
ORCA: Architecture for Business Tier Components
Driven by Dynamic Adaptation and Based on Call Level Interfaces

Óscar Mortágua Pereira(1), Rui Luís Aguiar(2)
Instituto de Telecomunicações

DETI, University of Aveiro
3810-193 Aveiro, Portugal

omp@ua.pt(1), ruilaa@ua.pt(2)

Maribel Yasmina Santos
Centro Algoritmi

University of Minho
4800-058 Guimarães, Portugal

maribel@dsi.uminho.pt

Abstract— Call Level Interfaces (CLI) play a key role in
database applications whenever performance is a key
requirement. SQL statements are encoded inside strings this
way keeping the power and the expressiveness of the SQL
language. Unfortunately, despite this significant advantage,
CLI do not promote the development of business tier
components, much less for business tier components driven
by dynamic adaptation. To tackle this CLI drawback, and
simultaneously keep their advantages, this paper proposes
an architecture, herein referred to as the Object-to-
Relational Component Architecture (ORCA), relying on
CLI for building adaptable business tiers components.
ORCA has the capacity of being dynamically adapted to
manage any set of SQL statements deployed at runtime. The
focus of this paper is threefold: 1) present the ORCA, 2)
present a proof of concept based on Java and, finally, 3)
assess its performance against a standard CLI.

Keywords- components; adaptive systems; software
architecture; performance; call level interfaces; databases.

I. INTRODUCTION
Call Level Interfaces (CLI) are effective solutions for

building business tiers whenever performance is a key
requirement [1]. There are two main reasons: 1) SQL
statements are encoded inside strings, keeping the power
and the expressiveness of the SQL language and 2) CLI
are low level API inducing very low overhead. In spite of
these important advantages, CLI also convey some
drawbacks: business tier components are not easily built
from CLI, much less for business tiers driven by dynamic
adaption.

Problem definition: Components have their

fundamentals in component-based development which is
a key topic in software engineering [2, 3]. Component-
based development aims to compose software artifacts
from other pre-built software artifacts [2]. At the end, a
final system is not built as a unique block but as a
composite of software artifacts known as components [4].
A key aspect for the success of any component is its
capability of being reused and adapted [5]. Thus, a
component perspective for business tiers must address two
key aspects: 1) enforcement of a clear separation between
the development process of business tiers from the
development process of application tiers, and 2) promote a

swift adaptation process of business tier components to
new business needs (these new needs are mostly and
mainly felt at development time of application tiers but
may also happen after their deployment). CLI are the
opposite of this.

1) Regarding the component perspective, programmers

are easily pushed to mix source code of business tiers with
source code of application tiers. Figure 1 presents a typical
and simple case using JDBC [6] as an example of a CLI.
This example depicts a method aimed at updating the
attribute value of a list of orders kept in a table named
Orders. The list is included in List<Integer> order and the
new values are included in List<Float> value (see
arguments of method updOrders). The query is prepared
(selects all orders) and is executed (line 84-86); the
returned relation is iterated (line 87); it is checked if the
current order needs to be updated (line 88-90); the new
value is retrieved (line 91) and then the old value is
updated (line 92-93). Programmers play the business tier
developer role when they write SQL statements and source
code to execute them (line 84,85,86,87,88,92,93) and play
the application tier developer role when they use the
application data and retrieved data (line
88,89,90,91,92,93). In reality, CLI were not devised to
avoid this tangling of roles which clearly inhibits the
development process of business tier components.

2) Regarding the adaptation process, CLI were not

geared to address it. All source-code needs to be manually
written before being used, as shown in Figure 1. There is
no way to dynamically adapt business tiers to new

Figure 1. Tangling of roles with JDBC.

2012 38th Euromicro Conference on Software Engineering and Advanced Applications

978-0-7695-4790-9/12 $26.00 © 2012 IEEE

DOI 10.1109/SEAA.2012.22

183

business needs. Moreover, each SQL statement is
managed by a block of source-code very often comprising
many repeated lines of code previously written for other
SQL statements. This situation is increasingly critical
when the number of SQL statements increases eventually
becoming difficult to be manageable in database
applications with several hundreds of SQL statements.

Solution: to tackle these CLI drawbacks, a research has
been carried out, in the context of Component-Based
Software Engineering [2, 3]. The result of the research is a
architecture for adaptable components, herein known as
Object-to-Relational Component Architecture (ORCA),
aimed at building business tiers. ORCA main features are
the following: 1) it is based on CLI to make use of and
keep their key advantages; 2) it promotes the development
of components to build business tiers; 3) components are
dynamically, at runtime, adapted to address new business
needs.

Contribution: the main contribution of this research is
threefold: 1) to present the ORCA aimed at overcoming
and tackling CLI drawbacks, 2) to present a proof of
concept based on JDBC and, finally, 3) to present the
results of a performance assessment.

This paper is structured as follows: section II
introduces CLI; section III presents ORCA; section IV
presents the performance assessment; section V presents
the related work and section VI presents the final
conclusion.

