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Abstract

The goal of Systems Biology is to understand the complex behavior that

emerges from the interaction among the cellular components. Industrial

biotechnology is one of the areas of application, where new approaches for

metabolic engineering are developed, through the creation of new models and

tools for simulation and optimization of the microbial metabolism. Although

whole-cell modeling is one of the goals of Systems Biology, so far most mod-

els address only one kind of biological network independently. This work

explores the integration of different kinds of biological networks with a focus

on the improvement of simulation of cellular metabolism. The bacterium

Escherichia coli is the most well characterized model organism and is used

as our case-study.

An extensive review of modeling formalisms that have been used in Sys-

tems Biology is presented in this work. It includes several formalisms, in-

cluding Boolean networks, Bayesian networks, Petri nets, process algebras,

constraint-based models, differential equations, rule-based models, interact-

ing state machines, cellular automata and agent-based models. We compare

the features provided by these formalisms and classify the most suitable ones

for the creation of a common framework for modeling, analysis and simula-

tion of integrated biological networks.

Currently, there is a separation between dynamic and constraint-based

modeling of metabolism. Dynamic models are based on detailed kinetic re-

constructions of central metabolic pathways, whereas constraint-based mod-

els are based on genome-scale stoichiometric reconstructions. Here, we ex-

plore the gap between both formulations and evaluate how dynamic models

can be used to reduce the solution space of constraint-based models in order
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to eliminate kinetically infeasible solutions.

The limitations of both kinds of models are leading to new approaches

to build kinetic models at the genome-scale. The generation of kinetic mod-

els from stoichiometric reconstructions can be performed within the same

framework as a transformation from discrete to continuous Petri nets. How-

ever, the size of these networks results in models with a large number of

parameters. In this scope, we develop and implement structural reduction

methods that adjust the level of detail of metabolic networks without loss

of information, which can be applied prior to the kinetic inference to build

dynamic models with a smaller number of parameters.

In order to account for enzymatic regulation, which is not present in

constraint-based models, we propose the utilization of Extended Petri nets.

This results in a better scaffold for the kinetic inference process. We eval-

uate the impact of accounting for enzymatic regulation in the simulation of

the steady-state phenotype of mutant strains by performing knockouts and

adjustment of enzyme expression levels. It can be observed that in some

cases the impact is significant and may reveal new targets for rational strain

design.

In summary, we have created a solid framework with a common formalism

and methods for metabolic modeling. This will facilitate the integration with

gene regulatory networks, as we have already addressed many issues also

associated with these networks, such as the trade-off between size and detail,

and the representation of regulatory interactions.
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Resumo

O objectivo da Biologia de Sistemas é compreender os comportamentos que

resultam das complexas interacções entre todos os componentes celulares.

A biotecnologia industrial é uma das áreas de aplicação, onde novas abor-

dagens para a engenharia metabólica são desenvolvidas através da criação

de novos modelos e ferramentas de simulação e optimização do metabolismo

microbiano. Apesar de um dos principais objectivos da Biologia de Siste-

mas ser a criação de um modelo completo de uma célula, até ao momento

a maioria dos modelos desenvolvidos incorpora de forma separada cada tipo

de rede biológica. Este trabalho explora a integração de diferentes tipos de

redes biológicas, focando melhorar a simulação do metabolismo celular. A

bactéria Escherichia coli é o organismo modelo que está melhor caracterizado

e é usado como caso de estudo.

Neste trabalho é elaborada uma extensa revisão dos formalismos de mo-

delação que têm sido utilizados em Biologia de Sistemas. São considerados

vários formalismos tais como, redes Booleanas, redes Bayesianas, redes de

Petri, álgebras de processos, modelos baseados em restrições, equações di-

ferenciais, modelos baseados em regras, máquinas de interacção de estados,

autómatos celulares e modelos baseados em agentes. As funcionalidades ine-

rentes a estes formalismos são analisadas de forma a classificar os mesmos

pelo seu potencial em servir de base à criação de uma plataforma para mo-

delação, análise e simulação de redes biológicas integradas.

Actualmente, existe uma separação entre modelação dinâmica e modelação

baseada em restrições para o metabolismo celular. Os modelos dinâmicos

consistem em reconstruções cinéticas detalhadas de vias centrais do meta-

bolismo, enquanto que os modelos baseados em restrições são constrúıdos à
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escala genómica com base apenas na estequiometria das reacções. Neste tra-

balho explora-se a separação entre os dois tipos de formulação e é avaliada a

forma como os modelos dinâmicos podem ser utilizados para reduzir o espaço

de soluções de modelos baseados em restrições de forma a eliminar soluções

inalcançáveis.

As limitações impostas por ambos os tipos de modelos estão a condu-

zir à criação de novas abordagens para a construção de modelos cinéticos à

escala genómica. A geração de modelos cinéticos a partir de reconstruções

estequiométricas pode ser feita dentro de um mesmo formalismo através da

transformação de redes de Petri discretas em redes de Petri cont́ınuas. No

entanto, devido ao tamanho destas redes, os modelos resultantes incluem

um número extremamente grande de parâmetros. Neste trabalho são im-

plementados métodos para a redução estrutural de redes metabólicas sem

perda de informação, que permitem ajustar o ńıvel de detalhe das redes. Es-

tes métodos podem ser aplicados à inferência de cinéticas, de forma a gerar

modelos dinâmicos com um menor número de parâmetros.

De forma a considerar efeitos de regulação enzimática, os quais não são

representados em modelos baseados em restrições, propõe-se a utilização de

redes de Petri complementadas com arcos regulatórios. Este formalismo é

utilizado como base para o processo de inferência cinética. A influência

da regulação enzimática na determinação do estado estacionário de estirpes

mutantes é avaliada através da análise da remoção de reacções e da variação

dos ńıveis de expressão enzimática. Observa-se que em alguns casos esta

influência é significativa e pode ser utilizada para obter novas estratégias de

manipulação de estirpes.

Em suma, neste trabalho foi criada uma plataforma sólida para modelação

do metabolismo baseada num formalismo comum. Esta plataforma facilitará

a integração com redes de regulação genética, pois foram abordados vários

problemas que também se colocam nestas redes, tais como o ajuste entre

o tamanho da rede e o seu ńıvel de detalhe, bem como a representação de

interacções regulatórias entre componentes da rede.
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Chapter 1

Introduction

1.1 Systems Biology

The cell is the fundamental building block of life. From this basic unit,

a myriad of life forms have emerged. Systems Biology is a recent field of

study that focuses on the complex interactions that happen inside a cell. It

represents a new paradigm when compared to classical biology, as it looks at

the cell as a whole rather than enumerating its parts [40, 41].

A single cell is composed by thousands of components such as genes, pro-

teins and metabolites. These components interact in several ways, forming

complex biological networks. The behavior of the cell emerges not only from

the structure but also from the dynamics of these networks. A common anal-

ogy in the community is the functioning of a radio. It is not possible to fix a

radio, if all the parts are disassembled and we do not know how to put them

together [42].

Unlike the radio, which has its own blueprint, the design of the cell has

evolved in nature. Reverse engineering its specification involves collecting

and analyzing vast amounts of data. The rise of Systems Biology is re-

lated to the development of high-throughput technologies in the past years,

that have generated several of the so-called omics, including genomics [67],

transcriptomics [83], proteomics [25], metabolomics [24], and fluxomics [71].

These data allow the quantification of the molecular species present in the
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Figure 1.1: Model development cycle.

cell and the reconstruction of their map of interactions. With this informa-

tion we can build models for in silico simulation. Models can also be used to

drive new experiments that will allow model refinement. Hence, the model

building cycle is an iterative process that alternates between wet and dry lab

experiments (Figure 1.1).

The synergy between computational and experimental methods, comes

from the multidisciplinary nature of this field. It requires cooperation among

researchers from several areas such as computer science, mathematics, physics,

chemistry, biology and systems engineering. In order to facilitate communi-

cation and sharing of resources, several standards and tools have been de-

veloped [37]. These include standards for representing experimental results

(e.g., MIAME [8], MIAPE [78]), and for representing models (e.g., SBML

[30], CellML [50]). Databases are also a fundamental resource for informa-

tion sharing. Some examples that can be used to build a biological model are

databases with gene annotation (e.g., Entrez Gene [52]), pathway informa-

tion (e.g., KEGG [35]) and enzyme kinetics (e.g., BRENDA [69], SABIO-RK

[65]). Curated models can also be found in publicly available databases (e.g.,

Biomodels.net [43]). Several tools have been developed to construct, analyze

and simulate biological models (e.g., CellDesigner [21], Cytoscape [72], CO-

PASI [28], OptFlux [64]).
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Despite all the resources and tools available, the ultimate goal of Sys-

tems Biology to build a fully detailed cell model is still far from complete.

Although there are initiatives for whole cell simulation, such as the E-cell

project [80, 79], the fact that the models developed are detailed at the bio-

chemical kinetic level, has limited their scope to particular biological pro-

cesses (e.g., mitochondrial metabolism [84], circadian clocks [75]). Recently,

models based on less detailed descriptions that integrate all kinds of biolog-

ical networks, started to appear [12, 44].

Systems Biology has been growing both in academia and industry. The

in silico approach provides a fast and inexpensive way to run experiments

and test new hypothesis. Moreover, although it does not replace labora-

tory experiments completely, it can guide experimental design methods that

save time and resources in the laboratory [16]. Computational models can

be used to understand biological systems through simulations that predict

the cellular behavior, and also to redesign these systems by finding the re-

quired manipulations towards a desired goal. Therefore, they have several

applications both in science and engineering areas.

In biomedical research, computational models are used as a framework

for studying disease mechanisms [29, 60] and for drug discovery [10]. Using

in silico experiments, researchers can find specific drug targets and study the

effect of new drugs at a system-wide level, avoiding potential side-effects.

Industrial biotechnology is another major area of application for Systems

Biology [55]. The creation of microbial factories has a high impact in soci-

ety in terms of economy and sustainability. These applications involve the

redesign of the microbial metabolism for specific production goals. This will

be the main focus of this work and will be explored in more detail in the

next section.

1.2 Metabolic Engineering

The utilization of microbial factories began many centuries ago, even before

microorganisms were discovered. Their first application was the produc-

tion of alcoholic beverages such as wine and beer. Nowadays, biotechnology
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has widespread use in industry for the production of commodity chemicals

and materials [22]. Industrial biotechnology provides cost competitive, en-

vironmental friendly and sustainable alternatives to existing chemical-based

production processes [55].

Among biotechnologicaly produced compounds are pharmaceutical drugs

such as penicillin [59] and insulin [61]. Another major market is the pro-

duction of nutrients such as vitamins [81, 77] and amino acids [31, 47]. The

sustainability and environmental concerns in the recent years have led to a

demand of renewable energy sources as an alternative to petroleum-based

fuels, creating an important market for biofuel production [38, 39].

For biotechnological production to be cost competitive, it is necessary

that the bioconversion of substrates into products has the highest possible

yield. Metabolic engineering is the modification of cellular metabolism for

optimization of a desired production objective [76]. Traditionally, this was

done by directed evolution [3] or random mutagenesis [66]. Although these

approaches have been successful (e.g., over 1000-fold increase in penicillin

production [53]), they do not elucidate the genetic changes that have occurred

in the cells. Consequently, it is not possible to obtain knowledge of the target

changes and to reapply them in further strain improvements.

Metabolic engineering, on the other hand, uses rational strain design

to redirect the metabolic flux towards the desired objective. This can be

achieved by changing the expression of the genes associated with the metabolic

enzymes, such as gene knockout in key metabolic branch points and increased

enzyme expression in the target pathways. Additionally, it is also possi-

ble to add new metabolic functions to an organism by heterologous gene

expression. These manipulations became possible when molecular biology

techniques such as recombinant DNA emerged [23].

In order to guide the rational design of mutant microbial strains it is

necessary to have metabolic models that are able to simulate and predict

the metabolic phenotype of such mutants. The earlier models were based on

mechanistic kinetic descriptions of some of the central metabolic reactions.

Metabolic Control Analysis (MCA) and Biochemical Systems Theory (BST)

are two mathematical frameworks that were developed to analyze the key

4



parameters that control the metabolic flux [13]. However, the difficulty of

obtaining kinetic data for building larger models, together with the recent

development of genome sequencing technologies have decreased the popular-

ity of these models in favor of genome-scale stoichiometric models [14]. In

chapter 3 the connection between these two kind of models is explored in

detail.

Genome sequencing is the first step for creating a genome-scale metabolic

network reconstruction. The advances in DNA sequencing techniques have

greatly decreased the time and cost required for sequencing the complete

genome of an organism [70, 2]. For this reason, the number of sequenced

genomes has been growing exponentially, with hundreds of complete se-

quences currently available [55]. The model reconstruction process begins

with functional annotation of the genome sequences, by comparing against

sequence databases such as GenBank [6] and Entrez Gene [52], followed by

search in metabolic databases such as KEGG [35] and SEED [56] to obtain

the gene-protein-reaction (GPR) associations. This process can be done au-

tomatically and complemented with manual curation using literature data

and organism-specific knowledge [18].

There are currently over 50 genome-scale metabolic reconstructions avail-

able for a variety of organisms [54]. These allow the simulation of the

metabolic phenotype under steady-state conditions, using constraint-based

methods such as the popular Flux Balance Analysis (FBA) [82, 15]. In order

to find the optimal changes for mutant strain design, methods have been

developed that find optimal knockout sets [9, 58] and also target enzymes for

the adjustment of expression levels [62].

1.3 Escherichia coli as a model organism

Perhaps the most fundamental aspect of an industrial biotechnological ap-

plication is the selection of the ideal microorganism to perform as a cellular

factory. Escherichia coli is a bacterium commonly found in the intestinal

flora, and is the most well studied prokaryotic organism. It can be easily

cultivated in the laboratory with inexpensive medium, making it a suitable
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model organism for several applications. In particular, E. coli K-12 is the

most widely used strain in laboratories worldwide and has been a workhorse

for industrial biotechnology [63].

E. coli K-12 was one of the first organisms to be completely sequenced [7],

and it currently has several dedicated projects and resource databases includ-

ing the International E. coli Alliance (IECA) [27], EcoGene [68] and EcoCyc

[36]. Also, some metabolic models of this organism have been published

and are publicly available, including kinetic reconstructions of the central

metabolism [11] and genome-scale stoichiometric reconstructions [17]. For

these reasons, E. coli was selected as the case-study for all the work pre-

sented in this thesis.

There are many successful cases of metabolic engineering applications

that use E. coli strains designed for overproduction of target metabolites

[19]. These include the production of amino acids such as L-valine [57] and

L-threonine [45] as well as other organic compounds for food industry like

vanillin [49], lactic acid [20], succinic acid [46] and lycopene [1]. This microbe

has also had a significant role in the production of different sources of biofuels

[32, 34, 51, 5, 4].

