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Abstract  

A hybrid organic-inorganic material filled with in situ generated inorganic particles 

has been synthesised by the homogeneous precipitation of CdS from aqueous solutions 

of Cd(NO3)2 and CH3CSNH2 . These highly transparent, homogeneous and flexible CdS 

doped xerogels were prepared by the sol-gel technique using, as precursors, organically 

modified silicon alkoxide (3-isocyanatepropyltriethoxysilane) and a di-amine 

functionalized oligopolyoxyethylene (Jeffamine ED-600), which by subsequent 

hydrolysis and condensation processes formed a solid 3-D network. TEM studies 

indicate the presence of round nanoparticles around 20 nm in diameter dispersed in a 

homogeneous amorphous matrix. The samples were also characterized by spectroscopic 

(UV-visible and photoluminescence) and XRD techniques.  
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1. Introduction 

Typical sol-gel derived organic/silica hybrids exhibit a combination of organic and 

inorganic components on a molecular scale. In contrast to conventional polymers, the 

formation of covalently bonded hybrid organic-inorganic polymeric materials requires 

the presence of functionalised reactive precursors. Chemical interaction between 

organically modified siloxanes containing an isocyanate (-NCO) group with 

amphiphilic polyether diols or polyether diamines give rise to transparent, rubber-like 

ureasilicate/urethanesil xerogels also known as ORMOSIL´s (organically modified 

silicates). During the last decade doping (during synthesis) with rare earth and 
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transition-metal ions to modify the thermal, magnetic, electrical and photoluminescence 

properties has been extensively studied [3-6]. 

Incorporation of semiconductor nanoparticles in transparent glassy-like matrix is of 

important due to their non-linear optical properties [7], i.e. use as non-linear optical 

filters, wave guides and optical limiters. However, attention must be paid to their 

stabilization, as nanosized materials possess a large specific surface area and can 

spontaneously aggregate due to Van der Waals interaction. To this end, inorganic 

glasses, polymers and zeolites have been used as stabilizing media [8-10] and 

semiconductor silicate glasses, produced by the low-temperature sol-gel technique, have 

been fabricated [11]. Only a few papers, however, have considered the doping of 

semiconductor nanoparticles in hybrid organic-inorganic matrices [12-14]. In this work 

CdS nanoparticles were synthesised by the homogeneous precipitation process and 

immobilized in a hybrid organic-inorganic host medium. The synthesis involved the 

formation of CdS nanoparticles in situ in the ureasilicate sol and the subsequent 

densification to provide a protecting medium, preventing the aggregation and oxidation 

of the particles.  

 

2. Experimental procedures 

The precursors, O,O´-bis(2-aminopropyl)-polyethylene glycol-500 (Jeffamine 

ED-600, Fluka) and 3-isocyanatepropyltriethoxysilane (ICPTES, Aldrich) were dried 

under dynamic vacuum before use. Tetrahydrofuran (THF, Merck), cadmium nitrate 

tetrahydrate (Riedel-deHaën), thioacetamide (TAA, Fluka) and concentrated ammonia 

solution (25 % w/w, Pronalab) were used as received. Synthesis involved a 

stoichiometric proportion of 1 mole of Jeffamine ED-600 (500 µL, 0.875 mmol) to 2 

moles of ICPTES (435 µL, 1.76 mmol) mixed, together with 0.5 mL of THF, in a closed 

glass flask under stirring (300 rpm) at room temperature, until a transparent and 

homogeneous solution was obtained.  

Aqueous solutions of Cd(NO3)2.4H2O and thioacetamide of differing 

concentrations (described in Table 1) were freshly prepared using high purity water. A 

mixture of 500 µL of thioacetamide solution and 250 µL of ammonia solution was 

added drop-wise. The mixture initially showed a high turbidity and gradually became 

transparent and homogeneous. At this point 500 µL of cadmium solution was slowly 

added. The solution aspect changed instantaneously, from pale yellow and transparent 

to bright yellow and turbid (depending on the quantity of reactants), indicating the 
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formation of CdS particles. This mixture was then poured into Teflon moulds, covered 

with Parafilm and kept at 8C for a week. Flat and uniformly transparent/translucent 

disks of ca. 1 mm thickness and a diameter of 25 mm were obtained. Disks without 

cadmium sulphide were prepared by the same procedure. Samples containing TAA or 

U(600)TAA were obtained by adding 500 µL of TAA, 250 µL of ammonia solution and 

500 µL of water to the ureasilicate sol. Pure samples or U(600) were prepared by adding 

1 mL of water and 250 µL of ammonia solution to the sol. The sample composition 

(shown in Table 1) are described by the U(600)nCdS empirical formula, where n 

represents the mole ratio between ureasilicate and cadmium nitrate. Powdered CdS was 

precipitated from a water-THF mixture with the same cadmium nitrate, TAA and 

ammonia solutions used for the preparation of sample (III) and collected on a 0.45 µm 

porosity cellulose acetate filter. 