II. CALL LEVEL INTERFACES
CLI are considered important options for building

business tiers whenever performance is considered a key
requirement [1]. CLI provide mechanisms to encode SQL
statements inside strings, easily incorporating the power
and the full expressiveness of SQL. JDBC [6] and ODBC
[7] are two representatives of CLI. SQL statements are
executed against the host database and the possible results
they produce (only for Select statements) are locally
managed by local memory structures (LMS) – (ResultSet
[8] for JDBC, RecordSet [9] for ODBC). Hereafter, SQL
statements will be restricted to Select, Insert, Update and
Delete statements. Only CLI services directly related to the
execution of SQL statements will be considered. Services
such as those for managing connections to host databases
are not addressed in this paper.

Key services of CLI are organized in three main
categories: execution target, scrollability and updatability.
Figure 2 will be referred during the next explanations.

Execution target: it comprises services related to the

execution of SQL statements. They are executed as
compiled-on-the-fly or pre-compiled (when they are to be
reused or when they have parameters defined at runtime
time (line 42)). Additionally, CLI deal differently with
Select statements from the other three types of SQL
statements. Select statements instantiate an LMS (line 47 -

rs:ResultSet), while the other types do not, generating a
value indicating the number of affected rows in the
database.

Scrollabilty: it comprises services related to the
scrolling process on LMS. There are two mutual-exclusive
possibilities: forward-only (line 44) – in this case it is only
possible to move forward one row at a time, (line 48);
scrollable – in this case it is possible to move in any
direction and jump several rows at a time.

Updatability: it comprises services organized in
protocols to interact with data contained in LMS. There
are two mutual-exclusive possibilities: read-only – the
contents of the LMS is read-only and no changes are
allowed; updatable (line 45) – changes may be performed
on LMS (insert new rows (line 53-55), update rows (line
51-52) and delete rows (line 50). JDBC commits these
changes into the host database.

Figure 2. Typical JDBC usage.

III. ORCA
Before ORCA presentation some of its key concepts

are introduced in the following order: sibling SQL
statement, Business Entity, Object-to-Relational Model,
Business Schema and Business Engine. Then, ORCA is
presented and followed by a proof of concept.

A. Sibling SQL statements
SQL statements may be characterized by a schema,

herein known as SQL schema, which comprises their type
(Select or Update, Insert and Delete), their runtime
parameters and their returned relations (only for Select
statements). SQL statements sharing the same SQL
schema, as the ones shown in Listing 1, are herein known
as sibling SQL statements. The key issue is that sibling
SQL statements may be managed by the same source-code
leveraging this way an important aspect of components:

-- a simple statement
Select p.id,p.fName,p.lName
 From pilot p

-- a more complex statement
select p.id,p.fName,p.lName
 From pilot p,circuit c,classif f
 Where p.id=f.id and f.date=c.date

Listing 1. Sibling SQL statements.

184

the reuse of computation [10].

B. Business Entity
Business Entities (classes) are one of ORCA key

entities. Each one is responsible for managing the
execution of sibling SQL statements on behalf of
application tiers. Each Business Entity implements one
interface, herein known as Business Interface, which
defines the needed services to deal with one SQL schema.

Select statements return relations while the remaining
SQL statements do not. This leads to the need of
thoroughly assessing CLI to organize their services in
homogeneous and disjoint groups of services, herein
 known as Service Interfaces. Ten groups were identified:
IExecute (IExecutePC, IExecuteFC), IResult, ISet, IRead,
IForwardOnly, IScrollable, IWrite, IUpdate, IInsert and
IDelete, see Figure 3.

+moveNext() : boolean(idl)

«interface»
IForwardOnly

+set(in att_1 : DT1, in ..., in att_n : DTn)

«interface»
ISet

+att_1() : DT1
+...()
+att_n() : DTn

«interface»
IRead

+att_1(in v1 : DT1)
+...()
+att_n(in v1 : DTn)

«interface»
IWrite

+moveNext() : boolean(idl)
+moveAbsolute(in postion : long(idl)) : boolean(idl)
+moveRelative(in offset : long(idl)) : boolean(idl)
+moveBeforeFirst()
+moveFirst() : long(idl)
+moveAfterLast()
+moveLast() : boolean(idl)

«interface»
IScrollable

+beginInsert()
+endInsert()

«interface»
IInsert

+beginUpdate()
+endUpdate()

«interface»
IUpdate

+delete()

«interface»
IDelete

+nAffectedRows() : unsigned long(idl)

«interface»
IResult

+execute(in params)

«interface»
IExecutePC

+execute()

«interface»
IExecuteFC

+moveNext() : boolean(idl)

«interface»
IForwardOnly

Figure 3. Service Interfaces.

1) IExecute is used for executing SQL statements.

There are two facets: one for the compiled-on-the-fly
statements (IExecuteFC) and one for the pre-
compiled statements (IExecutePC). The argument params
is only necessary if there are parameters defined at
runtime.

2) IResult comprises one method to return the number
of affected rows after the execution of any Update, Insert
or Delete SQL statement.

3) ISet is used with pre-compiled Insert and
Update SQL statements when one or more values for their
list attributes are defined at runtime.

4) IForwardOnly is used with forward-only LMS and
comprises one method to scroll one row forward.

5) IScrollable is used with scrollable LMS.
6) IRead is used to read attributes from LMS. The

signature of each method is driven by the schema
of the correspondent attribute. DTn is the correspondent
SQL data type in the host programming language.