1.4 Motivation for this work

Despite the advances in the area of Systems Biology, and the many successful

cases of metabolic engineering applications, we have not yet reached a point

where we can precisely predict all possible outcomes of the cellular behavior.

The reason is that we have not yet built a fully detailed whole-cell model

for any model organism. In fact, with few exceptions [12, 44], most models

address only each of the main kinds of biological networks (signaling, gene

regulatory and metabolic) individually. Also, given the heterogeneous back-

ground of the Systems Biology community, these models have been based on

a myriad of different formalisms.

Integration of different kinds of biological networks is fundamental for

accurate simulations of cellular behavior. For instance, the simulation of a

gene knockout in a metabolic network is simulated by setting the flux carried
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by the corresponding enzyme to zero. However, this approach disregards all

possible consequent adjustments at the regulatory level. This is of utmost

importance if we consider how cells are robustly designed [48]. Therefore,

this field would benefit from the creation of a modeling framework with a

common modeling formalism, analysis and simulation methods, that sup-

ports all kinds of biological networks. The work presented in this thesis,

addresses the problem of integration of biological network models, with a

focus on improving metabolic network simulation.

1.5 Thesis Outline

Chapter 1 (current chapter) gives a brief introduction to the field of Systems

Biology, its application to metabolic engineering, and the motivation for this

work.

Chapter 2 is a review on modeling formalisms that have been used in Sys-

tems Biology to model all major kinds of biological networks. The formalisms

are compared and analyzed in terms of features provided and successful appli-

cations to different biological networks. The goal is to find the best candidate

suitable for whole-cell modeling. One of the key conclusions is that Petri nets

[26] are a solid candidate for such purpose. Another important observation is

that there is a separation of two distinct approaches for modeling metabolic

networks, which is analyzed in detail in the sequent chapter.

Chapter 3 explores the gap between dynamic and constraint-based models

of metabolism. This is a gap that comes from two opposite model building ap-

proaches. The first is performed in a bottom-up fashion by putting together

kinetic equations for reactions that have been experimentally characterized,

while the second begins with a genome-scale stoichiometric reconstruction

and constrains the metabolic phenotype in a top-down approach by adding

equilibrium, thermodynamic and flux constraints. This gap can also be found

in gene regulatory and signaling networks. Therefore, it is important to ad-

dress this problem if a true integration of different biological networks is

foreseen.

Chapter 4 presents a Petri net based framework for metabolic model
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transformation. Given the limitations of constraint-based models to model

dynamic behavior, there have been recent efforts to generate kinetic models

from stoichiometric reconstructions [73, 74, 33]. Petri nets are a suitable for-

malism to integrate different kinds of biological networks. In this particular

case, discrete and continuous Petri nets can be used to represent, respectively,

stoichiometric and dynamic models. Therefore, we propose this formalism

as an unifying framework for the kinetic inference process. Moreover, the

usually large size of stoichiometric reconstructions results in dynamic models

with a huge number of parameters. To address this problem, we have devel-

oped structural transformation methods for network reduction that can be

used prior to the kinetic inference process, in order to reduce the size of the

generated models.

Chapter 5 explores the influence of enzymatic regulation in the steady-

state flux distribution simulated with dynamic models of metabolism. Cur-

rent approaches for building kinetic metabolic models at the genome-scale

do not account for this kind of regulation. We propose the utilization of ex-

tended Petri Nets as a suitable formalism for modeling metabolic networks

that account for enzymatic regulation, and extend the kinetic inference pro-

cess to this new framework. We compare the metabolic phenotype of mutant

strains simulated with regulated and unregulated models and observe signif-

icant differences in many cases.

Chapter 6 wraps up with general conclusions derived from this work and

elaborates on perspectives for future directions.

1.5.1 Publications derived from this work

During the development of this work, several publications were written.

Chapters 2–5 are based on those publications, adapted with minor changes to

the format of this thesis. The three supervisors of the thesis are co-authors of

all publications and revised the final manuscripts. Rafael Costa contributed

with ideas and discussion, mainly in the topics of dynamic modeling and

parameter estimation, and is also co-author of all publications.

Chapter 2 is based on the review article “Modeling formalisms in Systems
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Biology” (submitted), which is a extended version of the article “A critical re-

view on modelling formalisms and simulation tools in Computational Biosys-

tems” published in Distributed Computing, Artificial Intelligence, Bioinfor-

matics, Soft Computing, and Ambient Assisted Living, volume 5518, pages

1063–1070, 2009. Miguel Rocha helped reviewing the computational for-

malisms and is co-author of this publication.

Chapter 3 is based on the article “Exploring the gap between dynamic and

constraint-based models of metabolism” (in preparation).

Chapter 4 is based on the article “Model transformation of metabolic

networks using a Petri net based framework” published at the International

Workshop on Biological Processes & Petri Nets (BioPPN 2010), Braga, Por-

tugal, 2010.

Chapter 5 is based on the article “Accounting for enzymatic regulation in

large-scale kinetic reconstructions of metabolism” (in preparation).
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coli engineered for fuel production. Microbiology, 152(9):2529–2536,

2006.

14



[35] M. Kanehisa and S. Goto. KEGG: Kyoto encyclopedia of genes and

genomes. Nucleic Acids Research, 28(1):27–30, 2000.

[36] I.M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley,

I.T. Paulsen, M. Peralta-Gil, and P.D. Karp. EcoCyc: a comprehensive

database resource for Escherichia coli . Nucleic Acids Research, 33(suppl

1):D334–D337, 2005.

[37] J.S. Kim, H.S. Yun, H.U. Kim, H.S. Choi, T.Y. Kim, H.M. Woo, and

S.Y. Lee. Resources for Systems Biology Research. Journal of Microbi-

ology and Biotechnology, 16(6):832–848, 2006.

[38] S. Kim and B.E. Dale. Global potential bioethanol production from

wasted crops and crop residues. Biomass and Bioenergy, 26(4):361–375,

2004.

[39] S. Kim and B.E. Dale. Life cycle assessment of various cropping systems

utilized for producing biofuels: Bioethanol and biodiesel. Biomass and

Bioenergy, 29(6):426–439, 2005.

[40] H. Kitano. Computational systems biology. Nature, 420(6912):206–210,

2002.

[41] H. Kitano. Systems Biology: A Brief Overview. Science,

295(5560):1662–1664, 2002.

[42] Y. Lazebnik. Can a biologist fix a radio?–Or, what I learned while

studying apoptosis. Cancer cell, 2(3):179–182, 2002.

[43] N. Le Novere, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli,

H. Dharuri, L. Li, H. Sauro, M. Schilstra, B. Shapiro, et al. BioModels

Database: a free, centralized database of curated, published, quantita-

tive kinetic models of biochemical and cellular systems. Nucleic Acids

Research, 34(suppl 1):D689, 2006.

[44] J.M. Lee, E.P. Gianchandani, J.A. Eddy, and J.A. Papin. Dynamic anal-

ysis of integrated signaling, metabolic, and regulatory networks. PLoS

Computational Biology, 4(5):e1000086, 2008.

15



[45] K.H. Lee, J.H. Park, T.Y. Kim, H.U. Kim, and S.Y. Lee. Systems

metabolic engineering of Escherichia coli for L-threonine production.

Molecular Systems Biology, 3(149), 2007.

[46] S.J. Lee, D.Y. Lee, T.Y. Kim, B.H. Kim, J. Lee, and S.Y. Lee. Metabolic

engineering of Escherichia coli for enhanced production of succinic acid,

based on genome comparison and in silico gene knockout simulation.

Applied and Environmental Microbiology, 71(12):7880, 2005.

[47] W. Leuchtenberger, K. Huthmacher, and K. Drauz. Biotechnological

production of amino acids and derivatives: current status and prospects.

Applied Microbiology and Biotechnology, 69(1):1–8, 2005.

[48] F. Li, T. Long, Y. Lu, Q. Ouyang, and C. Tang. The yeast cell-cycle

network is robustly designed. Proceedings of the National Academy of

Sciences of the United States of America, 101(14):4781–4786, 2004.

[49] K. Li and J.W. Frost. Synthesis of Vanillin from Glucose. Journal of

the American Chemical Society, 120(40):10545–10546, 1998.

[50] C.M. Lloyd, M.D.B. Halstead, and P.F. Nielsen. CellML: its future,

present and past. Progress in Biophysics and Molecular Biology, 85(2–

3):433–450, 2004.

[51] X. Lu, H. Vora, and C. Khosla. Overproduction of free fatty acids in

E. coli : implications for biodiesel production. Metabolic Engineering,

10(6):333–339, 2008.

[52] D. Maglott, J. Ostell, K.D. Pruitt, and T. Tatusova. Entrez Gene:

gene–centered information at NCBI. Nucleic Acids Research, 33(suppl

1):D54–D58, 2005.

[53] J. Nielsen. Physiological Engineering Aspects of Penicillium chryso-

genum. World Scientific, 1997.

[54] M.A. Oberhardt, J. Pucha lka, V.A.P.M. dos Santos, and J.A. Papin.

Reconciliation of Genome-Scale Metabolic Reconstructions for Compar-

16



ative Systems Analysis. PLoS Computational Biology, 7(3):e1001116,

2011.

[55] J.M. Otero and J. Nielsen. Industrial Systems Biology. Biotechnology

and Bioengineering, 105(3):439–460, 2010.

[56] R. Overbeek, T. Begley, R.M. Butler, J.V. Choudhuri, H.Y. Chuang,
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Chapter 2

Modeling Formalisms

This chapter is based on the review article “Modeling formalisms in Systems

Biology” (submitted), which is a extended version of the article “A critical re-

view on modelling formalisms and simulation tools in Computational Biosys-

tems” published in Distributed Computing, Artificial Intelligence, Bioinfor-

matics, Soft Computing, and Ambient Assisted Living, volume 5518, pages

1063–1070, 2009.
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Abstract

The field of Systems Biology has taken advantage of computational tools and

high-throughput experimental data to model several biological processes in-

cluding signaling, gene regulatory, and metabolic networks. However, most

of these models are specific to each kind of network. The interconnection

between all biological processes demands a whole-cell modeling framework

for a complete understanding of cellular systems. Here, we describe the

main types of cellular processes and the features required by an integrated

framework for modeling, analyzing and simulating such processes. We then

review several modeling formalisms that have been used in Systems Biology

including Boolean networks, Bayesian networks, Petri nets, process algebras,

constraint-based models, differential equations, rule-based models, interact-

ing state machines, cellular automata, and agent-based models. We compare

the features provided by different formalisms, and discuss recent approaches

in the conversion and integration of these formalisms. Considering that no

formalism fits all demands, it may become common to use different for-

malisms for different stages of the modeling process. Support for different

extensions, hierarchical structure, multi-scale and robust model inference are

key features for a framework that will support increasingly complex models.
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2.1 Introduction

Living organisms are complex systems that emerge from the fundamental

building blocks of life. Systems Biology (SB) is a field of science that stud-

ies these complex phenomena currently, mainly at the cellular level [102].

Understanding the mechanisms of the cell is essential for research in sev-

eral areas such as drug development and biotechnological production. In the

latter case, metabolic engineering approaches are applied in the creation of

microbial strains with increased productivity of compounds with industrial

interest such as biofuels and pharmaceutical products [170]. Using mathe-

matical models of cellular metabolism, it is possible to systematically test and

predict manipulations, such as gene knockouts, that generate (sub)optimal

phenotypes for specific applications [18, 129]. These models are typically

built in an iterative cycle of experiment and refinement, by multidisciplinary

research teams that include biologists, engineers and computer scientists.

The interconnection between different cellular processes, such as metab-

olism and genetic regulation, reflects the importance of the holistic approach

introduced by the SB paradigm in replacement of traditional reductionist

methods. Although most cellular components have been studied individu-

ally, the behavior of the cell emerges at the network-level and requires an

integrative analysis.

Recent high-throughput experimental methods allow to generate the so-

called omics data (e.g.: genomics, transcriptomics, proteomics, metabolomics,

fluxomics) that have allowed the reconstruction of many biological networks

[57]. However, despite the great advances in the area, we are still far from a

whole-cell computational model that integrates and simulates all the compo-

nents of a living cell. Due to the enormous size and complexity of intracel-

lular biological networks, computational cell models tend to be partial and

focused on the application of interest. Also, due to the multidisciplinarity

of the field, these models are based on several different kinds of formalisms,

including those based on graphs (e.g. Boolean networks) and equation-based

ones (e.g. ordinary differential equations). This diversity can lead to the frag-

mentation of modeling efforts as it hampers the integration of models from

23



different sources. Therefore, the whole-cell simulation goals of SB would

benefit with the development of a framework for modeling, analysis and sim-

ulation that is based on a single formalism. This formalism should be able to

integrate the entities and their relationships, spanning all kinds of biological

networks.

This work reviews several modeling formalisms that have been used in

SB, comparing their features and relevant applications. We opted to focus

on the formalisms rather than the tools as they are the essence of the mod-

eling approach. For the software tools implementing the formalisms, the

interested reader may use the respective references. This review is divided

into three parts. Section 2.2 describes the main types of biological networks

that the models try to represent. Section 2.3 describes the relevant features

for modeling these networks and section 2.4 explores the modeling formalisms

found in the literature. Section 2.5 compares the formalisms and discusses

their potential from an integrative perspective. Section 2.6 presents some

conclusions and future directions regarding the most suitable formalisms for

an integrated whole-cell framework.

2.2 Biological Networks

Cells are composed by thousands of components that interact in a myriad of

ways. Despite this intricate interconnection, it is usual to divide and classify

these networks according to their biological function (Fig. 2.1). The main

types of networks are signaling, gene regulatory and metabolic (although

some authors also classify protein-protein interactions as another type of

network). These main types of networks will be briefly described.

2.2.1 Signaling networks

Signal transduction is a process for cellular communication where the cell

receives (and responds to) external stimuli from other cells and from the

environment. It affects most of the basic cell control mechanisms such as dif-

ferentiation and apoptosis. The transduction process begins with the binding
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Figure 2.1: Conceptual representation of the main cellular processes. Signal-
ing cascades receive external signals from the environment. Gene regulatory
networks control the transcription level of genes. Metabolic networks obtain
energy and carbon from external sources using internal conversion steps.
(Figure created with the free software tool CellDesigner [64] that uses the
graphical notations defined in [103].)
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of an extracellular signaling molecule to a cell-surface receptor. The signal

is then propagated and amplified inside the cell through signaling cascades

that involve a series of trigger reactions such as protein phosphorylation. The

output of these cascades is connected to gene regulation in order to control

cell function. Signal transduction pathways are able to crosstalk, forming

complex signaling networks [71, 3].

2.2.2 Gene regulatory networks

Gene regulation controls the expression of genes and, consequently, all cellu-

lar functions. Although all of the cell functionality is encoded in the genome

by thousands of genes, it is essential for the survival of the cell that differ-

ent functions are active in different stages of life and in the adaptation to

different environments.

