

Site = name

Func = name

Table 1
The definition of Orc Expressions

typed computations run in parallel, to hylomorphisms that independently and in
parallel invoke the recursive calls of processes. An example is provided in section
4. The remaining sections include a brief introduction to Orc, in section 2, and the
development of HOrc as a domain specific language, the paper’s main contribution,
in section 3.

2 A Short Introduction to Orc

This section is a quick introduction to the language Orc as presented in [16] — the
reader is referred there for more details. Orc’s original aim was to permit simple
implementation of programs that use web-services to obtain and process data. Such
programs are characterized by being very loosely coupled, having a very weak set
of possible assumptions. A language capable of dealing with such general cases —
like Orc is — is also capable of expressing many distributed patterns.

Orc programs — or orchestrations — are expressed by Orc expressions. Ex-
pressions can be of one of three types: site calls, Orc operators and Orc functions.
Orchestrations are built by cobbling simple expressions together using the operators
to form increasingly more complex expressions. The result of an expression is the
set of values that it publishes: an expression may publish zero, one or several values.
The definition of the language can be found in table 1 4 . Throughout the rest of
this section we will present each component individually.

2.1 Site calls

The basic unit of an Orc program is the site call. Site calls encapsulate many
different ways of processing values: functions, procedures, remote procedure calls
(RPC), SOAP requests, remote method invocations (RMI), etc. Their syntax is
similar to function calls in C: the name of the site followed by a tuple containing
both variables and literals. Nested calls — e.g. fib(pow(2, 4)) — are not permitted,
though.

The following examples present two site calls that we would expect correspond to
different types of calls. askUser, would ask a person what he wants from Amazon —

4 A small detail note: the definition of Orc includes also a special operator called 0. In HOrc, though, 0 was
implemented as a primitive site. To keep the symmetry of the presentation, we will defer the introduction
of 0 until the primitive sites.

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 47

typically through a form, or a prompt if he is old-school. This would be done locally
while the call buyFromAmazon would generate a remote request of an approriate
type. Their syntax, though, is the same.

askUser(′John Doe′)
buyFromAmazon(gift variable)

Sites may return values that can be used by other site calls. We say that such
values are published by the site call. Due to the need for generality, site calls have
very loose semantics: sites may take arbitrary time to respond or even not at all.
So each individual site call may publish zero or one value.

2.2 Sequential Composition

The first operator we will look into is sequential composition. Like composition in
imperative languages, two sub-expressions — a preceding and a subsequent expres-
sion — are linked together by this operator and run in the order they appear. This
operator also expresses a dependency of the subsequent sub-expression with respect
to the values published by the preceding sub-expression. Its general form is

f >x> g(x)

In this expression, values published by f are assigned to variable x. g can use
said publications by referencing x in its definition. Example:

askUser(′JohnDoe′) >x> buyFromAmazon(x)

In the example above, the preceding sub-expression is a simple site call, thus
x can only take one value (at most). But in the general case multiple values may
be be published — what should x stand for then? The first value? The second?
The last? The answer is: all of them. For every publication of the preceding sub-
expression, the sequential composition combinator starts the subsequent expression
in an independent thread and assigns the value of x for that instance to the value
just published.

If no value is published by the preceding sub-expression, then all references to x

inside the subsequent sub-expression are undefined. Running the subsequent would
lead, in general, to an error. So, even when the variable of the sequential composition
is not referenced, the subsequent expression is only ran when the preceding sub-
expression publishes a value.

Sequential composition acts like a quantifier in a formal language: it binds
appearances of symbol x in g to the values published by the left sub-expression.
Topics such as freeness of variables and scope of quantification — prevalent when
we talk about formal languages — also apply. In the scope of this and the remainder
operators we use the standard interpretation of those rules.

2.3 Synchronous Parallel Composition

If sequential composition introduces a total ordering on the evaluation of expres-
sions, synchronous parallel composition permits simultaneous evaluation of expres-

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6448

sions. Given an Orc expression of the form

f | g

the evaluations of both f and g start immediately and in parallel.
The second role of this operator is to combine the publications of its sub-

orchestrations — it forwards to the outside world every value that is published by
either one of them. The following example does the shopping for an entire family:

(askUser(′Dad′) | askUser(′Mom′)
| askUser(′Son′) | askUser(′Daughter′)) >x> buyFromAmazon(x)

Because the operator is associative, we have omitted some nested parenthesis in
the definition. Also, notice the interaction of this operator and sequential compo-
sition: for every member of the family a different instance of buyFromAmazon(x)
will be initiated.

2.4 Asynchronous Parallel Composition

Orc’s most distinguished feature is, arguably, the asynchronous parallel composition
operator — a.k.a. where. This operator is a mixture of the two previous operators
plus some idiosyncrasies of its own. Its general form is:

g(x) where x :∈ f

Like sequential composition, values published by f are assigned to references
of the quantified variable in g. Unlike sequential composition, and much like syn-
chronous parallel composition, an instance of f and an instance of g are started
simultaneously by where.