7) IWrite is used to update and insert attributes of
updatable LMS. The signature of each method is driven by
the schema of the correspondent attribute.

8) IUpdate is used to start and to end the execution of
the update protocol on updatable LMS.

9) IInsert is used to start and end the execution of the
insert protocol on updatable LMS.

10) IDelete is used to delete rows from updatable
LMS.

Service Interfaces are used and aggregated to build

Business Interfaces. IExecuteFC, IResult, IForwardOnly,
IScrollable, IUpdate, IInsert and IDelete are not dependent
on SQL schemas of SQL statements and, whenever
necessary, may be shared by all Business Interfaces.
IExecutePC, IRead, IWrite and ISet are dependent on SQL
schemas and, therefore, need to be customized to be used
in Business Interfaces.

C. Object-to-Relational Model
Object-to-Relational Model (ORM) is a model aimed

at mapping schemas of SQL statements into the object-
oriented paradigm. From a functional perspective, SQL
statements and LMS may be organized in two groups:
execute statements (Insert, Update and Delete) and select
statements (Select). Select statements may be forward-only
or scrollable or, read-only or updatable, as previously
explained. This organization leads the ORM to be
structured around three main facets, each one addressing
specific features: ORM_IUD for Insert, Update and Delete
statements, see Figure 4, ORM_Sro for Select statements
that create read-only LMS, see Figure 5, and, finally,
ORM_Sup for Select statements that create updatable
LMS, see Figure 6. From these class diagrams, it is
possible to foresee that ORM has the capacity of being

Figure 4. ORM_IUD class diagram.

Figure 5. ORM_Sro class diagram.

185

«interface»
ORM_Sup

IExecuteFC

IRead

IWrite

IUpdate
IInsert

IDelete

IForwardOnly
IScrollable

Only if scrollable

Only if forward-only

Only if compiled
on the fly

IExecutePC
Only if
pre-compiled

Figure 6. ORM_Sup class diagram.

adapted to specific needs of each SQL statement. For
example, let’s consider a Select statement that is
compiled-on-the-fly and generates updatable and
forward-only LMS (modeled by the ORM_Sup). The
correspondent Business Interface comprises the
following Service Interfaces: IExecuteFC, IFowardOnly,
IRead, IWrite, IInsert, IUpdate and IDelete.

D. Business Schema
Business Schemas are entities derived from the ORM

and are used to build Business Interfaces. They aggregate
all the required information to build Service Interfaces
from which Business Interfaces are built in accordance
with the ORM. Due to the formalization process of Service
Interfaces, which is based on programming interfaces, an
attempt was made to formalize Business Schemas also as
programming interfaces. The approach proved to have the
following key advantages over other approaches, such as
XML: 1) programmers wouldn’t need to change its
programming language; 2) programming interfaces are
widely used and are an unavoidable concept in object-
programming languages; 3) programming interfaces are
easy to create and maintain; 4) due to the same
formalization process, Business Schemas are directly
inferred and defined from the Service Interfaces. Only
IExecutePC, IRead and ISet need to be explicitly created
for each Business Interface. They are dependent on
schemas of SQL statements while the others are not.
IWrite is also dependent but the methods are automatically
inferred from IRead interface.

E. Business Engine
Business Engine is a component aimed at writing the

source code for Business Entities and Business Interfaces
from Business Schemas. The functionalities to be
implemented in each Business Entity are inferred by the
Business Engine, following the next rules: 1) if the Service
Interface IExecuteFC is present, than the SQL statements
are complied-on-the-fly; 2) if the Service Interface
IExecutePC is present, then the SQL statements are pre-
compiled; 3) if at least one of the following Service
Interfaces IForwardOnly, IScroll, IRead, IUpdate, IInsert
or IDelete is present, then an LMS must be instantiated; 4)
if the Service Interface IForwardOnly is present then the
LMS will be instantiated as forward only; 5) if the Service

Interface IScrollable is present then the LMS will be
instantiated as scrollable; 6) if at least one of the following
Services Interfaces IUpdate, IInsert or IDelete is present,
then the LMS is instantiated as updatable, otherwise, it
will be instantiated as read-only.

F. ORCA presentation
Key entities of ORCA have just been presented. They

need to be organized to promote the building process of
business tier components driven by dynamic adaptation.
Previous entities were organized and some additional
entities were added as shown in Figure 7. There are two
additional interfaces (IConfig, ISession) and an additional
entity, named as Manager, to implement both interfaces.

IConfig interface, see Figure 8, is used to configure

components derived from ORCA. The 6 main types of
services are: dbServer to define the parameters for
connections to database servers; repository to define the
physical location of Business Entities and Business
Interfaces; addBusinessEntity to start the Business Engine
(Figure 7, 1-1) to create new Business Entities (Figure 7,
1-2); removeBusinessEntity to remove Business Entities;
attachStatement to deploy and delegate the management of
SQL statements to Business Entities and dettachStatement
to undo the previous operation.

ISession interface, see Figure 9, owns a private

connection to the host database and provides two methods.
One generic method createBusinessWorker (Figure 7, 2-1)
used to create instances of Business Entities (BE), herein
known as Business Workers (BW) (see Figure 7, 2-2).
This generic method is a key aspect in the ORCA. With a
single method, and using reflection, it is possible to
implement a type safe instantiation process for all
Business Entities. The returned Interface implements one
of the ORM facets previously presented: ORM_IUD,
ORM_Sro or ORM_Sup. In order to keep control on
the SQL statements being executed by each Business to

...