Gene expression is a process that involves transcription of the gene into

mRNA, followed by translation to a protein, which may also be subject to

post-translational modifications. The transcription process is controlled by

transcription factors that can be activators or inhibitors. Transcription fac-

tors are themselves encoded by genes and subject to regulation, which alto-

gether forms complex regulatory networks [156, 95].

2.2.3 Metabolic networks

Metabolism is a mechanism composed by a set of biochemical reactions, by

which the cell sustains its growth and energy requirements. It includes several

catabolic and anabolic pathways of enzyme–catalyzed reactions that import

substrates from the environment and transform them into energy and build-

ing blocks required to build the cellular components. Metabolic pathways are

interconnected through intermediate metabolites, forming complex networks.

Gene regulation controls the production of enzymes and, consequently, di-

rects the metabolic flux through the appropriate pathways in function of

substrate availability and nutritional requirements [171, 127].
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2.3 Modeling Requirements

Due to the different properties and behavior of the biological networks, they

usually require different modeling features (although some desired features

such as graphical visualization are common to all). For instance, features

such as stochasticity and multi-state components may be important for sig-

naling but not for metabolic networks. A summary of the major modeling

features required by these networks is presented next.

2.3.1 Network visualization

SB is a multidisciplinary research field gathering biologists, computer sci-

entists and engineers. Therefore, biological models should be expressed as

intuitively as possible and easily interpreted by people from different areas.

For that matter, graph and diagram based formalisms can be more appealing

than mathematical or textual notations. Such formalisms can take advan-

tage of state of the art network visualization tools, that when compared to

traditional textbook diagrams, allow a much better understanding of the

interconnections in large-scale networks, as well as the integration of hetero-

geneous data sources [131].

2.3.2 Topological analysis

A considerable amount of the work in this field is based on topological anal-

ysis of biological networks. In this case, graph-based representations also

play a fundamental role. The analysis of the topological properties of these

graphs, such as degree distribution, clustering coefficient, shortest paths or

network motifs can reveal information from biological networks, including

organization, robustness and redundancy [90, 10, 8].

2.3.3 Modularity and hierarchy

Despite its great complexity, the cell is organized as a set of connected mod-

ules with specific functions [79, 143]. Taking advantage of this modularity
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can help to alleviate the complexity burden, facilitating its analysis. Com-

positionality is a related concept meaning that two modeling blocks can be

aggregated together into one model without changes to any of the submodels.

This property can be of special interest for applications in Synthetic Biology

[7].

While modularity represents the horizontal organization of the cell, liv-

ing systems also present vertical organization [30]. Molecules, cells, tissues,

organs, organisms, populations and ecosystems reflect the hierarchical or-

ganization of life. A modeling formalism that supports hierarchical models

and different levels of abstraction will cope with models that connect vertical

organization layers. Also, it will have the required flexibility to cope with

the different modeling approaches in SB, namely, top-down, bottom-up and

middle-out [125].

2.3.4 Multi-state components

Some compounds may have multiple states, for example, a protein may be

modified by phosphorylation. This is a very common case in signaling net-

works. The state of a protein can affect its functionality and consequently

the reactions in which it participates. Therefore, different states are rep-

resented by different entities. However, a protein with n binding sites will

have 2n possible states, which results in a combinatorial explosion of entities

and reactions [81, 15]. To avoid this problem, a suitable modeling formalism

should consider entities with internal states and state-dependent reactions.

2.3.5 Spatial structure and compartmentalization

On its lowest level, the cell can be seen as a bag of mixed molecules. How-

ever, this bag is compartmentalized and requires transport processes for some

species to travel between compartments. Furthermore, in some compart-

ments, including the cytosol, the high viscosity, slow diffusion and amount

of molecules may not be sufficient to guarantee a spatial homogeneity [172].

Spatial localization and concentration gradients are actually important mech-

anisms in biological processes such as morphogenesis [175].
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2.3.6 Qualitative analysis

Experimental determination of kinetic parameters to build quantitative mod-

els is a cumbersome task. Furthermore, they are dependent on the exper-

imental conditions, and there is generally no guarantee that the in vitro

values will match the in vivo conditions [173]. Therefore, several models are

only qualitative. Although these models do not allow for quantitative simu-

lations, they allow us to ask qualitative questions about the system and to

learn valuable knowledge. For instance, elementary mode analysis is used for

calculating all possible pathways through a metabolic network [157].

2.3.7 Dynamic simulation

Dynamic simulation allows the prediction of the transient behavior of a sys-

tem under different conditions. The simulation approach depends on the

type of components included in the model, which depend not only on the

nature of the involved interactions but also on the available information for

their characterization. In regulatory networks, genes are activated and de-

activated through the transcription machinery. Due to its complexity and

the lack of kinetic information, the details of the machinery are usually not

considered. Instead, genes are modeled by discrete (typically boolean) vari-

ables that change synchronously through discrete time steps. Synchronized

simulation is the simplest simulation method and requires models with little

detail.

In biological processes like signaling cascades, that are triggered by a

low number of signaling molecules, it is important to take into considera-

tion the inherent stochasticity in the diffusion of these molecules. Stochastic

simulation is a common approach for simulation of signaling networks [36].

This approach requires the attribution of probability functions for each re-

action in the model. Metabolic reactions, on the other hand, comprise large

quantities of metabolites. Therefore, their behavior can be averaged and

modeled by continuous variables governed by deterministic rate laws [27]. In

both cases, experimental data is required to estimate the parameters in the

models, which is a significant bottleneck in the modeling process.
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2.3.8 Standardization

Biological models need to be represented in a common format for exchange

between different tools. The Systems Biology Markup Language (SBML)

has become the de facto standard of the SB community, and is currently

supported by over two hundred tools [84]. It is an XML–based language for

representation of species, compartments, reactions and their specific prop-

erties such as concentrations, volumes, stoichiometry and rate laws. It also

facilitates the storage of tool specific data using appropriate tags. SBML

was initially focused on biochemical reaction networks such as metabolic and

signaling pathways, therefore it is not so well-suited for modeling other kinds

of processes such as regulatory networks which are better described by logical

models. Nevertheless, these and other limitations are being addressed in the

development of future releases [59, 83].

CellML is another XML–based language with a similar purpose to SBML

albeit more generic [117]. The Systems Biology Graphical Notation (SBGN)

[111] is a standard that focuses on the graphical notation and may be seen

as a complement to SBML. It addresses the visualization concerns discussed

previously, specially the creation of graphical models with a common notation

that can be shared and unambiguously interpreted by people from different

areas.

2.4 Modeling Formalisms

Many formalisms have been used to approach the modeling of biological sys-

tems, in part due to the diversity of phenomena that occur in living systems,

and also due to the multidisciplinarity of the research teams. Biologists may

be more familiar with mathematical modeling and computer scientists may be

religious to their computational formalism of choice. The dichotomy between

mathematical and computational models has been discussed elsewhere [85].

Although they follow different approaches (denotational vs operational), it

has been questioned if there is such a clear separation between mathemat-

ical and computational models. Therefore, in the following we will briefly
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Table 2.1: Overview of some of the literature references on the applica-
tions of each formalism, classified by the type of process. (BN) Boolean
networks; (Bay) Bayesian networks; (PN) Petri nets; (PA) Process algebras;
(CB) Constraint-based models; (DE) Differential equations; (RB) Rule-based
models; (ISM) Interacting state machines; (CA) Cellular automata; (AB)
Agent-based models.

Signaling Gene regulatory Metabolic
BN [76, 153] [2, 47, 97, 114, 164]
Bay [150, 151] [50, 86, 100, 134, 195]
PN [17, 28, 77, 152] [25, 26] [106, 110, 144, 165, 192]
PA [141, 146, 147, 148]
CB [112, 128] [67, 112] [56, 155, 157, 160, 162]
DE [177] [14, 29, 45, 177] [27, 88, 149]
RB [11, 12, 13, 16]
ISM [52, 61, 62, 94]
CA [98, 189] [185] [183, 185]
AB [6, 72, 137, 138] [105]

describe several formalisms regardless of such distinction.

There are other reviews on modeling formalisms in the literature [60, 120],

some focusing on particular processes, such as gene regulatory networks

[156, 95] or signaling pathways [4]. However, to the best of our knowledge,

none covers the whole spectrum presented in this work. Note that besides

the intracellular level, several studies in SB also address the cellular pop-

ulation level. Therefore, formalisms for modeling the dynamics of cellular

populations have also received attention in the field and will be considered in

this work. Table 2.1 summarizes some of the literature references reviewed

herein, classified by type of intracellular process implemented. Toy examples

of the formalisms with graphical notation are depicted in Figure 2.2.

2.4.1 Boolean networks

Boolean networks (Fig. 2.2a) were introduced by Kauffman in 1969 to model

gene regulatory networks [97]. They consist on networks of genes, modeled

by boolean variables that represent active and inactive states. At each time
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Figure 2.2: Toy examples of the formalisms with visual representation. a)
Boolean network: node (gene) a is deactivated by node c, node b is activated
by node a, node d is activated by node a and deactivated by node b; b)
Bayesian network: the value of each node (gene) c, d, and e, is given by a
probability function that is conditionally dependent on the values of nodes
a and b; c) Petri net: transition (reaction) p consumes one token (molecule)
from place (substance) a and produces one token in place c, transition q
consumes tokens from places a and b and produces one token in place c; d)
Agent-based model: two types of agents (light gray and dark gray), repre-
senting two different kinds of cell (or two kinds of molecules) move freely and
interact within the containing space; e) Interacting state machine: a system
that can move from state a to state c, where state a as an internal sub-state
b and state c has two internal sub-states, d and e; f) Contact map of a
rule-based model: agents (proteins) P, Q, R and S, contain several binding
sites (a to f ), edges between binding sites describe possible interactions (e.g.
phosphorylation); g) Cellular automata: a 10 × 10 grid with three possible
values (empty, light gray or dark gray), representing two different kinds of
cells (or two kinds of molecules) that can change by interacting with their
surrounding neighbors.
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step, the state of each gene is determined by a logic rule which is a function

of the state of its regulators. The state of all genes forms a global state

that changes synchronously. For large network sizes (n nodes) it becomes

impractical to explore all possible states (2n). This type of model can be used

to find steady-states (called attractors), and to analyze network robustness

[114]. Boolean networks can be inferred directly from experimental gene

expression time-series data [1, 47]. They have also been applied in some

studies to model signaling pathways [76, 153]. To cope with the inherent

noise and the uncertainty in biological processes, stochastic extensions like

Boolean networks with noise [2] and Probabilistic Boolean networks [164]

were introduced.

2.4.2 Bayesian networks

Bayesian networks (Fig. 2.2b) were introduced in the 80’s by the work of

Pearl [132]. They are a special type of probabilistic graphs. Their nodes

represent random variables (discrete or continuous) and the edges represent

conditional dependencies, forming a directed acyclic graph. Each node con-

tains a probabilistic function that is dependent on the values of its input

nodes. There are learning methods to infer both structure and probability

parameters with support for incomplete data. This flexibility makes Bayesian

networks specially interesting for biological applications. They have been

used for inferring and representing gene regulatory [63, 134, 75, 9] and sig-

naling networks [150, 151]. One disadvantage of Bayesian networks is the

inability to model feedback loops, which is a common motif in biological

networks. This limitation can be overcome by dynamic Bayesian networks

[86, 100, 195, 50]. In this case, the variables are replicated for each time step

and the feedback is modeled by connecting the nodes at adjacent time steps.

2.4.3 Petri nets

Petri nets (Fig. 2.2c) were created in the 60’s by Carl Adam Petri for the

modeling and analysis of concurrent systems [136]. They are bipartite graphs

with two types of nodes, places and transitions, connected by directed arcs.
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Places hold tokens that can be produced (respectively, consumed) when an

input (respectively, output) transition fires. The execution of a Petri net is

non-deterministic and specially suited for distributed systems with concur-

rent events. Their application to biological processes began in 1983, by the

work of Reddy and coworkers, to overcome the limitations in quantitative

analysis of metabolic pathways [144].

There are currently several Petri net extensions (e.g.: coloured, timed,

stochastic, continuous, hybrid, hierarchical, functional), forming a very ver-

satile framework for both qualitative and quantitative analysis. Due to this

versatility, they have been used in metabolic [110, 192, 106], gene regulatory

[25, 26], and signaling networks [152, 28, 17, 77]. Also, they are suited for in-

tegrating different types of networks, such as gene regulatory and metabolic

[165].

2.4.4 Process algebras

Process algebras are a family of formal languages for modeling concurrent

systems. They generally consist on a set of process primitives, operators for

sequential and parallel composition of processes, and communication chan-

nels. The Calculus of Communicating Systems (CCS) was one of the first

process algebras, developed during the 70’s by Robin Milner [122], and later

gave origin to the more popular π-calculus [123]. In SB the application

of process algebras has been mainly focused on signaling pathways due to

their similarity to communication processes. About a decade ago, Regev and

coworkers published their pioneer work on the representation of signaling

pathways with π-calculus [147, 148]. They later extended their work using

stochastic π-calculus (BioSpi) to support quantitative simulations [141] and

using Ambient calculus (BioAmbients) for representation of compartments

[146]. Other relevant biological applications of process algebras include Bio-

calculus [124], κ-calculus (for protein-protein interactions) [44], CCS-R [43],

Beta binders [140], Brane Calculi [22], SpacePi [91], Bio-PEPA [31, 32] and

BlenX [46, 139].
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2.4.5 Constraint-based models

Constraint-based models for cellular metabolism began spreading during the

90’s, mainly influenced by the work of Palsson and coworkers [178]. Assuming

that cells rapidly reach a steady-state, these models overcome the limitations

in lack of experimental data for parameter estimation inherent in fully de-

tailed dynamic models. They are based on stoichiometric, thermodynamic

and enzyme capacity constraints [145, 142]. Instead of a single solution,

they define a space of possible solutions representing different phenotypes

that comply with the constraints. The simplicity in this formulation allows

its application to genome-scale metabolic models comprising thousands of

reactions, such as the most recent metabolic reconstruction of E. coli [56].

Constraint-based models have been used in metabolic engineering strate-

gies for the determination of flux distributions (metabolic flux analysis [184],

flux balance analysis [96]), knockout phenotype predictions (minimization of

metabolic adjustment [160], regulatory on/off minimization [162]) or enumer-

ating all possible pathways (extreme pathways [155], elementary flux modes

[157]). Although their main application has been on metabolic networks,

there are recent efforts towards application on gene regulatory and signaling

networks [128, 67, 112].

2.4.6 Differential equations

Differential equations describe the rate of change of continuous variables.

They are typically used for modeling dynamical systems in several areas.