Because they start at the same time, it is possible that x is needed by g before
f has had time to publish a value. To accommodate for such cases, variable x is
initially given a special, undefined value. When, during the invocation of a site call
— the only kind of Orc expression that needs the actual value of the variable —,
a variable of undefined value is referenced, Orc suspends the execution of the call
until the where operator assigns a value to the variable.

As where creates only one instance of g, only one publication of f — the first —
is used. When f publishes, and since any further processing is vacuous in altering
the result of g, it is terminated on the spot and its resources freed.

To the outside world, asynchronous parallel composition relays the publications
done by g.

In following example, the family of the previous example will buy a present but
only for one of the children — we are in the most dire of times, n’est-ce pas? The
lucky one will be the one who make his or her choice first.

buyfromAmazon(x)
where x :∈ (askUser(′Son′) | askUser(′Daughter′))

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 49

2.5 Primitive Sites

The core language as presented so far is capable of very little. The designers of
Orc address its limitations by adding a few sites to the language with privileged
semantics. They provide such goodies as control flow — as one gets in every other
language — and timings constructs — fundamental for developing real-time and
speculative distributed systems. We refer the reader to [16] for their presentation.
In section 3.2 and appendix A we detail our implementation of said sites and the
reader can get more information on them there.

2.6 Function Definition

Common sub-expressions may be abstracted through the use of expressions, or as we
prefer to call them, functions. Functions are expressions where certain parameters
have been abstracted by variables. These variables are introduced in the declaration
of the function in a tuple next to its name; this is followed by the expression to which
calls to the function reduce.

Functions are called — like sites — on a need to process basis. Only when an
orchestration needs to call a function does it expand the definition of the function.
With this lazy-like approach it is possible to create recursive definitions without
compromising termination of the expansion. The following exemplifying function
calls a given site and recursively retries to call it if it doesn’t publish before the
specified timeout.

retry(site, timeout) =
isSignal(r) >b> ifthenelse(b, retry(site, timeout), let(r))

where r :∈ (site | rtimer(timeout))

3 HOrc: Orc as a Haskell Domain Specific Language

HOrc is an implementation of Orc as a domain specific language. It is, thus, em-
bedded within another language — Haskell [10] — and every HOrc program is a
syntactically correct program of the host language. The main advantage is obvious:
there is no need to write a parser; the Haskell interpreter takes care of it. We also
get for free a type checker, Haskell’s types, classes, values and functions, which
can be used without the worry that we’ll lose any rigour — Haskell, at least in its
pure form, has a well defined semantics and has been used extensively to construct
provenly correct programs.

On the other hand, there is some impedance mismatch between the two lan-
guages — Orc’s syntax is not directly convertible to Haskell’s syntax. The nec-
essary adjustments, though, are quite straightforward, almost mechanic. Broadly
speaking, site calls and language operators are represented by Haskell functions;
variables are denoted by regular Haskell variables; defining a Orc function is done
by defining a Haskell function. The conversion “formulas” can be found on table 2.

When we run an orchestration, be it a simple site call or a complex expression

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6450

s is a site call

s(arg1, arg2, . . .) ≡ s arg1 arg2 ...

f is a HOrc function

f(arg1, arg2, . . .) ≡ f arg1 arg2 ...

f ≡ f’ g≡ g’

f >var> g ≡ f’ >>=\var -> g’

f ≡ f’ g≡ g’

f | g ≡ f’ ‘mplus‘ g’

f ≡ f’ g≡ g’

g where var :∈ f ≡ f’ ‘prune‘ \var -> g’

g ≡ g’

f(var1, var2, . . .) = g ≡ f(var1,var2,...)= g’

Table 2
Conversion between Orc and HOrc

made out of several operators, the basic functioning is the same: compute things
and publish them. They all belong to the same type: Action. The Haskell definition
of said type is

data Action a = (Chan (Maybe a) -> IO ())

To understand this type, we must first explain how the different components of
the orchestration manifest themselves during runtime. In HOrc, every component
of the system — site calls and operators — is run on its own thread [13]. When
an operator starts a new instance of a sub-expression, it must create a dedicated
thread to run the sub-expression.

The different parts of an orchestration interact with each other through the
values they publish. These values have to be transported between different threads.
Haskell’s concurrency library provides a buffered channel type, Channel a [11], that
can store publications of one thread until the receiving thread can handle them. The
pattern of communication is very simple: the values published by a sub-expression
are only accessed by its parent expression. The parent expression is responsible
for the creation of the channel and for delivering it to the child thread. That
is done when the child sub-expression is started by having the associated action
parameterized on the channel they share.

Inspecting the type definition of orchestrations, we see that the type of publica-
tions is not the same as type of the values written to the channel. This is because
there is an additional information that is passed between callee and caller orches-
trations: termination. Consider a sequential composition — f >x> g — and think:
when should the thread responsible for the composition terminate? Clearly, only
after f and every instance of g terminate, because only then can it be assured that
no instance of g will publish a value; the same is valid for the other operators.
Enclosing the publications in values of type Maybe allows us to have both kinds of
values in the same channel — publications are represented by Just x values while
termination is signaled by Nothing values.