Figure 7. Block diagram of ORCA.

Figure 8. IConfig interface.

186

Figure 9. ISession interface.

Entity, it is not allowed to request a Business Entity
manage a statement that has not been previously attached
to it. The second method is used to release the open
session. ISession extends ITransaction to manage database
transactions.

Programmers of application tiers use ORCA based on
an approach with four phases. First, they import a basic
component derived from ORCA (not adapted yet) into the
development environment. Second, they adapt the
component to their specific needs by editing and sending
Business Schemas to IConfig at runtime. Third, they write
source code to use the component just adapted. Forth, SQL
statements are deployed at runtime. Whenever necessary,
the process may be repeated from the second phase to
update the components being used.

G. Proof of Concept
A proof of concept based on Java and JDBC (sqljdbc4)

for SQL Server 2008 database was developed. Tests have
been concluded and a free trial may be downloaded1.

Figure 10 presents a simplified class diagram for the

component derived from ORCA: 1) ORCA is instantiated
through the static method getInstance; 2) the configuration

Figure 10. ORCA simplified class diagram.

1 http://dl.dropbox.com/u/71192544/Work/Confers/SEAA/SEAA2012/ORCA.7z

is processed through IConfig; 3) ORCA keeps track of
Business Entities and their associated SQL statements
through the Map [11] be object; 4) Business Engine is
used to create Business Entities each one able to manage
sibling SQL statements deployed at runtime; 5) Business
Workers are created from ISession interface and accept at
instantiation time an SQL statement and a connection
object to the host database.

A scenario was created to present ORCA from its
usage point of view. The scenario comprises: 1) two
sibling Select SQL statements: Select * from student
where id=? (identified as s1) and Select * from student
where courseId=? (identified as s2) to be managed
by one business interface modeled by ORM_Sup and
herein known as IStudent_get; 2) Insert SQL
statement: insert into student values (?,?,?,?,?,?,?)
(identified as s3) to be managed by a business interface
modeled by ORM_IUD, herein known as IStudent_insert.
All SQL statements are pre-compiled. Figure 11, Figure 12
and Figure 13 present details about how to use ORCA.
Figure 11 shows the source code to deploy the two
Business Schemas to the Business Engine. Figure 12
shows the source code to deploy and attach the SQL
statements to Business Entities at runtime. SQL statements
s1 and s2 are managed by IStudent_get and their ids are 1
and 2, respectively. SQL statement s3 is managed by
IStudent_insert and its id is 1. Figure 13 presents a typical
case for the use of a component derived from ORCA. A is

Figure 11. Configuration of Business Entities

Figure 12. Configuration of SQL statements.

Figure 13.Use case of ORCA.

187

new session is created (line 74); a Business Worker
created (line 75-76) from Student_get to manage SQL
statement s1; SQL statement is executed (line 77); if a
student has been found (line 78) its first name is updated
(line 79-81).

From this scenario, we have shown that ORCA is
suited for building business tier components driven by
dynamic adaptation. Components exist as independent
software units and are adaptable because: a) Business
Entities are automatically built at runtime to address
specific needs; 2) SQL statements are deployed at runtime
to address specific users’ needs; 3) each Business Entity is
able to manage any SQL statement whose schema is
aligned with its Business Interface. The adaptation process
comprises three main activities: editing process of SQL
statements, editing process of Business Schemas and the
configuration process. The first activity is also required
when tiers are built from CLI, not leading to any additional
effort. The other two activities are specific to ORCA. In
this paper we have presented a manual approach for their
implementation. While the editing process of Business
Schemas very probably will be a manual process, the
configuration process is easily automated. Thus, the
adaptation process is confined to the editing process of
Business Schemas which, in our implementation, are
standard Java interfaces.

IV. PERFORMANCE ASSESSMENT
The performance assessment is focused on evaluating and
comparing the performance of solutions based on
components derived from ORCA and solutions based on
standard CLI. Java, JDBC and SQL Server 2008 have
been chosen as the basic core technologies to support the
assessment and the component is herein known as
JORCA. The test-bed relies on a Dell Latitude E5500
Laptop, Intel Duo Core P8600 @2.40GHz, with 4.00 GB
RAM, with Windows Vista Enterprise Service Pack 2
(32bits), Java SE 7, JDBC(sqljdbc4) and SQL Server
2008. The minimum system interval counter is 428ns. In
order to promote an ideal environment, the following
actions were taken: 1) the running threads were given the
highest priority; 2) all non-essential processes/services
were cancelled; 3) transactions were not used and auto-
Commit (JDBC) has been always enabled; 4) a new
database was created, containing one table named target
with a single attribute named id of type int and not null; 5)
some default SQL Server database properties were
changed such as Auto Update Statistics = false and
Recovery Model = Simple. The strategy followed to
collect the needed measurements was based on measuring
how long some code takes to execute. To achieve this
goal, the method system.nanoTime() was used. In spite of
being a very easy methodology to collect measurements, it
cannot be directly applied to situations where the collected
measurements are in the same order of magnitude as the
time to process an empty block of code. Thus, the first step
is to evaluate the impact of the act of measuring. The
collected values showed that the impact is 1,284ns±428ns.