 

INSERT TABLE 1 

 

Characterization involved a Philips CM20 Transmission Electron Microscope 

(point resolution 0.26 nm) with the samples for the TEM first milled to a fine powder, 

mixed with butanol and treated in ultra sonic bath. A drop of this suspension was placed 

on a metal grid supported by Formvar film, which was then placed in the microscope. 

X-ray diffraction patterns were obtained with a Philips Analyzer X-ray PW 171, at 

counting time of 10 sec per 0.04º, using Cu-α radiation. Absorption (UV-Vis) and 

luminescence spectra were recorded, at room temperature, on a Shimadzu UV-2501 PC 

and Spex Fluorolog spectrophotometers respectively. The latter were done using a 420 

nm excitation wavelength, front face geometry and a bandpass of 1.7 nm. The spectra 

were corrected for photomultiplier response. 

 

3. Results and discussion 

Figure 1 shows XRD patterns of CdS doped ureasilicate matrices and precipitated 

CdS. The diffraction spectrum of CdS powder was performed for comparison purposes 

and displays a broad peak around 26.7o relating to (100), (002) and (101) crystal plane 

reflections. These were found by deconvolution of overlapping peaks using a pseudo-

Voigt function (also shown in the figure). These planes are assigned to the hexagonal 

modification of CdS (α-CdS), although some lines can be attributed to cubic 
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modification (β-CdS), which does not exclude the existence of both crystalline 

structures in the precipitate.  

 

INSERT FIGURE 1 

 

The XRD patterns of CdS free samples U(600) and U(600)TAA exhibit a broad 

halo at ca. 21.2º, confirming an amorphous character. The spectra of the doped 

ureasilicate matrices with lower CdS content (samples (I) (II) and (III)) do not show any 

peaks that could be assigned to microcrystalline CdS, although a large sample thickness 

and XRD time exposition were used. This behaviour indicates that the CdS particles are 

predominately amorphous, but further studies are necessary to elucidate this aspect. 

Samples (IV) and (V), with higher CdS content, present some features of a crystalline 

phase, as expressed by the changes of the shape of the halo at angles coincident with 

that observed for CdS powder.  

 

INSERT FIGURE 2 

 

The TEM image of the ureasilicate sample with the lowest CdS content (sample I) 

is shown in Figure 2. Particles with a round shape and mean diameter between 20-25 

nm are clearly seen and are interpreted as colloidal CdS. TEM analysis data shows that 

the particle size distribution and morphology of CdS depends on the initial cadmium 

nitrate and TAA concentrations. We found that, after investigation of samples I and III 

(not shown) increasing these concentrations makes the particles exhibit a polygonal 

shape, with a size range from 20 to 50 nm. 

 

INSERT FIGURE 3 

 

The measurements of the absorption spectra are depicted in Figure 3, where 

absorbance has been normalized to sample thickness. The pure matrix of U(600) is 

transparent in the visible range, but the matrices with TAA and U(600)TAA show a 

strong absorption edge around 300 nm, resulting from non hydrolyzed thioacetamide. 

Samples (I), (II) and (III) display well defined absorption onsets and good transparency 

in lower energy range, where a gradual increase is seen with CdS fraction. The 

absorption onset of the CdS doped samples is situated near 495 nm, but no evidence of 
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size quantisation is observed, as the absorption edge is close to that of CdS [15]. 

Samples (IV) and (V) exhibit a significant degree of scatter, which increases with CdS 

concentration, accompanied by a small apparent shift of the absorption band towards 

higher wavelength. The basic difference between these two sets of samples arises from 

the increasing number of CdS particles formed, with the possibility of a larger size 

range, from the possible formation of aggregates. Separation of the CdS fraction as a 

discrete phase in the matrix has also been visually observed under these experimental 

conditions. This is not surprising, because from Smoluchowski’s work [16] stable sols 

require the mixing of dilute solutions. 

The photoluminescence (PL) spectra of the U(600)TAA and CdS doped 

ureasilicate samples, excited at 420 nm, are shown in Figure 4. The pure matrix and the 

matrix with TAA exhibit a similar broad (lower wavelength) emission peak, centred at 

480 nm, which coincides with the peak emission of pure Jeffamine and is due to the 

lone pair electrons on the NH- groups [17].  