Since orchestrations are functions, we need to provide them with an argument
— the output channel — in order to run them. HOrc provides two functions to this
end: run and runC. The first simply ignores the outputs while the second collects
them in a list. For their definition see table 3.

Throughout the remainder of this section we’ll focus on how each of the compo-
nents of HOrc is implemented, dealing both with their syntax and semantics. For
simplicity and clarity of the exposition, we will ignore a few small details of the

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 51

run :: Action a -> IO ()
run (Act f) = newChan >>= f

runC (Act f) = newChan >>= (\x -> forkIO (f x) >> runC’ [] x)
runC’ acc x = do v <- readChan x;

case v of

Nothing -> return acc;

Just p -> runC’ (acc ++ [p]) x;

Table 3
The functions that set in motion the orchestrations

implementation and a very big one: asynchronous signals [15]. It is possible for
the user to cancel the execution of an orchestration by hitting Ctrl+C. Haskel then
generates an asynchronous signal (SIGKILL) that is delivered to the main thread
of the orchestration. We use the same mechanism to terminate expressions that
publish a value when they are on the right side of a where. Handling these signals
so that the threads don’t enter an inconsistent state is mighty hard, and requires a
lot of fine tunning of the order of instructions.

3.1 Sites

Sites perform calculations on their inputs and return the computed value. This
can be done locally for small things — e.g. , simple arithmetic instructions — or
remotely for more complicated things — e.g. finding matches for a query in the
whole internet. Remote calling is possible in Haskell using the IO monad. Fitting
simple — i.e. pure — computations into IO values is as easy as adding return $.
Going for the most general case, we assume all sites publishing values of type a
must have type IO a.

Computing the value and leaving it inside the IO monad is not enough; sites must
also send the value to the outside world and signal that they are done. Leaving all
these tasks to the programmer would be a) error-prone, b) a bore and c) unnecessary,
since it is boilerplate code: call the site, enclose the returned value in a Maybe value,
write it to the publication channel, signal termination. So, we provide three lift∗
operators, that given an IO value do all the additional housekeeping needed to
create well-behaved orchestrations. Their definitions can found in table 4; in the
remainder of this section we will describe them in detail.

Going from the simplest to the most general, we start with liftIO. It creates
an orchestration out of a computation that never fails, i.e. it always returns a
value. For situations where a computation may fail — remote calls are the prime
example — and shouldn’t publish a value, the function liftMaybe is at our service.
This function expects the argument IO value to return values inside of type Maybe.
Errors, which are represented by return values of Nothing, are blocked, whereas
successful computations, indicated by Just values, are published to the outside
world. The full semantics of site calls, as prescribed by Orc, is only achieved by
liftMaybe. We provide liftIO because we often don’t need the full expressive

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6452

liftIO :: IO a -> Action a
liftIO m = Act $ \c -> do{ v <- m;

writeChan c (Just v);
writeChan c Nothing;

}
liftMaybe :: IO (Maybe a) -> Action a
liftMaybe m = Act $ \c->do{ v<-m;

maybe (writeChan c Nothing)
(\v’ -> writeChan c (Just v’)

>> writeChan c Nothing)
v;

}
liftList :: IO [a] -> Action a
liftList l = Act $ \c->do{ v<-m;

foldr (\e u->writeChan c (Just e)>>u)
(writeChan c Nothing)
v;

}

Table 4
The Haskell definition of the site creators

power of liftMaybe and this way we don’t need to encapsulate the return value in
a Maybe value.

The final creator of site calls is a bit of a transvestite. If liftIO is more re-
strictive than liftMaybe, this one is more permissive. The semantics of site calls
requires that a site publishes at most one value. The liftList operator, publishes
each of the values that are in the list returned by the argument IO action — ergo,
possibly more than one. It can be seen as a generalization of liftMaybe, where
failure is represented by an empty list.

3.2 Primitive Sites

Given our reliance on Haskell threads, the order of execution of instructions is
entirely determined by the Haskell run-time system. We cannot, therefore, satisfy
Orc’s property wherein outstanding primitive sites run before their external counter-
parts. Instead, we consider them to be like ordinary site calls, the only difference
being that they come bundled with the system. To differentiate them from normal
Haskell terms, we prefix each of them with o. They are very simple applications
of the lifting operators to existing functions of the Haskell libraries. We refer the
reader to appendix A for their definitions.