Table I. General algorithm to collect measurements.
1 repeat: 20 rounds
1.2 get a new container to keep the collected times
1.3 repeat: 250 cycles
1.3.1 start timer
1.3.2 run scripts (must take at least 171,200ns)
1.3.3 stop timer
1.3.4 keep elapsed time if it is one of the 5 best in this cycle
1.3.5 release all unnecessary objects
1.3.5 activate garbage collector
1.3.5 sleep 100ms (other system processes may need to run)
2 compute the average time of each round
3 keep the best average time

Thus, for statistic effects, the worst case was
considered:1,284ns+428ns=1,712ns. From this value, and
in order to keep errors below 1%, all measurements
associated with the performance assessment were
collected with a minimum time span of 171,200ns. In
several situations it was necessary to repeat the same
code as often as necessary to get a minimum of
171,200ns. To avoid additional errors with the repeating
process, the code was sequentially repeated and not
iteratively repeated. The general strategy followed
to collect and compute each presented measurement is
presented in Table I. All measurements are presented in
nanoseconds (ns).

A. ORCA Overhead
Regarding performance, ORCA may be split into two
main phases: 1) the creation phase which is focused on the
creation of Business Entities and 2) the execution phase,
which is focused on the execution of statements. The
creation phase is related to activities that have no
equivalent on standard CLI and, thus, the % induced
overhead is 100%. The creation phase comprises: the
configuration process, the creation of source code for
Business Entities, their compilation, their loading into
memory and, finally, their instantiation. The execution
phase comprises the activities shared by standard CLI and
by JORCA, which are directly related to the execution of
SQL statements and, therefore, the assessment is focused
on measuring the overhead induced by Business Workers.
Two main approaches may be followed to carry out the
performance assessment for the execution phase: 1) use
JORCA and assess it against the standard JDBC API based
on case studies; 2) develop a general environment aimed at
evaluating the overhead induced by the wrapping process
implemented by each method of each Service Interface.
After some initial measurements, it came clear that the
latter approach would bring significant advantages over
the former approach, in several dimensions, such as: a)
methods of Service Interfaces are general and not tied to
any particular use case and b) an assessment based on the
wrapping process may lead to a mathematical model to
evaluate any scenario.

Creation phase: The collected measurements were

obtained using a case study based on a scrollable
ORM_Sup implementing all Service Interfaces. The
collected measurements were 41,956,211ns for TP (time to
create source code, compile and load Business Entities)

188

and 1,510ns for TI (time to instantiate a Business Worker).
While TP behaves as a one-time overhead, TI is an
overhead for each instantiated Business Worker. To avoid
this overhead, Business Workers may be reused. Sessions
were not considered in this performance assessment
because performance is mostly influenced by the policy
used to manage pool of connections to the host database.

Execution phase: activities related to the execution
phase are basically the invocation of Service Interfaces
methods. Each Service Interface method wraps a block of
code of the standard CLI. Thus, the overhead may be
measured by evaluating the time to execute the additional
code when using a Service Interface method. To achieve
this, we introduce the concept of reduced method signature
(RMS). RMS derives from the widespread concept of
method signature but it does not include the method name.
All methods of Service Interfaces may be classified in two
different groups: methods with a fixed RMS and methods
with a variable RMS. Methods with fixed RMS are, by far,
the major group. The only methods which do not have a
fixed RMS are: execute with parameters and set. In order
to predict the overhead induced by every wrapping
method, it was decided to measure the finest grain
overhead induced by each possible variation in RMS. Two
examples: measure the induced overhead by each
additional argument of any data type and measure the
induced overhead by returning any data type. To achieve
this goal, two types of measurements were collected as
shown in Table II. TRi are the collected measurements for
methods with no arguments and returning the data types
shown in the first column. Examples: void m() {} and int
m(){ return 1;}. TAi are the collected measurements for
each additional argument of type Data type. TAi
measurements were collected using methods with 10
arguments of the same data type and returning void. Then,
TAi=(collectedMeasurement-3)/10 where 3 is the time to
call the method void m() {}. This approach was validated
by carrying out some additional tests using less than 10
and more than 10 arguments. From Table II it is easy to
compute the overhead induced by any RMS and, therefore,
of each method of each Service Interface. In spite of being
important data, they do not give any insight about their
impact on real cases. Thus, 4 main scenarios based on
JDBC were defined: Select (Ss), Update (Su), Insert (Si)
and Delete (Sd) scenarios to assess the execution of Select,
Update, Insert and Delete statements, respectively. Ss is
based on the execution of a compiled-on-the-fly Select
statement (Select * from target). Ss comprises all types of
LMS, regarding their scrollability and updatability, and
measures the most usual operations: the execution of a
Select statement, scrolling on the LMS, reading attributes,
inserting rows, updating rows and deleting rows.

Table III presents the collected measurements and the
computed overheads (the description of each column may
be found at the bottom).

Table IV describes the algorithms used in each task. To
avoid any SQL Server optimization process, the used table
was dropped and created in each cycle (see Table IV).