Systems of non-linear ordinary differential equations (ODEs) have been used

in SB to describe the variation of the amount of species in the modeled sys-

tem as a function of time. They have been applied to all kinds of biological

pathways [27, 149, 29, 177]. With a fully detailed kinetic model, one can

perform time-course simulations, predict the response to different inputs and

design system controllers. However, building ODE models requires insight

into the reaction mechanisms to select the appropriate rate laws, and experi-

mental data to estimate the kinetic parameters. The lack of kinetic data has

limited the size of the modeled networks to pathway size, with exception for
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the human red blood cell model [88].

Approximative rate laws such as generalized mass action (GMA) [82],

S-systems [154], lin-log [179], and convenience kinetics [116], have compact

standard formulations that can facilitate the development and analysis of

large-scale models [80, 37]. This opens the possibility for kinetic modeling at

the genome-scale [167].

Other types of differential equations, such as stochastic differential equa-

tions (SDEs) and partial differential equations (PDEs) can be used respec-

tively to account for stochastic effects and spatial distribution [176]. Piecewise-

linear differential equations (PLDEs) have been used to integrate discrete and

continuous features in gene regulatory networks [45, 14].

2.4.7 Rule-based models

Rule-based (Fig. 2.2f) modeling comprises a recent approach to the problem

of multi-state components in biological models. In rule-based formalisms the

species are defined in a structured manner and support multiple states. The

reaction rules are defined as transformations of classes of species, avoiding

the need for specifying one reaction per each possible state of a species. This

high-level specification is then automatically transformed into a biochemical

network with the set of species and reactions generated by the specification.

This kind of formalism is implemented in BioNetGen [15] which generates

an ODE model or a stochastic simulation from the ruled-based specifica-

tion. It has been applied in the modeling of different signaling pathways

[16, 11, 12, 13]. A similar rule-based formalism used for this kind of path-

ways is the κ language, where the species are defined by agents that have

a structured interface for interaction with other agents [41, 42, 58]. The

possible interactions are defined by a set of rules, which can be visualized

by a contact map. BIOCHAM implements a rule-based approach for model

specification which is complemented with a temporal logic language for the

verification of the properties the biological models [20].

The main advantage of the rule-based approach is that it can avoid the

combinatorial explosion problem in the generation and simulation of the com-
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plete reaction network by performing stochastic simulations that only instan-

tiate the species and reactions as they become available [33, 34] or by the

generation of coarse-grained ODE systems [58]. Spatial simulation has been

addressed recently by the inclusion of geometric information as part of the

structure of the species [74].

2.4.8 Interacting state machines

Interacting state (Fig. 2.2e) machines are diagram-based formalisms that

describe the temporal behavior of a system based on the changes in the states

of its parts. They are suited to model biological behavior in a qualitative way

as they require little quantitative data. They differ from other approaches as

they define a system in terms of its states rather than its components. They

are typically used for model checking and interactive execution.

One such formalism is Statecharts, developed by David Harel during the

80’s [78] that was first applied in biology for modeling the T-cell activation

process [94, 52] and more recently in pancreatic organogenesis [161]. In this

formalism, the state of a system may contain sub-states at multiple levels,

allowing an hierarchical view of the system and the relation between events

at smaller and larger scales. Other related formalisms are Reactive Modules

[5] and Live Sequence Charts [40], which, along with the former, have been

applied in the modelling of C. elegans vulval development [62, 61].

2.4.9 Cellular automata

Cellular automata (Fig. 2.2g) were created by von Neumann and Ulam in

the 40’s [181]. They are discrete dynamic models that consist on a grid

of cells with a finite number of states. A cellular automaton has an initial

configuration that changes at each time step through a predefined rule that

calculates the state of each cell as a function of the state of its neighbors at the

previous step. They are specially suited for modeling complex phenomena

in a scale-free manner and have been used in biological studies for a long

time [55]. Due to their spatial features their main applications are related to

molecular dynamics and cellular population dynamics.
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Application examples at the molecular level include enzyme reaction net-

works that account for spatial diffusion [183] and signaling pathways [189, 98].

At the cellular level they were used for models such as those of bacterial ag-

gregation [168] and HIV infection [194, 35]. Dynamic cellular automata are

a variation of cellular automata that allows for movement of the cell con-

tents inside the grid, mimicking brownian motion. They were used to model

enzyme kinetics, molecular diffusion and genetic circuits [185].

2.4.10 Agent-based models

Agent-based models (Fig. 2.2d) describe the interactions among multiple

autonomous agents. They are similar in concept to cellular automata, except

in this case, instead of using a grid and synchronized time steps, the agents

move freely within the containing space. Likewise, they are used to study

complex phenomena and emergent dynamics using populations of agents with

simple rules. At the molecular level they have been mainly used to build

models of signaling pathways that account for spatial distribution and the

structural properties of the cell [72, 138, 137, 6]. Recently, they have also

been applied to metabolic reactions [105]. However, their main application

is at the multi-cellular level, where they have been used to study granuloma

formation [159], tumor growth [193, 54], morphogenesis [73], chemotaxis [53],

immune responses [118, 115], and several others [174, 121].

2.4.11 Other

There are other modeling formalisms that have been used in SB which are

worth mentioning. Cybernetic modeling is one of the earliest approaches

for dynamic modeling that was used in bioprocess applications [109, 48]. A

recent approach combines cybernetic variables with elementary flux modes

[191, 99]. Hybrid automata addressed the integration of discrete and contin-

uous components in the Delta-Notch signaling pathway [65, 66]. Artificial

neural networks were used to model gene expression [180]. Molecular inter-

action maps are a popular graph-based formalism created by Kohn in 1999

[107, 108, 119] that influenced the SBGN standard [111]. Other graph-based
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formalisms include modular interaction networks [190] and logical interaction

hypergraphs [104]. The P systems formalism created by Paun in 1998, in-

spired the area of membrane computing [130] and has been recently applied

in SB [135, 21]. Chemical organization theory is a recent approach for mod-

eling biochemical reaction networks that uses set theory to analyze how they

can be decomposed into self-maintaining subnetworks called organizations,

that reveal dynamic properties of the system [49]. It has been used to ana-

lyze different types of networks including signaling pathways and regulated

metabolic networks [23, 24, 92, 93].

2.5 Discussion

The diversity of problems studied in SB gave rise to the application of sev-

eral different types of formalisms. Some of the literature references for each

formalism, classified by the type of biological process described, are shown in

Table 2.1. We can observe that only four formalisms (Petri nets, constraint-

based models, differential equations and cellular automata) have been ap-

plied to all three types of biological networks, which makes them potential

candidates as a suitable integrative formalism for whole-cell modeling. Nev-

ertheless, this does not automatically exclude other formalisms from this

possibility as well. Another interesting observation is that metabolism is the

biological process with the smaller number of formalisms applied. This is

likely due to the fact that its two main frameworks (differential equations

and constraint-based) are well suited for modeling metabolic networks. On

the other hand, all of the formalisms have been applied to signaling pathways.

One possible reason for this, is the fact that they have a larger number of

modeling feature requirements, including spatial localization and multi-state

components.

The modeling features provided by the formalisms reviewed in this work

are compared in Table 2.2. Some of the features are only available in ex-

tensions of the formalisms. We can observe that no single formalism covers

the whole spectrum of features desired for modeling all kinds of biological

components. Petri nets and rule-based models are among the formalisms

39



Table 2.2: Modeling formalisms and implemented features. (BN) Boolean
networks; (Bay) Bayesian networks; (PN) Petri nets; (PA) Process algebras;
(CB) Constraint-based models; (DE) Differential equations; (RB) Rule-based
models; (ISM) Interacting state machines; (CA) Cellular automata; (AB)
Agent-based models; (+) Supported feature; (e) Available through extension.

BN Bay PN PA CB DE RB ISM CA AB
Visualization + + + + + + +
Topology + + + +
Modularity + + + +
Hierarchy e e +
Multi-state e + + + +
Compartments e + + +
Spatial e e + +
Qualitative + + + + + +
Synchronized + e +
Stochastic e + e + e + + + +
Continuous e + +

that cover most features. Petri nets have several extensions available, and

although none of the extensions alone fulfills all requisites, altogether they

form a very versatile modeling framework. Rule-based models present a high

level of abstraction and can be used for stochastic simulation and automatic

generation of lower level ODE-based representations. Therefore, they take

advantage of the analytic power of abstract representations, preserving the

ability to generate stochastic and deterministic simulations.

Although none of the formalisms implements all the required features,

this is not necessarily a limitation, since different formalisms can be used

at different stages of the modeling process. The model construction pro-

cess begins with biochemical knowledge and experimental data that allow an

enumeration of the components and connections in the system. Graph-based

models, such as Boolean networks, Bayesian networks and Petri nets can

be used for modeling this map of interactions. This allows a deeper under-

standing of the organization of the system through topological analysis, and

drives new experiments by finding gaps in the models. This kind of models

also allows qualitative descriptions of system behavior and coarse simulation
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capabilities. If the reactions’ stoichiometry and directionality are known, one

may analyze the steady-states of the system using constraint-based models.

Finally, if extensive experimental data is available to infer the kinetics of

the reactions, probabilistic or deterministic rate laws can be used to create

dynamic models. These are used to generate time-course simulations under

different sets of initial conditions. Stochastic process algebras, stochastic

Petri nets, continuous Petri nets, rule-based models and differential equa-

tions, would all be ideal candidates for this purpose.

Cellular automata and agent-based models account for the individual

replicas of each component in the system. When applied at the molecular

level, this paradigm provides accurate simulations of small sets of biochemical

reactions that account for spatial diffusion. However, it becomes infeasible

to perform simulations at the genome-scale network level, as this would im-

ply modeling every copy of all substances present in the cell. Nevertheless,

this approach is very convenient for modeling at the cell population level,

as it allows to track changes in individual cells and to study the emergent

properties of cellular communities.

The inability of the formalisms to fit all purposes has driven the develop-

ment of methodologies to convert between different formalisms. Two differ-

ent methods have been proposed to convert Boolean networks to Petri nets

[25, 169]. Boolean networks have also been converted to constraint-based

models [68] and to ODEs [186]. Other formalisms have also been converted

to ODEs, including constraint-based models [166], Petri nets [69], process

algebras [19] and rule-based models [58]. When the mappings are made from

abstract to more detailed models they usually require some assumptions and

insight into the reaction mechanisms. The language for biochemical systems

(LBS) is a recent language that integrates a rule-based approach with pro-

cess calculus, and supports the generation of Petri nets, ODEs and continuous

time Markov chains [133].

Along with the conversion between formalisms, there is also a recent trend

for developing methods that support integrated simulation of different for-

malisms in order to integrate different kinds of biological networks, where

each network is modeled in its own formalism. Extensions of flux balance
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analysis (FBA) [96], such as regulated FBA (rFBA) [38] and steady-state reg-

ulated FBA (SR-FBA) [163] incorporate boolean rules into constraint-based

models for integrated simulation of regulatory and metabolic networks. In-

tegrated FBA (iFBA) extends rFBA by integrating kinetic information from

ODE models [39]. Integrated dynamic FBA (idFBA) aims to integrate sig-

naling, regulatory and metabolic networks by modeling all networks in the

constraint-based formulation [113]. Biochemical systems theory (BST) has

been recently integrated with Hybrid Functional Petri Nets (HFPN) in order

to integrate metabolic, regulatory and signaling networks, in a framework

that accounts for different time-scales as well as discrete, stochastic and con-

tinuous effects [187, 188].

In search for a proper formalism perhaps the most important aspect to

consider is the balance between simplicity and expressiveness. There is a price

to pay for the amount of features provided by a formalism, which may come at

the cost of increased model complexity. The complexity of the representation

and the number of parameters determines the amount of experimental data

required for model construction. This is the reason why the most simple

formalisms such as Boolean networks and constraint-based models have been

used to build, respectively, gene regulatory and metabolic networks at the

genome scale. This concern is most critical when not only the parameters

but also the network structure are unknown. Model inference (also known

as reverse engineering) methods are applied in these cases. They have been

used to infer Boolean networks [1, 47], Bayesian networks [63, 9], Petri nets

[126, 51] and ODEs [101, 87] from experimental data. However, the scalability

of these methods is greatly dependent on the simplicity of the underlying

formalism.

2.6 Conclusions

With the myriad of formalisms that have been applied in SB, we face the

challenge of choosing the proper formalism for the problem in hands. As more

data become available for network reconstruction, we move towards integra-

tion of all kinds of biological networks, namely signaling, gene regulatory
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and metabolic. Although some formalisms like Petri nets, constraint-based

models and differential equations have been applied for all these networks, no

single formalism covers the whole spectrum of functionalities available in the

different formalisms reviewed in this work. Petri nets have several extensions

available, covering most of the features analyzed (Table 2.2). However, they

lack support for compartments and spatial localization. Rule-based models

are another strong candidate as they also cover a great part of the modeling

features. In general, formalisms with a visual format can be more appealing

and reveal insight into the system functioning before simulation is possible.

This is particularly important given the lack of kinetic data for larger models.

A common problem in the analysis of biological networks is the combi-

natorial explosion that originates from the complexity of large models. A

typical example is the computation of elementary flux modes, which is cur-

rently still infeasible at the genome-scale, requiring modular decomposition

of the networks [158]. This problem will aggravate as we get closer to whole-

cell modeling. The solution may reside in the application of hierarchical

formalisms to represent an intermediate level between the reaction and the

cell. As stated elsewhere, one should not “model bulldozers with quarks”

[70]. Hierarchical Petri nets, BioAmbients and Statecharts are formalisms

that support hierarchical modeling.

Models of cell populations are also becoming more frequent. They are

used to study scenarios like cell differentiation, chemotaxis, infections or

tumor growth. This kind of models depends on the internal dynamics of the

cells as well as population dynamics. Therefore, they require modeling of

interactions across organizational scales [182]. It is possible that these multi-

scale models will require the integration of different formalisms. For instance,

the evolution of a population of cells could be modeled by an agent-based

model, with each agent having a boolean network for internal representation

of its gene expression.

In order to convert between different formalisms it is important to have

a standard representation format that preserves most of the features in the

models. SBML is the most popular standard in the SB community, currently

supported by over two hundred tools [84]. Most of the modeling features cov-
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ered herein have been proposed for future versions of SBML [59]. These in-

clude hierarchical model composition, rule-based modeling, spatial geometry

and alternative mathematical representations.

Given the size and complexity of the biological networks operating inside

the cell, the model building process is based on iterative steps of refine-

ment and validation. Recent approaches for genome-scale kinetic modeling

of metabolism, begin with the network topology, modeled in the constraint-

based framework, and then refine the models by adding the kinetic structure

in order to generate ODE models [89, 167]. Petri nets seem to be a promis-

ing formalism for this purpose, given that discrete Petri nets can model the

network topology, and can then be used as a scaffold for the generation of dy-

namic models based on continuous or stochastic Petri nets. The fact that the

same kind of formalism is used during the whole model refinement process,

helps the creation of more straightforward and formal methods for automatic

mapping and validation of the models.