Just to show off how easy it is to the language and make use of Haskell’s own
capabilities, we show here how to define a primitive site that we found very use-
ful when debugging orchestrations. This site simply prints out the value of the
argument we pass to it. Normally, in Haskell, this is done using the print func-

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 53

tion. This functions works for values whose type is an instance of the class Show —
i.e. Haskell’s knows how to represent them with strings. Accordingly, the resulting
orchestration should only be applicable to such values. Since this function returns
an IO value, we simply lift it, and lo and behold, we have ourselves an orchestration
oprint that makes use of type classes, a feature not found in Orc.

oprint::(Show a) => a -> Action ()
oprint = liftIO . print

3.3 Sequential Composition and the Action Monad

Consider the sequential composition f >x> g. The main task of the operator is
to channel the publications of f to instances of g. This is done by replacing the
free occurrences of variable x in g by the values published by f . This is similar
to the behaviour of β-reduction of the λ-calculus. Using the analogy we can state
something like

f >x> g(x) ≡ (λx → g)f

The main issue with this statement is that, in Orc, f may publish several values,
whereas in lambda calculus any expression reduces, up to normal forms, to one term.
What we need is a generalization of β-reduction that applies g to every publication
of f , i.e.

f >x> g ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(λx → g) x0

(λx → g) x1

. . .

(λx → g) xn

where xi :∈ f

The idea of generalized composition of computations — in our case orchestra-
tions — is formalized by the concept of a monad. A type is a monad whenever
it has two operations defined on its values: return and bind (>>=). Intuitively,
the return operation encapsulates a value in a computation that “returns” that
value — just like let. The bind operation chains computations together, so that
the values returned by a computation can be used in latter computations — just
like sequential composition. The instantiation of HOrc orchestrations in this class
corresponds to HOrc’s implementation of sequential composition.

In this section we will provide a detailed explanation of how >>= works under
the hood. Because the publications of f and of the instances of g elicit different
responses from the operator, we create two channels to house their publications —
one for f and one for g. The read operation on a channel is blocking. Additionally,
there is no select-like operation that waits on a group of channels and indicates
when one of them has values to be read. This brings us a problem since we don’t
want to be blocked reading on an empty channel while values are being published
to the other.

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6454

Clearly, the responsibility for reading the channels and acting accordingly should
be split in two distinct threads of execution: one reads the values xi published by
f and starts the instances g(xi); the other reads the publications of g(xi) and
forwards them to the outside world. The latter job we give to the main thread (the
one that was started by the execution of the operator), whereas the former is given
to an auxiliary thread which we will call spawn.

In HOrc, an operator should only terminate when the threads it initiated have
also terminated. Given that now the responsibility of initiating threads is in the
spawn thread and not the main thread, there has to be a way to signal latter that
there are threads still running.

To that end we use one more channel that counts the number of running child
threads. Initially, this channel has one token (for the thread f). Whenever f
publishes, spawn puts one more token in the channel to account for the newly
created thread; likewise, when the main thread reads a Nothing from the g’s output
channel, indicating that a thread has finished, it removes a token from the counter.
As the thread f is also counted in this process, the spawn thread also writes a
Nothing value in the channel reserved for the instances of g when f (and itself)
terminates. When the counting channel is empty, then all threads are terminated,
no new threads can be started nor publications made, so the main thread can also
die and retreat to thread-heaven.

3.4 Synchronous Parallel Composition and the Action Monad Plus

The 0 site has interesting connections with sequential and synchronous parallel
composition w.r.t. to the publications of an expression; it is the absorbing element
of the first, and the neutral element of the latter — if we disregard side-effects
resulting from site calls — just like the number 0 is for multiplication and sum,
respectively.

Monads that have an absorbing element for sequencing that is also the neutral
element of another operation are said to members of the class MonadPlus. Haskell
has many built-in functions that can be applied to objects which belong to types
of this class. To use them we must first instantiate the class MonadPlus with our
type. That entails defining the 0 object and the corresponding plus operation. For
this reason, HOrc represent synchronous parallel composition by mplus.

The interaction between the synchronous parallel composition and its child
threads is much simpler than that of the sequential composition. In this case,
only two threads, one for the left side and another for the right side expression, are
under the direct responsibility of the operator’s thread. Furthermore, publications
of both sub-expression are treated the same, so they can share the same output
channel.

Synchronous parallel composition is comprised of two main parts: first comes
the initialization of the child threads and the channel to which they publish; then,
we read their publications and forward them to the operator’s output channel. In
this second step we must pay attention to the termination of the child threads. Each
of the two sub-expressions must publish a Nothing, before the operator’s thread can

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 55

finish.
To count the number of threads that have still to finish, we abstract the act of

processing messages by a function. This function repeatedly reads one publication,
forwards it, if applicable, to the calling expression and calls itself recursively to
process further messages. One of the arguments of this function is an accumulator
that counts the number of threads still running. Whenever it receives a Nothing it
decrements the value of the accumulator passed to the recursive calls. When the
accumulator reaches zero, the function terminates.

3.5 Asynchronous Parallel Composition and Pruning

In [16], the designers of Orc propose two additional different interpretations of the
expression g where x :∈ f than the one they originally laid out. One of them is
a simplification wherein the expression g is only evaluated after f has published a
value and, because it is now irrelevant to the results of the orchestration, has been
terminated. This is the one we chose to provide in HOrc. To make clear that our
operator does not correspond exactly to Orc’s where, we have named it prune —
compared to sequential composition, it prunes some of the branches of the calling
tree.