 

INSERT FIGURE 4 

 

Two emission bands can be identified in the samples containing CdS particles, while the 

PL emission from the CdS powder (not shown) was found to be negligible. Samples (I), 

(II) and (III) show a broad emission band at 730 nm and pronounced Stokes’ shift with 

respect to the absorption edge. The emission band in the lower wavelength region 

clearly originates from the matrix and exhibits a substantial decrease in intensity and an 

apparent red shift with the increase in CdS fraction. This can be explained by the 

increase in absorption which acts as a filter to the luminescence (inner filter effect), 

although the front face geometry should help minimise this artefact. The PL data of the 

last two samples (IV and V) are not included in the plot because of this distortion 

caused by their high absorption. Unfortunately, because of the sample geometry and 

high values of absorption, a realistic correction for the inner filter effect [18] and hence 

quantitative analysis was not possible, but (for (I), (II) and (III)) its influence should 

only be present in the lower wavelength (matrix emission) region where there is an 

overlap of the PL with the absorption spectrum.  

The 730 nm emission of CdS nanoparticles has been related to a recombination 

mechanism involving trapped electron/holes at surface defects [19], which originates 

from the sulphur vacancies (uncompensated cadmium atoms). The substantial decrease 
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in the 730 nm band with increase of the CdS concentration seen in Figure 4 may be 

explained by protection given by the matrix and for the lower concentrations used in 

this study it is an effective barrier against aggregation. However with the higher 

concentrations the particles can associate, which leads to larger dispersion in their size 

and shape and an apparent decrease in PL efficiency. The high-energy band to band 

transition, which is sharp and is located near the absorption edge of the semiconductor 

material, is not observed because of the low degree of crystallinity of the particles. The 

position of the native emission of the ureasilicate matrix could be another obstacle this 

peak to be detected. 

 

4. Conclusion 

A hybrid organic-inorganic ureasilicate matrix was doped, in situ, with CdS 

nanoparticles prepared by homogeneous precipitation. Characterisation of the final solid 

host confirmed the presence of homogeneously distributed CdS particles. The matrix 

exhibited the ability to prevent (up to a reasonably high concentration) the colloidal CdS 

phase from undergoing further aggregation and sedimentation. This methodology is 

adept for the fabrication of clear, high transparent and flexible samples with potential 

application as flexible cut-off filters in the visible range of the spectrum. The same 

approach can be adapted for use with other low solubility metal chalcogenide salts. 
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Table and Figure captions 

 

Table 1. Concentration of stock solution and sample composition. 

 

Figure 1. X-ray diffraction patterns of the ureasilicate matrix with different CdS 

concentration and the pure CdS powder, with deconvoluted peak around 26.7°. 

Hexagonal structure (solid arrows), cubic structure (dotted arrows). 

 

Figure 2. TEM photograph of the sample (I), U(600)175CdS. The void can relate to the 

procedure for producing the TEM sample.  

 

Figure 3. UV-vis absorption spectra of CdS doped (I to V) and undoped samples 

(U(600) and U(600)TAA).  

 

Figure 4. PL spectra of CdS doped (I to III) and an undoped sample, U(600)TAA. 

Excitation was at 420 nm. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 9

Table 1. Concentration of stock solution and composition of prepared samples. 

 

Sample 
[Cd 2+] 

(mol L -1) 

[TAA] 

(mol L -1) 

Empirical 

formula 

pure matrix - - U(600) 

TAA doped matrix - 0.100 U(600)TAA 

I 0.010 0.010 U(600)175CdS 

II 0.025 0.025 U(600)70CdS 

III 0.050 0.050 U(600)35CdS 

IV 0.075 0.075 U(600)23CdS 

V 0.100 0.100 U(600)18CdS 
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 Figure 1. X-ray diffraction patterns of the ureasilicate matrix with different CdS 

concentration and the pure CdS powder, with deconvoluted peak around 26.7°.   

Hexagonal structure (solid arrows), cubic structure (dotted arrows). 
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Figure 2. TEM photograph of the sample (I), U(600)175CdS. The void can relate to the 

procedure for producing the TEM sample.  
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Figure 3. UV-vis absorption spectra of CdS doped (I to V) and undoped samples 

(U(600) and U(600)TAA).  
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 Figure 4. PL spectra of CdS doped (I to III) and an undoped sample, U(600)TAA. 

Excitation was at 420 nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