Many of the proposed formalisms, such as Petri nets or process algebras,

were originally created by the computational community for the specification

of software systems, where the final system has to comply to the model. The

biological community faces the opposite problem, where the model has to

mimic the system’s behavior, and where most components cannot even be

measured directly. Therefore, a proper framework for SB must provide not

only a suitable formalism with attractive features and simulation methods,

but also methods for model inference and parameter estimation that are

sufficiently robust to handle experimental data that are incomplete and prone

to measurement error.
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Chapter 3

Dynamic vs Constraint-based

modeling

This chapter is based on the article “Exploring the gap between dynamic and

constraint-based models of metabolism” (in preparation).
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Abstract

Systems biology provides new approaches for metabolic engineering through

the development of models and methods for simulation and optimization of

microbial metabolism. Currently, there are two different modeling frame-

works in common use, dynamic and constraint-based models. The construc-

tion of dynamic models with detailed kinetic rate laws has been limited to

central pathways due to the large volume of experimental data required for

parameter estimation. On the other hand, constraint-based models that de-

fine a space of solutions for the steady-state flux distribution, have been used

for genome-scale stoichiometric reconstruction. In this work, we explore the

relationship between these two types of model by comparing and analyzing

the dynamic and constraint-based formulations of the same model of the

central carbon metabolism of E. coli. Our results show that, if the kinetic

parameters of the dynamic model are unconstrained, the space of steady

states described by both types of model is the same. However, the impo-

sition of parameter ranges can be mapped into kinetically feasible regions

of the solution space. Therefore, if at least some of the kinetic parameters

are known, dynamic models can be used to generate constraints that reduce

the solution space of constraint-based models, eliminating infeasible solutions

and increasing the accuracy of simulation and optimization methods.
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3.1 Introduction

The prevalence of systems approaches to biological problems has renewed

interest in mathematical models as fundamental research tools for performing

in silico experiments of biological systems [8]. In the context of metabolic

engineering, models of metabolism play an important role in the simulation of

cellular behavior under different genetic and environmental conditions [22].

Typical experiments include knockout simulations to study how metabolic

flux distributions readjust throughout a given network. With the selection

of an optimal set of knockouts or changes in enzyme expression levels, it

is desirable to optimize the production of compounds of industrial interest

[1, 13].

Systems of ordinary differential equations (ODEs) have been applied in

different areas to model dynamical systems. In the context of metabolic net-

works, they describe the rate of change of metabolite concentrations. These

dynamic models contain rate law equations for the reactions as well as their

kinetic parameters and initial metabolite concentrations. Building this type

of model requires insight into enzyme mechanism to select appropriate rate

laws, as well as experimental data for parameter estimation. Therefore, their

application has been more limited, but areas of application include central

metabolic pathways of well-studied organisms such as E. coli [2] and S. cere-

visiae [14]. There are, however, some recent efforts to overcome these limi-

tations in the reconstruction of large-scale dynamic models, such as through

the hybrid dynamic/static approach [27], the ensemble modeling approach

[23], and the application of approximative kinetic formats using stoichiomet-

ric models as a scaffold [20, 7]. Nevertheless, these techniques have so far

been applied to very few organisms.

On the other hand, advances in genome sequencing have facilitated the re-

construction of genome-scale metabolic networks for several organisms, with

over 50 reconstructions available to date [12]. Due to the lack of kinetic data

at the genome scale, this type of model only accounts for reaction stoichiom-

etry and reversibility. Analysis is performed under the assumption of steady

state using a constraint-based formulation that is underdetermined, resulting
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in a continuous space of solutions for the reaction flux distributions. This un-

certainty of the flux distributions requires additional conditions to determine

unique solutions and predictions. Often this takes the form of an optimiza-

tion based on a particular assumption, such as optimal biomass growth for

wild-type [4] and minimization of cellular adjustments for knock-out strains

[18, 19]. The inclusion of regulatory constraints, introduced by [3], is a cur-

rent approach to reduce the size of the solution space and eliminate infeasible

solutions.

The two most common model types in use, therefore, represent two ex-

tremes. The dynamic ODE formulation contains detailed mechanistic infor-

mation that gives solutions of the transient dynamic approach to equilibrium

from any given set of initial conditions (generally concentrations of enzymes

and metabolites), as well as the steady state specified by metabolite concen-

trations that depend on total enzyme concentrations (for the usual case where

they are treated as fixed) but often do not depend on the initial metabolite

concentrations. Steady-state fluxes are readily computed from the steady-

state concentrations and the rate laws. The constraint-based formulation

seems minimalistic by comparison: it has no mechanistic knowledge of any

of the chemical reactions beyond their stoichiometry, its solutions have fluxes

at steady state, but no information regarding concentrations, or dynamics,

and rather than giving a unique solution, it produces a high-dimensional

continuum of steady-state solutions (referred to as the flux cone). The dy-

namic formulation needs significant information (parameters in term of rate

constants and total enzyme concentrations, as well as reaction mechanisms

to give rate laws), but generally rewards that effort with unique and detailed

solutions. The constraint-based formulation requires less (no parameters ex-

cept maximum fluxes) but delivers less.

Because of these significant differences between dynamic and constraint-

based formulations, they treat the effects of network perturbations that might

be undertaken as part of a metabolic engineering study very differently. A

dynamic formulation will make very specific predictions about the response

to a gene knockout, for example, but generally such models lack information

about gene regulatory changes that accompany metabolic changes, and so
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without foreknowledge to adjust relative enzyme concentrations, such pre-

dictions can be significantly in error. Constraint-based formulations can ac-

cess all possible steady-state solutions but can only rely on relatively simple

heuristics to select among them, and are uncertain how to include specific

information on gene regulatory changes.

Here we explore further the relationship between these formulations by

essentially considering the continuous ensemble of dynamic formulations ob-

tained by varying parameters (principally rate constants and enzyme con-

centrations) and compare the steady-state solutions to those from the cor-

responding constraint-based formulation. We find an equivalence between

the sets of steady states when only maximum flux constraints are present,

but that more specific constraints and enzyme concentrations can be directly

incorporated to define a reduced dynamic ensemble that is significantly more

informative regarding possible steady-state solutions than the constraint-

based formulation.

3.2 Methods

3.2.1 Models

We have used a dynamic model of the central carbon metabolism of E. coli

[2] available at the Biomodels database [9]. The model was converted from

its original SBML format into a MATLAB (The Mathworks; Natick, MA,

USA) file which was used for all the computations in this work. The model

consists of a total of 18 metabolites and 31 reactions, including several enzy-

matic reactions, one exchange reaction, and a few lumped versions of biosyn-

thetic pathways. Several types of rate laws are used, including constant rate,

mass-action, Hill cooperativity, allosteric regulation, and Michaelis-Menten

with its variants for reversibility and inhibition, with a total of 125 param-

eters. We have not considered metabolite dilution or algebraic rules for co-

metabolite variation, as they cannot be represented in the constraint-based

model. Also, we changed the rate law of MurSynth from constant rate to

Michaelis-Menten, as it leads to inconsistencies when its substrate (f6p) de-
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pletes. The model maintained its original steady-state despite these changes.

A constraint-based version of the model was built by accounting only for

the stoichiometry and reversibility constraints. The glucose uptake rate was

allowed to vary between 0 and the maximum value in the dynamic model.

The dynamic model also contains two other inputs (TrpSynth, MethSynth),

with a constant rate, that were considered in the constraint-based version

with constant fluxes.

3.2.2 Hit-and-Run sampler

We implemented an algorithm for random sampling (Fig. 3.1a) adapted to

this problem following the concept of hit-and-run methods [21]. The solution

space of the constraint-based model is contained within the null space of the

stoichiometric matrix. Starting with a point inside this coordinate space,

the sampler started generating new points by iterative steps in one direction.

Each point was then projected into the flux space and tested by checking the

flux boundary constraints. Each time the test failed, meaning that it crossed

the boundary of the flux cone, the point was discarded and a new direction

was randomly chosen. Otherwise, the point’s projection in the flux space was

stored. To facilitate uniform sampling of the whole space, the sampler only

stores one point every 1000 iterations. Also, in order to adapt to cones of

different sizes, it used a variable step size that increased (decreased) in case

of successful (failed) iterations, which quickly converged to an average size.

3.2.3 Geometric sampler

Given the poor results obtained by the hit-and-run method at the edges of

the cone, we designed and implemented a geometric sampler (Fig. 3.1b) that

started by searching the corners of the flux cone. It found the corners by solv-

ing linear programing problems within the model with randomized objective

functions using the GLPK library [11]. After finding the corners, it sampled

along all possible edges between the corners, which defined the bounds of

the cone. Then, it iteratively sampled from all edges in the direction of the

center of the cone, defined as the mean of all corners. This method facili-
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tated the visualization of the flux cone. However, in this case, the probability

distribution of the points did not have any statistical meaning.

3.2.4 Parameter sampler

Metabolite concentrations and kinetic parameters are theoretically defined

in an infinite semi-positive space. Therefore, in order to sample this type of

space without constraints, we scaled each element individually (concentration

or parameter) by a random factor with log-normal distribution (log10(X) ∼
N (0, 1)). This distribution is defined over R+, with nearly all values (99.73

%) within 3 orders of magnitude above or bellow unit. This resulted in

variation of the original values by several orders of magnitude. In order to

perform constrained parameter variation within well-defined ranges, specified

in terms of orders of magnitude (m), we scaled each parameter by a factor

with uniform distribution in logarithmic scale (log10(X) ∼ U(−m/2,m/2)).

All kinetic parameters associated with binding and rate constants were var-

ied, while other parameters such as Hill coefficients, co-metabolite levels and

dilution rate, were kept fixed.

3.2.5 Calculating steady states

For each simulation of the dynamic model, the steady state was calculated

by numerically integrating the differential equations from time zero toward

infinity with a stop condition when the steady state was reached. To avoid

non-halting computations when the system diverged or was oscillatory, a

second stop condition, based on a computational time limit, was also added.

3.2.6 Relative volume estimation

In order to estimate the volume of the cone after imposition of the kinetic

parameter constraints, we started by sampling the dynamic model under

those constraints. In this way the kinetic parameter ranges could be mapped

to flux ranges (Fig. 3.1e). Then, we used a random sample of the constraint-

based model (obtained with the hit-and-run sampler) and calculated the
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fraction of points of that sample that were contained within the generated

flux ranges. This fraction determined the relative volume of the subspace

compared to the original space [25].

3.3 Results

In order to explore the gap between both types of formulations, we analyzed

and compared the dynamic and constraint-based formulations of the same

model of the central carbon metabolism of E. coli [2] (see Methods section

for model formulation).

Our goal is to compare the steady states achievable by the two model

types. Intuitively the dynamic formulation has more constraints than the

constraint-based one because the later only enforces the steady-state condi-

tion and maximum flux constraints. Therefore, any set of steady-state fluxes

achieved by the dynamic formulation and that do not violate the maximum

flux constraints will automatically be a solution of the constraint-based for-

mulation. Thus, here we focus on mapping solutions in the opposite direction:

Is every solution of the constraint-based formulation also a steady-state so-

lution of the dynamic one? Or, instead, does the extra information in the

dynamic formulation effectively reduce the steady-state solution space so that

it is a proper subset of the constraint-based formulation.

3.3.1 Solution space of the constraint-based model

We implemented a Monte-Carlo based random sampler, which is a variation

of the hit-and-run method [21] (see Methods) and applied it to the constraint-

based model. The sampling distribution for each reaction (Fig. 3.2, diagonal)

forms skewed gaussian shaped curves, very similar to the results obtained by

[25] for the human red blood cell model. However, more insight into the

shape of the solution space can be revealed by plotting the sample two-

dimensionally for every pair of reactions (Fig. 3.2). It is possible to observe

that, due to the random nature of this method, the edges of the flux cone

are not sharply defined due to the low probability of samples in the tails of
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Figure 3.1: Overview of the methods applied in this work to the constraint-
based and the dynamic model. The solution space of the constraint-based
model has been sampled by (a) random sampling using a Hit-and-Run al-
gorithm, and (b) geometric sampling using the corners of the flux cone as
starting points. The solution space of the dynamic model has been sam-
pled by (c) varying the initial metabolite concentrations, and (d) the ki-
netic parameters. (e) By constraining the kinetic parameters of the dynamic
model we can delimit kinetically feasible flux regions and transfer them to
the constraint-based model.
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the gaussians. To obtain a clearer delineation of the borders of the space,

we implemented a geometric sampling approach that systematically identified

first the vertices of the flux cone through solution of linear programs, then the

edges through vertex connection, and finally explored the interior of the flux

cone (see Methods). The full solution space of the constraint-based model is

now clear (Fig 3.2), and it can be compared to that from the dynamic model.

3.3.2 Solution space of the dynamic model

Whereas the constraint-based model has no adjustable parameters, the dy-

namic model has a large number of parameters that describe the specific

chemistry being modeled, consisting of the rate laws, kinetic parameters (in

which we include a fixed total concentration for each protein), and initial

metabolite concentrations. This results in a single deterministic steady-state

solution. To examine how this solution is influenced by the extra informa-

tion, we varied the initial conditions and kinetic parameters, again by random

sampling (see Methods).

If the system has a unique steady state, then simulations will converge

to the same steady state, independent of the initial concentrations. This

network exhibits multistability; two distinct steady states were identified

when the initial concentrations of metabolites were varied (Fig. 3.3). This

bi-stability is caused by a positive feedback loop that is formed when phos-

phoenolpyruvate (PEP), a product of glycolysis, is used as an energy source

to import external glucose through the phosphotransferase system (PTS).

During the transient phase of the system, the concentration of PEP may

reach a critical level, where it gets depleted before re-entering PTS. If this

happens, the cell is unable to capture its external substrate, and all internal

metabolites eventually deplete as well, leading to a network with residual

activity. We can observe that this steady state (referred here as secondary)

occurs much less frequently than the steady state obtained with the original

conditions (Fig. 3.3, diagonal).