The implementation of prune is a simplified version of parallel composition.
There is no possibility of concurrent publications of f and g because g only runs
after f has (voluntarily or not) terminated. As a consequence, we no longer need
the auxiliary spawn thread, nor the children counter.

Instead, prune is composed by two steps. In the first step, f and the channel to
which it publishes are initialized. prune then waits until a value is published or f
terminates. In the latter case the operator terminates immediately without starting
g or publishing any value. If f does publish a value, then a kill signal is sent to its
thread and recursively to its child threads.

In the second step, we initialize a channel to house the publications of g and
initialize a thread to run g. We then proceed to forward all the publications of g
until it terminates.

4 Implementing Concurrent Programming Patterns
with HOrc

In this section we will show only two of the examples we have implemented in
HOrc. For the first one we picked up the eight queens problem solution of [16] and
re-written it in HOrc to show the differences between the two languages. In the
second example we focus in expressing more general programming patterns. We
extend the definition of hylomorphism by allowing certain parts to run in parallel.
As we later show, with this abstraction it becomes trivial to implement a parallel
quicksort algorithm. Among the other programming patterns we implemented in
HOrc are MapReduce [7] and workflow patterns [5].

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6456

4.1 The Eight Queens Problem

The eight queens problem is a well know combinatorial problem [6] which asks the
question: how many ways are there to place eight queens on a chess board, with the
restriction that none of them is attacking another, i.e. no two queens should be in
the same line, column or diagonal. A most beautiful solution to this problem in Orc,
based on backtracking on the solution space, is presented in [16]. Its translation to
HOrc is immediate. We show here the HOrc version written in Haskell’s do-notation,
which is simply syntactic sugar for monad sequencing.

extend x 1 = msum [check (i:x)| i<-[0..7]]
extend x n = do y <- extend x 1;

extend y (n-1);

In the first line, we make use of Haskell’s built-in msum function that runs in
parallel an instance of check for every possible row number i. Local site check
will only publish if adding a queen to board x on the ith row does not violate the
no-attack rule. In the second line, every possible disposition of queens resulting
from adding one more queen to the tray is associated with variable y and passed, as
an accumulator, to the recursive invocation. We can very easily implement check
as a local site and check the output — all 92 publications — composing extend []
8 with oprint. The implementation of site check can be found in appendix B.

4.2 Parallel Hylomorphisms

Hylomorphisms [3] formalize the idea of divide-and-conquer algorithms. By def-
inition, they are comprised of two separate stages: the anamorphism recursively
creates a data structure that represents the call graph of the function; the cata-
morphism recursively consumes that data structure, computing at each node the
output of the hylomorphism. In practice, though, the whole process is optimized by
throwing away the intermediate data structure — a process known as de-forestation
— and combining the so-called genes of divide (technically, the anamorphism) and
conquer (technically, the catamorphism) processes into a unique recursive stage.

Similarly, the site calls of a system can be chained together, forming a struc-
ture much like the call trees from sequential programming. Workflow graphs are
a common technique to formalize concurrent applications, indicating how the in-
formation flows between the various entities in the system. These can be created
programmatically by the anamorphism part of the system, leaving their execution
to the catamorphism. The biggest difficulty is to find an appropriate intermediate
type that can represent the variety of nodes appearing in the call graph.

The intermediate data structure is defined in terms of products and co-products,
corresponding to Cartesian product and disjoint union of types. Therefore, to par-
allelize the hylomorphism construction, we need first to create parallel operations
on both products and co-products, which are easily encoded in HOrc.

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 57

4.2.1 Parallel Products
Products represent the accumulation of information. The most important operation
is the split, which given two functions with equal domain, gathers their results and
places them in a tuple. This can be generalized, of course, to other tuple dimen-
sions, and it is also possible to nest binary products to achieve products of higher
dimension. What is interesting about this function in the context of parallelization
is the fact that the two functions in the split are completely independent and may
run simultaneously.

Because we are in the HOrc domain, it is best to rephrase it in its own terms:
given two orchestrations that expect an argument of the same type, their split is
an orchestration, that receives an input, runs each of the orchestrations in paral-
lel and, when both orchestrations publish one value, returns the pair with those
publications. Its definition, simply enough, is

osplit::(a-> Action b, a-> Action c)-> a-> Action (b,c)
osplit (f,g) a = do p <- newPair;

c <- (f a >>= olet . Left)
‘mplus‘ (g a >>= olet . Right);

putPair p c;

The auxiliar type Pair buffers the output of each orchestration. It is created
by function newPair. The individual components of the pair can be written with
function putPair. The semantics of this function are a bit peculiar: for a Pair of
type A × B, its input is a value of type A + B; if the input is on the left of the
co-product it will be written to the first component of the pair while if it is on the
right, on the second component. Also, this function is actually a HOrc site which
publishes only when it has received values for both components — for this reason
osplit should only be used with values that publish one and only one value; the
value published is the pair with values published by both components. The concrete
implementation of this type and its operations can be consulted in appendix C.