From Table III it is clear that the induced overhead is only
noticeable on partial tasks, such as reading attributes,
scrolling and writing attributes without committing them.
The % overhead, for these tasks, range from 1.8% till
3.3%. In a more realistic approach, the overhead should be
computed comprising a whole cycle (read protocol), such
as the instantiation of a Business Worker (optional because
it may be reused), the statement execution, scrolling to the
first row and then read it (E+S+R). In this case the total
time for a FR (best score) is
352,873+215+180=353,268ns. The overhead is TI+V
(when using new Business Workers) or V (when reusing
Business Workers), where

Table II. Collected measures for typical RMS in ns.
Data type TRi TAi i Data type TRi TAi i
void 3 0.0 1 String 4 1.3 6
byte 6 1.1 2 float 6 2.2 7
short 6 1.7 3 double 6 2.3 8
int 6 1.3 4 boolean 6 1.1 9
long 6 2.3 5 char 6 1.6 10

Table III. Collected measurements for scenario Ss.

Rs Task JDBC
(ns)

ORCA Overhead
% ORCA methods (OM) T �T(ns)

FR E 352,873 TR1 3 �

execute FU E 3,715,784 TR1 3 �
SR E 3,737,613 TR1 3 �
SU E 3,759,700 TR1 3 �
FR S 215 TR9 6 2.8

moveNext FU S 320 TR9 6 1.9
SR S 335 TR9 6 1.8
SU S 335 TR9 6 1.8
FR R 180 TR4 6 3.3

IRead FU R 261 TR4 6 2.3
SR R 261 TR4 6 2.3
SU R 261 TR4 6 2.3
FU CN 479 TR1+TA4 7.3 1.5

IWrite SU CN 479 TR1+TA4 7.3 1.5
FU UN 263 TR1+TA4 7.3 2.8
SU UN 263 TR1+TA4 7.3 2.8
FU CC 256,821 3*TR1+TA4 10.3 � IWrite,

beginInsert,endInsert SU CC 263,893 3*TR1+TA4 10.3 �
FU UC 288,890 3*TR1+TA4 10.3 � IWrite,beginUpdate,

endUpdate SU UC 294,369 3*TR1+TA4 10.3 �
FU D 319,435 TR1 3 � Delete SU D 328,115 TR1 3 �
RS Type of LMS: acronym formed by a first letter F or S (forward-only or scrollable) and a

second letter R or U (read-only or updatable). Ex: FR is forward-only and read-only.

Task
Task to be executed: E-execute a statement; S-Scroll one line forward; R-read one
attribute; CN-write an attribute during an insert protocol without committing; UN-write
an attribute during an update protocol without committing; CC-commit an insert
protocol; UC-commit an update protocol; D-delete a row.

JDBC Time to execute the standard JDBC code
T Overhead ids

�T Overhead in ns
% Induced overhead in %, (�T/JDBC). � means that the %<10-2.

OM ORCA methods involved in the task execution

Table IV. Algorithms for the Ss scenario.

Execute Scroll Insert commit Update commit
1. new table: 1 row
2. start timer
3. create statement
4.exec. statement
5. Stop timer

1. new table: 1 row
2. select all rows
3. start timer
4. step one row
5. stop timer

1. new table: 0 row
2. select 0 rows
3. start timer
4. insert attribute
5. commit
6. stop timer

1. new table: 1 row
2. select row
3. start timer
4. update attribute
5. commit
6. stop timer

Read Delete Insert no commit Update no commit
1. new table: 1 row
2. select row
3. start timer
4. read attribute
4. …
5. stop timer

1. new table: 1 row
2. select all rows
3. start timer
4. delete row
5. stop timer

1. new table: 1 row
2. select row
3. start timer
4. update attribute
 …
5. stop timer

1. new table: 1 row
2. select row
3. start timer
4. update attribute
 …
5. stop timer

189

Table V. Collected measurements for scenarios Si, Su and Sd.

Statement T (ns) ORCA Overhead % TR �T(ns)
Insert 419,475 TR1 3 �
Update 4,449,553 TR1 3 �
Delete 4,399,443 TR1 3 �

Table VI. Algorithms for scenarios Si, Su and Sd.

Insert Update Delete
1. create table:0 row
2. start timer
3. insert one row
4. stop timer

1. create table:1 row
2. start timer
3. update row
4. stop timer

1. create table:1 row
2. start timer
3. delete row
4. stop timer

V=TR1+TR9+TR4=3+6+6=15ns. The induced overheads
are about 0.004% and 0.4%, respectively. If we consider,
which is not true, that execution time of task E does not
increase with the number of returned rows, to get an
overhead of 1% to read all returned rows, an FR LMS
should contain 438 rows for a reused Business Worker and
440 rows for a new Business Worker. New measurements
for task E (LMS with 440 rows) were collected to analyze
the impact. Task E took 711,481ns. The new computed
overhead is now 0.6% for a re-used and for a new
Business Worker, which is lower than 1% initially
foreseen. Task E for SR, FU and SU LMS is much
slower. The induced overhead is about 10times lower.
Regarding the update, insert and delete protocols, they use
much more CPU time than the read protocol and,
therefore, the induced % overhead by JORCA is much
lower than the ones just presented. Remember that these
protocols require an updatable LMS and to update and
delete an attribute it is necessary to execute a Select
statement in advance.