A random procedure was used to vary the kinetic model parameters, in-

cluding binding and rate constants (because all enzyme concentrations are
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Figure 3.2: Pairwise projection of the sampling of the constraint-based solu-
tion space using the hit-and-run sampler (blue) and the geometric sampler
(gray). The diagonal shows the probability distribution for each reaction
relative to the hit-and-run sampling. Only the first six reactions are shown.
Note that the gray points are plotted underneath the blue ones, and that the
geometric sampler delineates all of the space region covered by the hit-and-
run sampler, plus the additional spaces seen here.
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Figure 3.3: Pairwise projection of the sampling of the solution space obtained
for the dynamic model by sampling the initial metabolite concentrations,
overlapping the complete solution space (gray) for better visualization. The
dark blue dot shows the location of the original steady state. The red dot
shows the location of the secondary steady state. Only the first six reactions
are shown. The diagonal gives the relative probabilities of the steady-state
flux distribution.
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included in Vmax, which was varied, effectively enzyme concentrations were

varied as well), but not Hill coefficients, co-metabolite concentrations or the

dilution rate (see Methods). A single set of initial concentrations was used

(that for which the unperturbed model goes to the higher probability steady

state). A projection of the resulting steady-state concentrations shows that

the dynamic model, through parameter variation, appears to be able to pro-

duce the same steady states as the constraint-based model, but no additional

steady-states. This situation is tempered by two issues: (i) there are areas

of light coverage in Figure 3.4 that one presumes are truly occupied, and

(ii) even if the two-dimensional projection overlaps, this does not confirm

that the full-dimensional flux cones for the two models overlap. To more

stringently test the notion that the polytopes are identical, we generated a

procedure that would optimize parameters for the dynamic model to repro-

duce any desired steady-state solution (see Methods). We applied this to

10,000 randomly selected solutions from the constraint-based model and the

resulting parameters recovered the desired steady state when run in the dy-

namic model every time. Thus, operationally the steady-state flux cones for

ODE and constraint-based models are the same.

3.3.3 Kinetically feasible solution space

An ODE kinetic model of central carbon metabolism has exactly the same set

of possible steady-state solutions as the corresponding flux balance model,

as demonstrated in the previous section. The ODE model maps out the

solution space through systematic variation of model parameters (binding

constants, rate constants, and enzyme concentrations) with no constraints

beyond non-negativity. Knowledge of actual parameter values or ranges,

from experimental measurement or physical constraints, would lead to fur-

ther constraints on the feasible parameter space. To explore how constraints

on the feasible parameter space affect the range of steady-state solutions

achievable in the ODE kinetic model, we sampled parameter combinations

from constrained spaces and computed the steady states of the resulting

models. The fluxes in those steady states are plotted in Figure 3.5 for pa-
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Figure 3.4: Pairwise projection of the sampling of the steady-state solution
space for the dynamic model obtained by sampling the kinetic parameters.
The corresponding space overlaps the solution space given by the stoichio-
metric model (gray). The diagonal shows the probability distribution for
each reaction. Only the first six reactions are shown.
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rameter ranges from 100 up to 104-fold around the base parameter values.

The results show that parameter variation of 100-fold or greater appears to

produce the full set of steady-state flux solutions observed from the uncon-

strained non-negative parameters in the ODE model, which corresponds to

the flux-balance steady states. Parameter constraints leading to less than

100-fold variation produced significant restriction of the steady-state fluxes.

The solution-space volume reduction due to parameter constraints is plot-

ted quantitatively in Figure 3.6. The ratio of the solution flux cone with

constrained and unconstrained parameters is shown as a function of the con-

strained parameter ranges. The results (labeled “normal uptake”), show that

reduction of parameter uncertainty to a 10-fold range leads to a reduction

in the solution flux space to 10% of its unconstrained volume. Moreover,

because the size of the original space depends on a control variable of the

system, namely the glucose uptake rate, we increased glucose uptake from

1.28 mmol/gDW/h, the value in the original model, to 10.50 mmol/gDW/h,

the maximum value for E. coli under aerobic conditions [24]. The results,

shown in Figure 3.6 as “maximum uptake” show a similar sigmoid shape,

but shifted toward greater parameter variation. Under these condition, the

flux cone of solutions is reduced to 10% of its unconstrained volume with

300-fold parameter variation.

3.4 Discussion

We have analyzed and compared dynamic and constraint-based formulations

of the same model for the central carbon metabolism of E. coli [2]. The

constraint-based version does not account for metabolite concentrations, and

it does not express transient behavior. Therefore, the formulations can only

be compared at their common domain, which is the steady-state flux distri-

bution.

The constraint-based model defines a solution space for the steady-state

flux distribution (usually called the flux cone). This space is difficult to

visualize due to its high dimensionality. We addressed this problem by de-

veloping sampling and projection approaches that facilitate the visualization
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Figure 3.5: Pairwise projection, in heat-map form, of the solution space
reachable by the dynamic model as a function of the variation, in terms of
orders of magnitude, of the kinetic parameter space. The diagonal shows the
variation for each flux independently. Only the first six reactions are shown.
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Figure 3.6: Relative volume of the kinetically feasible solution space, com-
pared to the original space, as a function of the parameter variation, in terms
of orders of magnitude. The volume was calculated for the original glucose
uptake rate in the model and also for the maximum uptake rate.
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of the shape of solution space.

The steady state of the dynamic model contains the same constraints as

the constraint-based model (stoichiometry, thermodynamic reversibility, and

maximum uptake rates) and also any additional constraints imposed by the

kinetic rate laws, kinetic parameters, and initial metabolite concentrations.

Therefore, its solution space is a subset of the constraint-based solution space.

For a predefined set of initial conditions and parameter values, the dy-

namic model usually determines one steady-state solution. In fact, the ini-

tial metabolite concentrations of dynamic models determine their transient

behavior, but, for the steady-state flux determination, they serve only to

determine which steady-state is chosen in case of multiple stabilities in the

model. In this case, sampling the metabolite concentration space revealed a

second steady-state characterized by a flux distribution with lower values of

the fluxes and an accumulation of external glucose.

Instead, we also verified, as expected, that the location of the steady-state

solution(s) inside the solution space is determined by the kinetic parameters,

because by varying the kinetic parameters, the solution moves inside the

solution space. The sampling of the kinetic parameter space revealed that,

with unconstrained parameter values, the solutions of the dynamic model

cover the whole steady-state solution space. This overlapping may seem

unintuitive, as one would expect the rate laws to impose one additional layer

of constraint into the steady-state solution space. However, besides having

observed this with our sampling approaches, we also observe that, given any

valid steady-state flux distribution, one can find kinetic parameter values that

make the rate laws produce those steady state flux values by solving each

equation separately. This separation is only possible because the parameters

are specific for each rate law, which defines a partition over the parameter

set. The running example contains an average of 4 parameters per rate law,

yielding many degrees of freedom for each equation. Thus, it is not surprising

that, generally, parameter values can be found that satisfy the equations.

One interesting result is that, in general, tuning the maximum rate con-

stants is sufficient to make the rate laws fit any given steady-state flux. This

is valid for irreversible reactions given any metabolite concentrations. And,
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it is also valid for reversible reactions with the additional constraint that

the ratio between the given product and substrate concentrations exceeds

the equilibrium constant. In fact, the maximum rate constant is the only

parameter that the cell can control by adjusting the enzyme concentration

levels (recall that Vmax = kcat[E]0). This means that disregarding the details

of the transcriptional regulation (e.g. the fact that different genes share the

same transcription factor, or that same genes are associated with different

reactions) and the practical limitations in enzyme concentration, the cell can

in theory adjust its steady-state flux distribution within the admissible space

imposed by the topology of the metabolic network. This hypothesis reflects

the adaptability of the cell under different conditions and is in agreement

with the observations that microorganisms can undergo adaptive evolution

to attain their optimal theoretical yields when placed under conditions where

they originally performed sub-optimally [6].

The observations stated above show that, in theory, a dynamic model

can be fitted to any steady-state flux distribution inside the constraint-based

solution space. However, there are physical limitations to the values of the ki-

netic parameters. Also, by querying parameter databases such as BRENDA

[17] and SABIO-RK [16], it is possible to observe that for each kinetic param-

eter there is a range of possible values determined by experimental conditions

(such as temperature and pH) in which the cells are able to grow. There-

fore, we evaluated how the imposition of parameter ranges map into flux

ranges within the steady-state solution space. Although the rate laws do not

constrain the solution space by themselves, they influence the probability

distribution of the steady-state solutions. This is evidenced by the imposi-

tion of the kinetic parameter constraints. As the constraints become tighter,

the solutions of lower probability disappear and the reachable solution space

becomes smaller. Our results show that the impact of these constraints de-

pends on the size of the solution space of the genome-scale model, which is

mainly determined by the uptake rate of the limiting substrates, and on the

allowable ranges of the kinetic parameters in the dynamic model.
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3.5 Conclusions

In this work we have explored the solution spaces of both dynamic and

constraint-based models in order to bring together top-down and bottom-

up approaches, and we have proposed methods of treating each as well as

their interrelation.

Dynamic model reconstruction is a bottom-up approach for iteratively

building large-scale metabolic pathways with kinetic detail. Due to lack

of experimental data, differences in experimental conditions, and error prone

measurements, the kinetic parameters are often unavailable or defined within

certain ranges.

On the other hand, genome-scale reconstruction is a top-down approach

that takes advantage available high-throughput data to build models of metabolic

networks that account for stoichiometry and thermodynamic constraints.

These models are analyzed under a steady-state assumption through the

constraint-based approach. Furthermore, they can be iteratively refined by

imposition of new constraints that shrink the size of the solution space. One

such approach is the imposition of regulatory constraints, which can result

in significant reductions [3].

Taking advantage of the information available in dynamic models of cen-

tral pathways can increase the accuracy of genome-scale constraint-based

models by imposition of kinetic feasibility constraints even if the dynamic

model is not fully determined. Furthermore, sampling the solution space of

the dynamic model can be used as an experimental design tool to determine

which kinetic parameters have greater influence in defining the volume of the

solution space.

Increasing the accuracy of constraint-based models can influence sim-

ulation methods such as metabolic flux analysis (MFA) [26], flux balance

analysis (FBA) [4], minimization of metabolic adjustment (MOMA) [18] and

regulatory on/off minimization (ROOM) [19]. Tools that implement these

methods [15] can be extended to include kinetic constraints.

The constraint-based approach has been recently applied to other kinds of

biological networks, namely gene regulatory and signaling networks [5, 10].
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The availability of models for all kinds of networks will facilitate the cre-

ation of integrated cellular models that account for all types of intracellular

phenomena under the same mathematical framework. Because those mod-

els can be either constraint-based or dynamic, understanding relationships

between the two as discussed in this work will have an even greater impact.

In fact, although the use of common frameworks (either constraint-based or

dynamic) for representing different kinds of biological phenomena is a step

towards the use of integrated models, the development of tools that promote

the integration of the two most important representation frameworks is also

necessary for true integration. The current contribution is a step in that

direction.
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Chapter 4

A Framework for Model

Transformation

This chapter is based on the article “Model transformation of metabolic net-

works using a Petri net based framework” published at the International

Workshop on Biological Processes & Petri Nets (BioPPN 2010), Braga, Por-

tugal, 2010.
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Abstract

The different modeling approaches in Systems Biology create models with

different levels of detail. The transformation techniques in Petri net theory

can provide a solid framework for zooming between these different levels of

abstraction and refinement. This work presents a Petri net based approach to

Metabolic Engineering that implements model reduction methods to reduce

the complexity of large-scale metabolic networks. These methods can be

complemented with kinetics inference to build dynamic models with a smaller

number of parameters. The central carbon metabolism model of E. coli is

used as a test-case to illustrate the application of these concepts. Model

transformation is a promising mechanism to facilitate pathway analysis and

dynamic modeling at the genome-scale level.
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4.1 Introduction

Systems Biology provides a new perspective in the study of living systems

and embraces the complexity emerging of interactions among all biological

components. Combining theory and experiments, scientists build models to

explain and predict the behavior of the systems under study. Metabolic

Engineering is one of the fields where this perspective has proven useful

through the optimization of metabolic processes for industrial applications

[29, 2].

Modeling in Systems Biology is an iterative process as the life-cycle of a

model is comprised of successive refinements using experimental data. Dif-

ferent approaches, such as top-down, bottom-up or middle-out [18] are used

depending on the purpose of the model and the type of data available for its

construction. In Metabolic Engineering there are macroscopic kinetic mod-

els that consider the cell as a black-box converting substrates into biomass

and products, which are typically used for bioprocess control. On the other

hand, there are reaction-network-level models, either medium-scale dynamic

models with detailed kinetic information derived from literature and experi-

mental data [3], or genome-scale stoichiometric reconstructions derived from

genome annotation complemented with literature review [5].

Although the ultimate goal of Systems Biology is a complete understand-

ing of the cell as a whole, not only it is extremely difficult to collect all the

kinetic information necessary to build a fully detailed whole-cell model due

to the lack of experimental data and model identifiability concerns, but also

the computational cost of simulating the dynamics of a system with such

detail would be tremendous. Therefore, there is a need to fit the level of

detail of a model to the specific problem at hand. For instance, Metabolic

Pathway Analysis (MPA) has been useful in the analysis of metabolism as

a way to determine, classify and optimize the possible pathways throughout

a metabolic network. However, due to the combinatorial explosion of path-

ways with increasing number of reactions, it is still infeasible to apply these

methods in genome-scale metabolic reconstructions without decomposing the

network into connected modules [24, 25]. This zooming in and out between
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different levels of abstraction and connecting parts with different levels of de-

tail is a feature where formal methods and particularly Petri nets may play an

important role. Concepts such as subnetwork abstraction, transition refine-

ment or node fusion, among others, have been explored in Petri net theory

[8] and may provide the theoretical background for method development.

In previous work, we reviewed different modeling formalisms used in Sys-

tems Biology from a Metabolic Engineering perspective and concluded that

Petri nets are a promising formalism for the creation of a common framework

of methods for modeling, analysis and simulation of biological networks [15].

They are a mathematical and graphical formalism, therefore intuitive and

amenable to analysis. The different extensions available (e.g.: stochastic,

continuous, hybrid) provide the flexibility required to model and integrate

the diversity of phenomena occurring in the main types of biological networks

(metabolic, regulatory and signaling). Moreover, one may find biological

meaning in several concepts in Petri net theory; for instance, the incidence

matrix of a Petri net is the equivalent of the stoichiometric matrix, and the

minimal t-invariants correspond to the elementary flux modes (EFMs).

In this work, we explore strategies of model reduction for Petri net rep-

resentations of metabolic networks, and the integration of this methodology

with recent approaches such as genome-scale dynamic modeling. This chap-

ter is organized as follows. Section 4.2 explores the motivation for the work.

Section 4.3 presents the model reduction and kinetics inference methods, Sec-

tion 4.4 discusses their application to E. coli and Section 4.5 elaborates on

conclusions and future work.

4.2 Background

There are different examples of model reduction in the literature. One such

method was developed in [17], based on timescale analysis for classification

of metabolite turnover time using experimental data. The fast metabo-

lites are removed from the differential equations and their surrounding re-

actions are lumped. In [20] the EFMs of a reaction network are calculated

in order to create a macroscopic pathway network, where each EFM is a
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macro-reaction connecting extracellular substrates and products. A simple

Michaelis–Menten rate law is assumed for each macro-reaction and the pa-

rameters are inferred from experimental data. The method is applied in a

network with 18 reactions and a total of 7 EFMs. However it does not scale

well to larger networks because, in the worst case, the number of EFMs grows

exponentially with the network size.