A special and very useful kind of split is the product of functions oprod. This
function is structure preserving: given a pair of functions and a pair of values of
the appropriate type, the product of functions applies the first function to the first
value in the pair and the second function the second value. Its implementation in
HOrc is equal to its definition.

oprod::(a-> Action b, c -> Action d)-> (a,c)-> Action (b,d)
oprod (f,g) = osplit (f . fst, g . snd)

4.2.2 Parallel Co-Products
Co-products, unlike products, cannot be parallelized based solely on their structural
components. A co-product A + B represents an alternative: we either have a value
of A of a value of B but not both together. Thus, we simply lift the existing
sequential operation to the HOrc domain.

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6458

oeither::(a->Action c, b->Action c)->Either a b->Action c
oeither (f,g) = either f g

And its structure preserving brethren is

osum::(a->Action c,b->Action d)->Either a b->Action (Either c d)
osum (f,g)=oeither(\x->f x>>=olet . Left,\x->g x>>=olet . Right)

4.2.3 Parallel Hylomorphisms on Binary Trees
Hylomorphisms come in various forms and shapes — namely those of the inter-
mediate structure. Our hylomorphisms are only parametrized by the gene of the
anamorphism and catamorphism, not on the intermediate structure, so we must
provide one for each kind. We will focus here on binary trees. Also, we will imple-
ment a optimized, de-forested hylomorphism. In this situation, our hylomorphism
will in fact be composed by 3 separate stages: the division of tasks made by the
gene of the anamorphism; the recursive calls; the catamorphism.

De-forestation also induces us to define our intermediate type in the following
way.

type Node a b = Either () (a,(b, b))

This generalises the type of binary trees, by replacing the recursive part by an
additional type variable b. The values of type b will be fed to the recursive calls.
These recursive calls will, in turn, replace those values with their results which will
then be consumed by the catamorphism. The definition of our de-forested binary
tree hylomorphism is

hyloBT::(a->Action(Node b a))->(Node b c->Action c)->a->Action c
hyloBT a c x = a x>>=

osum(olet,oprod(olet,oprod(hyloBT a c,hyloBT a c)))
>>= c

The parallelization is achieved by the term oprod (olet,oprod (hyloBT a
c,hyloBT a c)): the recursive calls are independent and the parallel behaviour
of oprod, inherited from osplit, guarantees that they will run in parallel.

As an example, below is a parallel implementation of quicksort [9]. To create it,
we picked the ana- and catamorphism genes we knew from the sequential version
(cf. chapter 6 of [3]) and brought them to the HOrc domain with the appropriate
lifting. 5

oqsort :: (Ord a) => [a] -> Action [a]
oqsort = hyloBT a c

where a [] = olet $ Left ();

a (x:xs) = olet $ Right (x,partition (<x) xs);

c = oeither(olet . (const []),

\(a,(b,c))->olet $! (b++(a:c)))

5 We have also added some strictification to make sure lazy-evaluation doesn’t dump the work from one
thread to a later stage

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 59

As is, all three stages of the hylomorphism are performed sequentially. These
stages act as synchronization barriers, hindering parallelization, but they are strictly
necessary. We can, however, achieve higher performance by moving around part of
the work load of the divide and/or conquer stages. The divide stage splits the
input into recursive and non-recursive parts. The non-recursive part, though, is
left untouched while the recursive calls are being made. This means it can only
processed in the other two stages.

But many times, there is some processing done on the non-recursive part that is
independent of the result of the recursive calls and which is suitable to run in parallel
with them. A fine example of this are maps that process the non-recursive part,
leaving the recursive structure unchanged. An alternative to the above definition
of hylomorphisms on binary trees incorporating this idea is

hyloBT’ :: (a -> Action (Node b a)) -> (b -> Action c) -> (Node
c d-> Action d) -> a -> Action d

hyloBT’ a m c x = a x >>=
osum(olet,oprod(m,oprod(hyloBT’ a m c,hyloBT’ a m c)))

>>= c

The relationship between the variables a,m and c in the definition of hyloBT’
and variables a and c in hyloBT can be obtained by applying the product-fusion
law, and is left as an exercise for the reader.

5 Related Work

This paper should be framed in the context of Orc development, by Misra et al
[16,4,5], to which it aims to contribute. Our work, however, differentiates from the
“main stream” in many respects. First, we were forced to replace where by the less
powerful prune combinator. So far, though, there has not been a practical example
for which we could not rephrase the orchestration definition to use prune instead
of where. The implementation in [4] is based on directed acyclic graph(DAG)
traversal; every orchestration is compiled first into a DAG which is then traversed
to run the orchestration. All of it is done in Java. Our implementation, on the
other hand, is just a Haskell library which lends itself to a seamless integration
between HOrc and Haskell: Haskell functions can be run as sites in HOrc and HOrc
orchestrations can be used within Haskell programs.