 Table V presents the collected measurements for
scenarios Si, Su and Sd. Table VI describes the algorithm
used in each task. Once again we are before results that
prove that the ORCA induced overheads are very low for
the three scenarios. They range between 7x10-4% and
7x10-5%. Measurements were also collected for pre-
compiled SQL statements. They have not been presented
because, for the tasks under evaluation, their values were
so close to compiled-on-the-fly SQL statements that they
would not bring any novelty.

V. RELATED WORK
Beyond CLI (ODBC, JDBC, ADO.NET[12]), several

solutions have been devised to improve the development
process of business tiers. From them Object-to-Relational
mapping (O/RM) tools [13, 14] (LINQ [15], Hibernate
[16], Java Persistent API (JPA) [17]) have had a
significant acceptance in the academic and commercial
forums. Other solutions, such as embedded SQL [18]
(SQLJ [19]), have achieved some acceptance in the past.
Others were proposed but without any general known
acceptance: Safe Query Objects [20] and SQL DOM [21].
O/RM tools are geared to create, in the object-oriented
paradigm, static representation models of relational
database schemas. The static model is built in a first stage,
eventually by a database administrator, and then

programmers start the development process. The basic
artifacts of the static representation models are classes
(entities) each one representing a database table. Through
these entities programmers may read data from tables,
update data, insert new data and, finally, delete existing
data. To support explicit SQL statements, O/RM tools
provide proprietary SQL languages. Despite these
advantages, O/RM present some drawbacks, such as: 1)
they induce an additional overhead when compared to
CLI; 2) they were not devised to support complex SQL
statements and, finally, 3) they rely on static models
preventing this way an easy process for a dynamic
adaptation. Moreover, O/RM do not promote a clear
separation of roles. Programmers may use embedded
language extensions and other embedded functionalities to
extend pre-built static models.

 Pereira et al. [22] presented a work in progress in its
initial phase with the aim of creating business tier
components driven by a single static interface (sort of
Business Interface responsible for managing all SQL
statements) which is built during the development phase of
components. Any modification in this interface entails a
new manual development process for the component under
maintenance. The approach is aimed at providing a
proposal for reusable components statically built to
address a specific business area, such as accountability or
sales. In [22], no evidence of its feasibility and
applicability were presented. The work presented in [23]
addresses a similar research question as the one presented
in [22]. The main difference is that instead of one single
static interface, it supports several static (pre-defined)
interfaces. The paper explains the architecture but does not
provide any evidence of its feasibility or applicability. It
even does not provide any comparative study with other
equivalent implementations. Therefore, both works, [22]
and [23], do not address the key issue of the work
described in this paper, which is related to the proposal of
components with the capacity of being dynamically
adapted at runtime to address any evolving process of
business tiers.

Aspect-oriented programming [24] community
considers persistence as a crosscutting concern [25].
Several works have been presented but none addresses the
point here under consideration. The following works are
emphasized: [26] is focused on separating scattered and
tangled code in advanced transaction management; [25]
addresses persistence relying on AspectJ; [27] presents
AO4Sql as an aspect-oriented extension for SQL aimed at
addressing logging, profiling and runtime schema
evolution. It would be interesting to see an aspect-oriented
approach for the points herein under discussion.

VI. CONCLUSION
Despite their key advantages, such as SQL

expressiveness and SQL performance, a key drawback of
CLI has been identified: lack of support to develop
business tier components driven by dynamic adaptation.
To address this CLI drawback and simultaneously keep
their advantages, this paper presented an architecture,

190

herein known as ORCA. Adaptability of ORCA is based
on three pillars: 1) Business Entities are automatically
built at runtime from Business Schemas (only IExecutePC,
IRead and ISet need to be customized) to address users’
needs; 2) each Business Entity is able to manage the
execution of any SQL statement whose schema is in
accordance with its Business Interface; 3) SQL statements
are deployed at runtime to address users’ needs. A proof of
concept based on Java and JDBC has also been presented
(it is also downloaded to be tested and used). To prove that
CLI advantages were assured, a performance assessment
has been carried out. It showed that for an efficient
context, ORCA induced overhead is under 0.004% (reused
Business Worker) or 0.4% (new Business Worker, when
considering the creation phase) for one row and under
0.6% for 440 rows. The overhead induced in other
contexts are at least 10 times lower. Moreover, in real
situations, the overhead induced by SQL Server will be
higher and, therefore, the percentage overhead induced by
ORCA will be even lower. SQL expressiveness was also
assured by encoding SQL statements inside strings just as
CLI do.

In future work, we plan to address a complementary

issue: data security, particularly access control [28].
Client-side access control mechanisms may be
implemented by enforcing a deployment policy of SQL
statements based on access control policies. Each user is
authenticated and SQL statements are deployed in
accordance to their profiles. Then, any tentative to execute
any unauthorized action is locally prevented. Only
authorized actions will be permitted and, therefore, sent to
the host database. Beyond access control mechanisms, an
access control policy model will also be proposed.

It is expected that the outcome of this research may

contribute to open new perspectives on the development
process of adaptable components to build business tiers.