The combinatorial pathway explosion problem is well known; there are

methods for network decomposition in the literature that address this issue.

In [24] the authors perform a genome-scale pathway analysis on a network

with 461 reactions. After estimating the number of extreme pathways (EPs)

to be over a million, the network is decomposed into 6 subsystems according

to biological criteria and the set of EPs is computed separately for each sub-

system. A similar idea in [25] consists on automatic decomposition based on

topological analysis. The metabolites with higher connectivity are considered

as external and connect the formed subnetworks. An automatic decomposi-

tion approach based on Petri nets is the so-called maximal common transition

sets (MCT-sets) [23], and consists on decomposing a network into modules by

grouping reactions by participation in the minimal t-invariants (equivalent

to EFMs). A related approach relies on clustering of t-invariants for network

modularization [9]. A very recent network coarsening method based on so-

called abstract dependent transition sets (ADT-sets) is formulated without

the requirement of pre-computation of the t-invariants and thus may be a

promising tool for larger networks [12].

Another problem in genome-scale metabolic modeling is the study of dy-

namic behavior. Genome-scale metabolic reconstructions are stoichiometric

and usually analyzed under steady-state assumption using constraint-based

methods, such as flux balance analysis (FBA) [1]. Dynamic flux balance

analysis (dFBA) allows variation of external metabolite concentrations, and

simulates the network dynamics assuming an internal pseudo steady-state at

each time step [16]. It is used in [19] to build a genome-scale dynamic model

of L. lactis that simulates fermentation profiles. However, this approach gives

no insight into intracellular dynamics, neither it integrates reaction kinetics.

In [27] the authors build a kinetic genome-scale model of S. cerevisiae us-
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ing linlog kinetics, where the reference steady-state is calculated using FBA.

Some of the elasticity parameters and metabolite concentrations are derived

from available kinetic models, while the majority use default values. Using

the stoichiometric coefficients as elasticity values is a rough estimation of the

influence of the metabolites on the reaction rates. Moreover, no time-course

simulation is performed. Mass action stoichiometric simulation (MASS) mod-

els are introduced in [14] as a way to incorporate kinetics into stoichiometric

reconstructions. Parameters are estimated from metabolomic data. Regu-

lation can be included by incorporating the mechanistic metabolite/enzyme

interactions. A limitation of these models is that mass-action kinetics do not

reflect the usual non-linearity of enzymatic reactions and the incorporation

of regulation leads to a significant increase in network size.

4.3 Methods

The idea of this work is closer to the reduction concepts of [17, 20] than

the modularization concepts in [24, 25]. In the latter cases a large model is

decomposed into subunits to ease its processing by analyzing the parts indi-

vidually. Instead, our objective is to facilitate the visualization, analysis and

simulation of a large-scale model as a whole by abstracting its components.

This reduction is to be attained by reaction lumping in a way that maintains

biological meaning and valid application of current analysis and simulation

tools. The Michaelis–Menten kinetics is a typical example of abstraction,

where the small network of mass-action reactions are lumped into one single

reaction.

The overall idea of the model reduction method is depicted in Fig. 4.1. A

large-scale stoichiometric model can be structurally reduced into a simplified

version that can be more easily analyzed by methods such as MPA. Also,

one may infer a kinetic structure to build a dynamic version of the reduced

model. Due to the smaller size, a lower number of parameters has to be

estimated. The data used for estimation may be experimental data found in

the literature, or pseudo-experimental data from dynamic simulations if part

of the system has been kinetically characterized.
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Figure 4.1: Overall concept of model reduction and kinetics inference.

When abstracting a reaction subnetwork into one or more macro-reactions,

it is important to consider the assumptions created by such abstraction. As

in Michaelis–Menten kinetics, these simplifications result in a pseudo-steady-

state assumption for the intermediate species that disappear. While this may

not be a problem for flux balance models, it changes the transient behavior

of dynamic models because the buffering effect of intermediates in a pathway

is neglected. The selection of metabolites to be removed depends on the

purpose of the reduction. The network may have different levels of granular-

ity based on the availability of experimental data, topological properties, or

simply in order to aggregate pathways according to biological function.

4.3.1 Basic definitions

The proposed method for model reduction uses several Petri net concepts

from the literature. We will use the following definition of an unmarked con-

tinuous Petri net (adapted from [4]) for modeling a stoichiometric metabolic

network:

Pn = < P, T, Pre, Post >

Pre : P × T → R+

Post : P × T → R+
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where the set of places P represents the metabolites, the set of transitions

T represents the reactions and Pre, Post are, respectively, the substrate and

product stoichiometries of the reactions. Note that for the representation of

a stoichiometric network, a discrete Petri net usually suffices; however, be-

cause some models may contain non-integer stoichiometric coefficients, the

continuous version was adopted. Moreover, we will assume that reversible re-

actions are split into irreversible reaction pairs. We will also use the following

definitions:

loc(x) ={x} ∪ •x ∪ x•

In(p) =
∑
t∈•p

Post[p, t] · v(t)

Out(p) =
∑
t∈p•

Pre[p, t] · v(t)

where •x, x• are sets representing the input and output nodes of a node x,

the set loc(x) ⊆ P ∪ T is called the locality of x, function v : T → R+
0

is a given flux distribution (or the so-called instantaneous firing rate), and

In,Out : P → R+
0 are, respectively, the feeding and draining rates of the

metabolites.

The method for network reduction consists of eliminating a set of se-

lected metabolites from the network. For each removed metabolite its sur-

rounding reactions are lumped in order to maintain the fluxes through the

pathways. This reduction assumes a steady-state condition for the metabo-

lite, i.e. In(p) = Out(p).

4.3.2 Model reduction: Conjunctive fusion

There are two options for lumping the reactions depending on the transfor-

mation method applied. The first approach is based on a transformation

called conjunctive transition fusion [8] and it results in an abstraction that

replaces the transition-bordered subnet loc(p) by a single macro-reaction.

The drawback of this method is that the flux ratios between the internal

reactions are lost. If a known steady-state flux distribution (v) is given,
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Figure 4.2: Exemplification of limit scenarios where all the internal metabo-
lites are removed. (A) In the conjunctive reduction case the result is one
single macro-reaction converting substrates into products with the respec-
tive yields specified in the stoichiometry. (B) In the disjunctive reduction
method, all possible pathways connecting substrates and products are enu-
merated.

then the stoichiometric coefficients can be adjusted to preserve the ratios for

that distribution; however, the space of solutions of the flux balance formu-

lation becomes restricted to a particular solution. In the limiting case, if

all the internal metabolites are removed, the cell is represented by one sin-

gle macro-reaction connecting extracellular substrates and products with the

stoichiometric yields inferred from the network topology for one particular

steady-state (Fig 4.2A). The transformation method for removing metabolite

p in Pn given a flux distribution v is described as follows:

Pn′ = < P ′, T ′, P re′, Post′ >

P ′ =P \ {p}

T ′ =T \ (•p ∪ p•) ∪ {tp}

Pre′ ={(pi, tj) 7→ Pre(pi, tj) | (pi, tj) ∈ dom(Pre) \ (P × (•p ∪ p•))}

∪{(pi, tp) 7→ fin(pi) | pi ∈ •(•p ∪ p•), pi 6= p, v′(tp) 6= 0, fin(pi) 6= 0}

Post′ ={(pi, tj) 7→ Post(pi, tj) | (pi, tj) ∈ dom(Post) \ (P × (•p ∪ p•))}

∪{(pi, tp) 7→ fout(pi) | pi ∈ (•p ∪ p•)•, pi 6= p, v′(tp) 6= 0, fout(pi) 6= 0}

v′ ={t 7→ v(t) | t ∈ T \ (•p ∪ p•)} ∪ {tp 7→ In(p)}.
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where

fin(pi) =

∑
t∈p•i∩(•p∪p•)

Pre(pi, t) · v(t)

v′(tp)

fout(pi) =

∑
t∈•pi∩(•p∪p•) Post(pi, t) · v(t)

v′(tp)

The stoichiometric coefficients of the new reaction may be very high or low,

depending on v′(tp) and so, optionally, one may also normalize them with

some scalar λ, such that Pre′′(pi, tp) = 1
λ
· Pre′(pi, tp), Post′′(pi, tp) = 1

λ
·

Post′(pi, tp) and v′′(tp) = λ · v′(tp). This will also make the final result

independent of the order of the metabolites removed. A good choice for λ is:

λ = max ({Pre(pi, tp) | pi ∈ •tp} ∪ {Post(pi, tp) | pi ∈ tp•})

4.3.3 Model reduction: Disjunctive fusion

The second approach is based on a transformation called disjunctive transi-

tion fusion [8], where every combination of input and output reaction pairs

connected by the removed metabolite is replaced by one macro-reaction. Al-

though this approach does not constrain the steady-state solution space of

the flux distribution, it has the drawback of increasing the number of transi-

tions, if the metabolite is highly connected, due to the combinatorial proce-

dure. Note that applying this reduction step to metabolite pi is equivalent to

performing one iteration of the t-invariant calculation algorithm to remove

column i of the transposed incidence matrix. Therefore, in the limiting case

where all internal metabolites are removed, the cell is represented by the

set of all possible pathways connecting extracellular substrates and products

(Fig. 4.2B), as was done in [20]. The definition, similar to the previous one,
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is as follows:

Pn′ = < P ′, T ′, P re′, Post′ >

P ′ =P \ {p}

T ′ =T \ (•p ∪ p•) ∪ {txy | (x, y) ∈ (•p× p•)}

Pre′ ={(pi, t) 7→ Pre(pi, t) | (pi, t) ∈ dom(Pre) \ (P × (•p ∪ p•)}

∪{(pi, txy) 7→ Pre0(pi, x) · Pre(p, y) + Pre0(pi, y) · Post(p, x)

| (x, y) ∈ (•p× p•), pi ∈ •{x, y}}

Post′ ={(pi, t) 7→ Post(pi, t) | (pi, t) ∈ dom(Post) \ (P × (•p ∪ p•)}

∪{(pi, txy) 7→ Post0(pi, x) · Pre(p, y) + Post0(pi, y) · Post(p, x)

| (x, y) ∈ (•p× p•), pi ∈ {x, y}•}

where

Pre0(p, t) =

Pre(p, t) if (p, t) ∈ dom(Pre)

0 if (p, t) /∈ dom(Pre)

Post0(p, t) =

Post(p, t) if (p, t) ∈ dom(Post)

0 if (p, t) /∈ dom(Post)

Whenever there are pathways with the same net stoichiometry, these can be

removed by checking the columns of the incidence (stoichiometric) matrix

and eliminating repeats. It should also be noted that in both methods, if

a metabolite acts both as substrate and product in a lumped reaction, it

will create a redundant cycle that is not reflected in the incidence matrix. If

these cycles are not removed, they propagate through the reduction steps;

therefore, they should be replaced by a single arc containing the overall
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stoichiometry. The procedure works as follows:

Pre′ ={(p, t) 7→ Pre(p, t) | (p, t) ∈ dom(Pre) \ dom(Post)}

∪{(p, t) 7→ Pre(p, t)− Post(p, t)

| (p, t) ∈ dom(Pre) ∩ dom(Post), P re(p, t) > Post(p, t)}

Post′ ={(p, t) 7→ Post(p, t) | (p, t) ∈ dom(Post) \ dom(Pre)}

∪{(p, t) 7→ Post(p, t)− Pre(p, t)

| (p, t) ∈ dom(Pre) ∩ dom(Post), Post(p, t) > Pre(p, t)}

The previous arc removing procedure may cause isolation of some nodes when

Pre(p, t) = Post(p, t); therefore, the isolated nodes should be removed:

P ′ = {p | p ∈ P, loc(p) 6= {p}}

T ′ = {t | t ∈ T, loc(t) 6= {t}}

4.3.4 Kinetics inference

Given a stoichiometric model, if metabolomic or fluxomic data are available

for parameter estimation, one may try to build a dynamic model by inferring

appropriate kinetics for the reactions. In [26] the authors propose that this is

performed by assuming linlog kinetics for all reactions using an FBA solution

as the reference state and the stoichiometries as elasticity parameters. An

integration of Biochemical Systems Theory (BST) with Hybrid Functional

Petri Nets (HFPN) is presented in [30], where general mass action (GMA) ki-

netics is assumed for each transition. The review of kinetic rate formulations

is out of the scope of this work and may be found elsewhere [10].

Assuming that all metabolites with unknown concentration were removed,

we will extend our definition to a marked continuous Petri net:

Pn =< P, T, Pre, Post,m0 >

where m0 : P → R+
0 denotes the initial marking (concentration) of the

metabolites. The kinetics inference process consists on defining a firing rate
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v : T → R+
0 , which will be dependent on the current marking (m) and the

specific kinetic parameters (see [7] for an introduction on marking-dependent

firing rates). As we assumed irreversible reactions, each rate will only vary

with substrate concentration. The rates can be easily derived from the net

topology. In case of GMA kinetics v is given by:

v(t) = kt
∏
p∈•t

m(p)ap,t

where kt is the kinetic rate of t and ap,t is the kinetic order of metabolite p

in reaction t. A usual first approximation for ap,t is Pre(p, t).

Linlog kinetics are formulated based on a reference rate v0, and defined

by:

v(t) = v0(t)

(
1 +

∑
p∈•t

ε0p,t ln

(
m(p)

m0(p)

))
where ε0p,t is called the elasticity of metabolite p in reaction t, reflecting

the influence of the concentration change of the metabolite in the reference

reaction rate. As in the previous case, Pre(p, t) can be chosen as an initial

approximation for ε0p,t. The relative enzyme activity term (e/e0) commonly

present in linlog rate laws to account for regulatory effects at larger time

scales will not be considered.

4.4 Results and Discussion

4.4.1 Central carbon metabolism of E. coli

The proposed methods were tested using the dynamic central carbon metab-

olism model of E. coli [3], where the stoichiometric part was used for the

application of the reduction methods, and the dynamic profile was used to

generate pseudo-experimental data sets for parameter estimation and vali-

dation of the kinetics inference method. A Petri net representation of this

model (Fig. 4.3) was built using the Snoopy tool [22]. All reversible reactions

were split into irreversible pairs. The net contains a total of 18 places, 44

transitions and is covered by 95 semipositive t-invariants, computed with the
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Integrated Net Analyzer [28].

In the application of the conjunctive method (Fig 4.4A), the metabolites

were classified as in [17] based on their timescale (Table 4.1), by calculating

their turnover time (τ : P → R+
0 ) using the reference steady-state of the

dynamic model, where:

τ(p) =
m0(p)

In(p)

Metabolites with small turnover time are considered fast. In this case, all

metabolites except the slowest 5 (glcex, pep, g6p, pyr, g1p) were removed.