Proença and Clarke attempted earlier, in [18], to re-imagine Orc by representing
it in another language, in their case Reo. Our work stands out from theirs in the use
of Haskell, a much more popular language, with an extensive library of functions
that can be used in orchestrations. Moreover, as shown in this paper, the translation
between Orc and HOrc is mechanic. Furthermore, reference [18] claims that Reo
cannot handle recursive Orc expressions without being extended; clearly HOrc does
not face that problem.

From the opposite side of the spectrum, we can see HOrc as an attempt to
introduce distributed/parallel concepts into Haskell. Much work has been done
on this field. Concurrent Haskell [11] adds explicit parallelism to the language

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6460

by introducing threads and communication primitives among them (Channels and
MVars); HOrc is built on top of these primitives. Another approach is the semi-
explicit parallelism provided by GpH [14]; instead of mandating a certain division
of tasks, the programmer annotates the code, identifying possible division of tasks,
and the runtime decides which of those divisions to follow. HOrc seems to lay in
between the two approaches: it is higher level than using pure threads but the
division of tasks is still fixed.

6 Concluding Remarks

We have presented an implementation of Orc as a functional domain specific lan-
guage, which allows for quick animation of orchestrations and makes easier the use
of this language embedded in real-world applications.

This led, in a natural way, to a distributed encoding of inductive-coinductive
recursion patterns, which opens the possibility of scaling up functional program
calculi, such as the one introduced in [3], from the micro, program-oriented level, to
the macro, architectural one. We intend to pursue this research path in the future.

Haskell proved to be a most convenient way to experiment with the design
of distributed programming languages. The choice to base our implementation
in threads suited the needs, but it is not the unique alternative. Our very first
approach was based on continuations. It was good enough to express the solution
to the 8-queens problem, though woefully inadequate for anything that might block.

A lot of work remains to be done. For example, signal handling between threads
is, euphemistically, sub-optimal — while published values are correct, spurious site
calls might be made which, in conjunction with side-effects, may lead to unex-
pected results. Another issue deserving further study concerns the alternative im-
plementation of where and its relation with our, simpler but less expressive, prune
combinator. Finally, work currently being undertaken aims to prove that our im-
plementation is correct by verifying that the semantics of HOrc operators, derived
from their Haskell definitions, corresponds to Orc’s operators semantics.

References

[1] Arbab, F., Abstract behaviour types: a foundation model for components and their composition, in: F. S.
de Boer, M. Bonsangue, S. Graf and W.-P. de Roever, editors, Proc. First International Symposium
on Formal Methods for Components and Objects (FMCO’02), Springer Lect. Notes Comp. Sci. (2852),
2003 pp. 33–70.

[2] Arbab, F., Reo: a channel–based coordination model for component composition, Mathematical
Structures in Comp. Sci. 14 (2004), pp. 329–366.

[3] Bird, R. and O. Moor, “The Algebra of Programming,” Series in Computer Science, Prentice-Hall
International, 1997.

[4] Cook, W. R. and J. Misra, Implementation outline for orc (2005).

[5] Cook, W. R., S. Patwardhan and J. Misra, Workflow patterns in orc, in: P. Ciancarini and H. Wiklicky,
editors, Coordination Models and Languages, 8th International Conference, COORDINATION 2006,
Bologna, Italy, June 14-16, 2006, Proceedings, Lecture Notes in Computer Science 4038 (2006), pp.
82–96.

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 61

[6] Dahl, O.-J., E. W. Dijkstra and C. A. R. Hoare, “Structured Programming,” Academic Press (New
York NY), 1972.

[7] Dean, J. and S. Ghemawat, Mapreduce: Simplified data processing on large clusters, Sixth Symp. on
Operating System Design and Implementation (2004), pp. 10–10.

[8] Gelernter, D. and N. Carrier, Coordination languages and their significance, Communication of the
ACM 2 (1992), pp. 97–107.

[9] Hoare, C. A. R., Quicksort, The Computer Journal 5 (1962), pp. 10–15.

[10] Jones, S. P. and et al, editors, “Haskell 98 Language and Libraries, the Revised Report.” Cambridge
Univ. Press, 2003, 272 pp.

[11] Jones, S. P., A. Gordon and S. Finne, Concurrent Haskell, in: Conference Record of POPLR© ’96:

The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming LanguagesR©, ACM
SIGACT and SIGPLAN (1996), pp. 295–308.

[12] Kitchin, D., W. R. Cook and J. Misra, A language for task orchestration and its semantic properties,
in: C. Baier and H. Hermanns, editors, Proc. 17th Inter. Conf. Concurrency Theory, CONCUR 2006,
Bonn, Germany, August 27-30 (2006), pp. 477–491.

[13] Launchbury, J. and S. L. P. Jones, Lazy functional state threads, in: Proceedings of the ACM
SIGPLAN ’94 Conference on Programming Language Design and Implementation, 1994, pp. 24–35.