REFERENCES
[1] W. Cook, and A. Ibrahim, "Integrating programming languages

and databases: what is the problem?," 2011 May: ODBMS.ORG,
Expert Article, 2005.

[2] G. T. Heineman, and W. T. Councill, Component-Based Software
Engineering: Putting the Pieces Together, 1st ed., p.^pp. 880:
Addison-Wesley, 2001.

[3] C. Szyperky, D. Gruntz, and S. Murer, Component Software -
Beyond Object-Oriented Programming: Addison-Wesley/ACM
Press, 2002.

[4] L. Kung-Kiu, and W. Zheng, “Software Component Models,”
IEEE Trans. on Soft. Eng., vol. 33, no. 10, pp. 709-724, 2007.

[5] A. Bracciali, A. Brogi, and C. Canal, “A formal approach to
component adaptation,” Journal of Systems and Software, vol. 74,
no. 1, pp. 45-54, 2005.

[6] M. Parsian, JDBC Recipes: A Problem-Solution Approach, NY,
USA: Apress, 2005.

[7] Microsoft. "Microsoft Open Database Connectivity," Oct, 2011;
http://msdn.microsoft.com/en-us/library/ms710252(VS.85).aspx.

[8] Oracle. "Interface ResultSet," May, 2011;
http://download.oracle.com/javase/6/docs/api/java/sql/ResultSet.ht
ml.

[9] Microsoft. "RecordSet (ODBC)," 2011 Jun;
http://msdn.microsoft.com/en-us/library/5sbfs6f1.aspx.

[10] P. V. Elizondo, and K.-K. Lau, “A Catalogue of Component
Connectors to Support Development with Reuse,” Journal of
Systems and Software, vol. 83, no. 7, pp. 1165-1178, 2010.

[11] Orcale. "Map Interface," 2012 Jan;
http://docs.oracle.com/javase/6/docs/api/java/util/Map.html.

[12] G. Mead, and A. Boehm, ADO.NET 4 Database Programming
with C# 2010, USA: Mike Murach & Associates, Inc., 2011.

[13] W. Keller, “Mapping Objects to Tables - A Pattern Language,” in
European Conference on Pattern Languages of Programming
Conference (EuroPLoP), Irsse, Germany, 1997.

[14] R. Lammel, and E. Meijer, “Mappings Make data Processing Go
'Round: An Inter-paradigmatic Mapping Tutorial,” in Generative
and Transformation Techniques in Soft. Eng., Braga, Portugal,
2006.

[15] M. Erik, B. Brian, and B. Gavin, “LINQ: Reconciling Object,
Relations and XML in the .NET framework,” in ACM SIGMOD
International Conference on Management of Data,
Chicago,IL,USA, 2006, pp. 706-706.

[16] B. Christian, and K. Gavin, Hibernate in Action: Manning
Publications Co., 2004.

[17] D. Yang, Java Persistence with JPA, p.^pp. 390: Outskirts Press,
2010.

[18] J. W. Moore, “The ANSI binding of SQL to ADA,” Ada Letters,
vol. XI, no. 5, pp. 47-61, 1991.

[19] Part 1: SQL Routines using the Java (TM) Programming
Language, 1999.

[20] R. C. William, and R. Siddhartha, “Safe query objects: statically
typed objects as remotely executable queries,” in 27th Int. Conf. on
Software Engineering, St. Louis, MO, USA, 2005, pp. 97-106.

[21] A. M. Russell, and H. K. Ingolf, “SQL DOM: compile time
checking of dynamic SQL statements,” in 27th Int. Conf. on
Software Engineering, St. Louis, MO, USA, 2005, pp. 88-96.

[22] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, “A Reusable
Business Tier Component with a Single Wide Range Static
Interface,” in ECSA: 5th European Conference on Software
Architecture, Essen, Germany, 2011, pp. 216-219.

[23] O. M. Pereira, R. L. Aguiar, and M. Y. Santos, “An Adaptable
Business Component Based on Pre-defined Business Interfaces,”
in 6th ENASE: Evaluation of Novel Approaches to Software
Engineering, Beijing, China, 2011, pp. 92-103.

[24] J. L. Gregor Kiczales, Anurag Mendhekar, Chris Maeda, Cristina
Lopes Videira, Jean-Marc Loingtier, Joh Irwin, “Aspect-Oriented
Programming,” in ECOOP, Jyvaskyla,Finland, 1997, pp. 220-242.

[25] R. Laddad, AspectJ in Action: Practical Aspect-Oriented
Programming, Greenwich,CT,USA: Manning Publications, ,2003.

[26] J. Fabry, and T. D'Hondt, “KALA: Kernel Aspect Language for
Advanced Transactions,” in Proceedings of the 2006 ACM
Symposium on Applied Computing, Dijon, France, ,2006, pp.
1615-1620.

[27] T. Dinkelaker, “AO4SQL: Towards an Aspect-Oriented Extension
for SQL,” in Proceedings of the 8th Workshop on Reflection, AOP
and Meta-Data for Software Evolution (RAM-SE'11), Zurich,
Switzerland, 2011.

[28] P. Samarati, and S. D. C. d. Vimercati, “Access Control: Policies,
Models, and Mechanisms,” Foundations of Security Analysis and
Design (LNCS), vol. 2171, pp. 137-196, 2001.

191