[14] Loidl, H.-W., P. Trinder, K. Hammond, S. B. Junaidu, R. G. Morgan and S. L. Peyton Jones,
Engineering parallel symbolic programs in GpH, Concurrency: Practice and Experience 11 (1999),
pp. 701–752.

[15] Marlow, S., S. P. Jones, A. Moran and J. Reppy, Asynchronous exceptions in haskell, in: C. Norris
and J. J. B. Fenwick, editors, Proceedings of the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implementation (PLDI-01), ACM SIGPLAN Notices 36.5 (2001), pp. 274–285.

[16] Misra, J. and W. R. Cook, Computation orchestration (2007).

[17] Papadopoulos, G. A. and F. Arbab, Coordination models and languages, in: Advances in Computers
(1998), pp. 329–400.

[18] Proença, J. and D. Clarke, Coordination models orc and reo compared, Electr. Notes Theor. Comput.
Sci 194 (2008), pp. 57–76.

[19] Rodrigues, N. F. and L. S. Barbosa, Coordinspector: a tool for extracting coordination data from legacy
code, in: SCAM ’08: Proc. of the Eighth IEEE Inter. Working Conference on Source Code Analysis
and Manipulation (2008), pp. 265–266.

[20] Vos, T. E. J. and D. Swierstra, Proving distributed hylomorphisms, UU-CS-2001-40, Informatica
Instituut, Utrecht University (2001).

[21] Wedler, C. and C. Lengauer, On linear list recursion in parallel, Acta Informatica 35 (1998), pp. 875–
909.

[22] Wehrman, I., D. Kitchin, W. R. Cook and J. Misra, A timed semantics of orc, Theor. Comput. Sci 402
(2008), pp. 234–248.

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6462

A Implementation of Primitive Sites.

Below we show how Orc’s primitive sites are defined in HOrc using the lifting
operators.

The site ozero never publishes and terminates ASAP.

ozero :: Action a
ozero = liftMaybe Nothing

olet simply publishes whatever Haskell value is passed to it, namely tuples.

olet :: a -> Action a
olet x = liftIO $ return x

Signals are expressed using Haskell’s unit type. Emitting a signal is, therefore,
publishing a — the — value of said type

osignal :: Action ()
osignal = olet ()

The oif site receives values of Haskell Bool type and publishes a signal accord-
ingly.

oif :: Bool -> Action ()
oif x = if x then osignal else ozero

Sites oclock, ortimer and oatimer, make use of Haskell built-in functions to
access the system’s clock and thread pausing facilities.

oclock :: Action Int

oclock = liftIO $ do{(TOD s p) <- getClockTime;

return (fromInteger s)

}

ortimer :: Action ()
ortimer x = liftIO $ threadDelay (x*10^6)

oatimer :: Action ()

oatimer x= liftIO $ do{(TOD s p) <- getClockTime;

threadDelay (x-(fromInteger s)*10^6)

}

B Implementation of the check site of the 8-queens
problem

The site check is implemented locally. Function checkP is actually the one which
takes care of all the logic of the problem, while check is its lifted version to the

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–64 63

HOrc domain.
check = liftMaybe . return . checkP

checkP [x] = Just [x]

checkP (x:xs) = if (all (/=x) xs

&& diagP x xs 1)

then Just (x:xs)

else Nothing

diagP [] = True

diagP x (y:ys) n = (x+n) /= y

&& (x-n) /= y

&& diagP x ys (n+1)

C The Pair ADT implementation

We explained type Pair and it’s related operations newPair and putPair in section
4.1. Their definitions are, respectively, the following.

type Pair a b = MVar (Maybe a, Maybe b)

newPair :: Action (Pair a b)
newPair = liftIO $ newMVar (Nothing,Nothing)

putPair :: Pair a b -> Either a b -> Action (a,b)
putPair p m = liftMaybe $

do{(a,b) <- takeMVar p;

(a’,b’) <- return $ either (\x -> (Just x,b))

(\x -> (a,Just x))

m;

putMVar p (a’,b’);

return (dox<-a’;y<- b’; return (x,y));

}

M.D. Campos, L.S. Barbosa / Electronic Notes in Theoretical Computer Science 255 (2009) 45–6464

	Introduction
	A Short Introduction to Orc
	Site calls
	Sequential Composition
	Synchronous Parallel Composition
	Asynchronous Parallel Composition
	Primitive Sites
	Function Definition

	HOrc: Orc as a Haskell Domain Specific Language
	Sites
	Primitive Sites
	Sequential Composition and the Action Monad
	Synchronous Parallel Composition and the Action Monad Plus
	Asynchronous Parallel Composition and Pruning

	Implementing Concurrent Programming Patterns with HOrc
	The Eight Queens Problem
	Parallel Hylomorphisms

	Related Work
	Concluding Remarks
	References
	Implementation of Primitive Sites.
	Implementation of the check site of the 8-queens problem
	The Pair ADT implementation