For the application of the disjunctive method (Fig 4.4B), the metabolites

were classified based on their topology (Table 4.1). We conveniently opted

to remove the metabolites with lower connectivity to avoid the combinatorial

explosion problem. All metabolites except 5 (g6p, pyr, f6p, gap, xyl5p) were

removed. This reduction assumes steady-state for the removed metabolites.

However, it makes no assumptions on the ratios between the fluxes, therefore

preserving the flux-balance solution space.

Because we are assuming that the reference steady-state is known, the

conjunctive reduced model was chosen for the application of the kinetics

inference method assuming linlog kinetics at the reference state. The elastic-

ity parameters were estimated using COPASI [13]. The pseudo-experimental

data was generated from simulation with the original model after a 1 mM ex-

tracellular glucose pulse with the addition of Gaussian noise (std = 0.05 mM)

(Fig. 4.5A). The fitted model was then validated using pseudo-experimental

data from a 2 mM pulse (Fig. 4.5B). It is possible to observe an instanta-

neous increase in pyr (from 2.67 to 3.93) and an instantaneous decrease pep

(from 2.69 to 1.26) which the model is unable to reproduce. The poor fitting

in some of the intracellular metabolites is expected given the significant re-

duction to the model. However, the extracellular glucose consumption profile

is remarkably good, both in the fitting and validation cases.

Although both reducing methods can be combined with kinetics inference,

the conjunctive version seems more suitable if a steady-state distribution is

known, because it generates smaller models, hence less parameters. The dis-

junctive version is appropriate for analyzing all elementary pathways between
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Figure 4.3: Petri net model of the dynamic central carbon metabolism model
of E. coli with reversible reactions split into irreversible pairs.
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Table 4.1: Metabolite topological properties: input reactions, output re-
actions, connectivity; and dynamic properties: concentration (mM), flux
(mM/s), turnover time (s) at the reference steady-state.

Metabolite #(•p) #(p•) #(•p× p•) m0 In τ
glcex 1 1 1 0.0558 0.0031 18.099
pep 1 6 6 2.6859 0.3031 8.8603
g6p 3 3 9 3.4882 0.2004 17.406
pyr 4 2 8 2.6710 0.2418 11.044
f6p 3 5 15 0.6014 0.1423 4.2266
g1p 1 2 2 0.6539 0.0023 278.62
pg 1 1 1 0.8092 0.1397 5.7929
fdp 2 1 2 0.2757 0.1414 1.9495

sed7p 2 2 4 0.2761 0.0454 6.0757
gap 7 6 42 0.2196 0.3661 0.5997
e4p 2 3 6 0.0986 0.0454 2.1684

xyl5p 3 3 9 0.1385 0.0839 1.6503
rib5p 2 3 6 0.3994 0.0558 7.1626
dhap 2 3 6 0.1682 0.1414 1.1892
pgp 2 2 4 0.0080 0.3207 0.0251
pg3 2 3 6 2.1437 0.3207 6.6851
pg2 2 2 4 0.4014 0.3031 1.3241

ribu5p 3 2 6 0.1114 0.1397 0.7974
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Figure 4.4: Reduced versions of the original network. (A) Conjunctive re-
duction method. (B) Disjunctive reduction method.

Figure 4.5: (A) Results of parameter estimation with pseudo-experimental
data with 1 mM extracellular glucose pulse. (B) Validation of the model with
a 2 mM extracellular glucose pulse. In both cases, the circles represent the
experimental data and the lines represent time-course simulations generated
by the reduced model.
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a set of metabolites without the burden of calculating the set of EFMs of the

whole model. For instance, the macro-reactions M4 (ALDO + G3PDH ) and

M5 (ALDO + TIS ), with net stoichiometries of, respectively, [fdp → gap]

and [fdp → 2 gap], are two unique pathways between these two metabolites.

4.4.2 Transforming a genome-scale model

In order to test the proposed framework at the genome-scale level, we used

a genome-scale metabolic model of E. coli [21], which includes 625 metabo-

lites and 931 biochemical reactions. Genome-scale models can be simulated

using FBA, but the results are hard to visualize graphically, and they do not

provide a suitable starting point for inferring kinetic models, due to the com-

plexity of the generated models. However, a reduced version of this model

would provide a suitable scaffold for building a dynamic model. The dis-

junctive method is not feasible at the genome scale due to its combinatorial

nature. Therefore, the conjunctive approach is clearly the only option in this

case.

As a proof of concept, we created a reduced genome-scale model that

preserves all the metabolites and reactions in common with the dynamic

central carbon model. The remainder intermediate metabolites are removed,

resulting in a lumped version of all other metabolic pathways. Note that

some of the reactions on the central carbon model already represent lumped

versions of some biosynthetic pathways (e.g. mursynth, trpsynth, methsynth,

sersynth). However they were not deduced from the genome-scale network

and may not be accurate abstractions of these pathways. An FBA simulation

of the genome-scale model was performed in order to obtain the reference

steady-state flux distribution, where the fluxes of the common reactions were

constrained to their reference value in the central carbon model. Figure 4.6

shows the resulting condensed network. The nomenclature and visual layout

from the central carbon model was preserved in order to facilitate comparison.

It is possible to observe that almost all reactions that are not part of the

central carbon metabolism were lumped together with the biomass reaction

to form a lumped macro-reaction that reflects the contribution of all internal
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metabolites to the biomass formation. This picture also expresses the how the

external substrates and products contribute to the overall metabolic activity.

4.5 Conclusions

This work presents strategies for model reduction of metabolic networks

based on a Petri net framework. Two approaches, conjunctive and disjunctive

reduction are presented. The conjunctive approach allows the abstraction of

a subnetwork into one lumped macro-reaction, however limited to one par-

ticular flux distribution of the subnetwork. The disjunctive approach on the

other hand, makes no assumptions on the flux distribution by replacing the

removed subnetwork with macro-reactions for all possible pathways through

the subnetwork, therefore not constraining the steady-state solution space.

In both cases, the reduced model may be transformed into a dynamic model

using kinetics inference and parameter estimation if experimental data is

available. Using the reduced model, instead of the original, facilitates this

process because it significantly decreases the number of parameters to be

estimated.

We have shown how our framework can be applied in the creation of

condensed genome-scale metabolic models that preserve the stoichiometry of

the original models. In future work, we intend to create a dynamic model

based on the generated condensed model. This model can reuse all the

information already available in the dynamic central carbon. It will only

be necessary to find suitable rate laws and kinetic parameters for the new

reactions in the model.

Among the extensions available to Petri nets are the addition of different

types of arcs, such as read-arcs and inhibitor-arcs, which could be use to

represent activation and inhibition in biochemical reactions. They could also

be used to integrate metabolic and regulatory networks. Optimization in

metabolic processes is usually based on knockout simulations in metabolic

networks. However, these simulations do not take into consideration the

possible regulatory effects caused by the knockouts. In our transformation

methods we removed the arcs with the same stoichiometry in both directions,
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Figure 4.6: Condensed version of the genome-scale metabolic model of E.
coli, extending the previous example of the central carbon model. To avoid
saturating the image, the participation of the cofactors in most of the re-
actions is not represented. The stoichiometric coefficients of the biomass
reaction are also not displayed. The reaction is the following: glcex + 6.21
pep + 29.3 pyr + 0.72 f6p + 0.218 g1p + 0.277 sed7p + 0.0769 rib5p + 0.03
dhap + 38.2 pg3 + 0.462 ribu5p + 669 atp + 251 nadph + 238 nadh + 1.88
glyc3p + 10.3 prpp + 5.45 2dda7p + 2.56 so4(e) + 59.1 accoa + 64.8 h2o +
1.69 adpglc + 1.95e+03 h + 25.3 oaa + 236 o2(e) + 118 nh4(e) + h2o(e) →
0.522 gap + 655 adp + 15 amp + 251 nadp + 238 nad + 59.1 coa + glcn(e)
+ 35.2 ppi + 90.7 co2 + 0.934 phe L(e) + 2.1e+03 h(e) + 687 pi .
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Figure 4.7: Reduction step conserving the read-arcs associated with the en-
zymes of the original reactions.

because these are not reflected in the stoichiometric matrix. In the Michaelis–

Menten example this results in removing the enzyme from the network. The

proposed methods can be extended to consider read-arcs for these situations,

which should be preserved during the reduction steps, therefore establishing

connection places to the integration of a regulatory network (Fig 4.7).

An alternative to the reduction of the models would be to consider their

representation using hierarchical Petri nets. In this case, each macro-reaction

would be connected to its detailed subnetwork. Although this would not re-

duce the number of kinetic parameters in the case of kinetics inference, it

would be extremely useful for facilitated modeling and visualization of large-

scale networks without compromising detail. It could also be the solution

for genome-scale pathway analysis, if it is performed independently at each

hierarchical level. The hierarchical model composition proposed for SBML

[6] may facilitate the implementation of this alternative. See [11] for an auto-

matic network coarsening algorithm based on hierarchical petri nets applied

to different kinds of biological networks.
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Chapter 5

Accounting for Enzymatic

Regulation

This chapter is based on the article “Accounting for enzymatic regulation in

large-scale kinetic reconstructions of metabolism” (in preparation).
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Abstract

The current limitations in constraint-based models and mechanistic kinetic

models of metabolism are leading to new approaches for building kinetic

models at the genome-scale. These models are built by combining constraint-

based models and approximative kinetic formats. However, they lack the

effects of enzymatic regulation, as it is not accounted for in the underlying

network topology. In this work, we propose the utilization of Extended Petri

nets as scaffold for the generation of large-scale kinetic models in order to

account for enzymatic regulation during the kinetic inference process. We

generate kinetic models for the central carbon metabolism of E. coli, with and

without enzymatic regulation. We then evaluate the impact of accounting

for this kind of regulation in metabolic reconstructions by performing several

knockouts and changes in enzyme expression levels and comparing the results

with those generated with the original dynamic model of this pathway. Our

results show that accounting for enzymatic regulation has an influence on the

determination of the steady-state flux distribution of mutants, and allows

the prediction of changes that would otherwise be unforeseen. We conclude

that the inclusion of enzymatic regulation in metabolic reconstructions is an

important step that can be performed if flexible model representations like

Petri nets are applied, and it can be used to reveal new manipulation targets

for strain optimization
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5.1 Introduction

During the past years, Systems Biology has pushed the frontier of our under-

standing of the complex phenomena of life, with the creation of mathematical

and computational models of the cell [24]. The predictive capability provided

by these models is fundamental for the improvement of several areas such as

biomedical research and industrial biotechnology. In particular, the field of

Metabolic Engineering [51], takes advantage of mathematical models of cel-

lular metabolism, in order to discover optimal sets of genetic manipulations

for the design of mutant microbial strains that efficiently produce compounds

of industrial interest [4, 34].

One of the current approaches for modeling metabolic pathways is the

development of mechanistic kinetic models based on systems of ordinary dif-

ferential equations (ODEs). This kind of models includes detailed kinetic

rate laws that describe the details of the enzymatic mechanisms and usually

contain several kinetic parameters. Due to the large amount of experimen-

tal data required to estimate these parameters, this modeling approach has

been limited to central pathways of well-studied organisms, such as E. coli

[8] and S. cerevisiae [40]. On the other hand, constraint-based modeling is

an alternative approach that describes the admissible steady-state flux dis-

tributions in terms of stoichiometric and thermodynamic constraints. Given

the simplicity in the formulation, and the fact that no kinetic parameters are

required to instantiate this kind of models, they have been applied in most

genome-scale metabolic reconstructions [39, 36].

Although constraint-based models have a clear advantage in terms of scal-

ability when compared to kinetic models, they contain several limitations.

Besides not describing intracellular transient behavior, they do not take into

account metabolite concentration and enzymatic regulation effects. To over-

come the limitations of both approaches, a more recent approach is emerging

[49, 50, 22]. It consists on the automatic generation of approximative ki-

netic models, using constraint-based models as a scaffold. Approximative
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kinetic formats abstract from the enzymatic mechanism details, hence they

usually require fewer parameters than mechanistic rate laws [19]. Therefore,

this kind of models can scale to larger metabolic networks when compared

to mechanistic models. Also, they determine a single solution rather than a

space of solutions, and they are able to integrate high-throughput data from

several omics (proteomics, fluxomics and metabolomics).

The rate of a reaction can be controlled at the gene regulatory level by

controlling the amount of enzyme that is produced (transcriptional regula-

tion), and also by regulating enzyme activity through metabolic activators

and inhibitors (enzymatic regulation). Gene regulatory networks operate at

a larger time-scale than metabolic networks, therefore enzyme concentration

is usually considered constant in metabolic models. However, enzymatic reg-

ulation is part of the metabolism itself and it is responsible for the regulation

of many metabolic pathways. A current limitation in the process of generat-

ing kinetic models from constraint-based models is the fact that the later do

not express the enzymatic regulation relationships between metabolites and

enzymes.

Petri nets are a graphical and mathematical formalism that have been

applied in the modeling of several biological pathways, including metabolic

[38, 27, 57, 26], gene regulatory [6, 7], and signaling [43, 9, 3, 18]. They are

very similar to the constraint-based formulation of metabolic models, as they

both determine the topology of the network in terms of consumption and pro-

duction of metabolites. Extended Petri nets are extensions to the original

formalism that include special types of arcs that model the effect of com-

ponents that participate in a process without being consumed or produced

[10, 1].

In this work we propose the utilization of Extended Petri nets as a scaffold

for the kinetic inference process, in order to build large-scale kinetic recon-

structions that account for enzymatic regulation. We test the potential of this

approach by generating a kinetic model of the central carbon metabolism of

E. coli and evaluating the impact of enzymatic regulation in the prediction of

mutant phenotypes by comparing with the simulation results obtained from

the available dynamic model for this organism that as been experimentally
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validated [8]. See Fig. 5.1 for an overview of our proposed procedure.

5.2 Methods

5.2.1 Central carbon metabolism model of E. coli

In order to evaluate the predictive capabilities of the models automatically

generated by kinetic inference, we used a published and validated dynamic

model of the central carbon metabolism of E. coli as reference [8]. The model

is available in SBML format [21] at the Biomodels database [29]. It contains

a total of 18 metabolites and 31 reactions, including several enzymatic re-

actions, one exchange reaction and a few lumped versions of biosynthetic

pathways, holding a total of 125 kinetic parameters. We did not consider

metabolite dilution and the contribution of cofactors both to the topology

and dynamics of the network.

The model’s topology was used to build the topology of the Petri net

models used in this work. The enzymatic regulation effects present in the

kinetic equations were used to define the topology of the regulatory inter-

actions in the Extended Petri net model. The original model was also used

to generate pseudo-experimental data, both for parameter estimation and

validation of results.

5.2.2 Petri net models

Petri nets are bipartite graphs with two types of nodes, places and transi-

tions that, within the biochemical context, respectively represent substances

and reactions. Arcs between places and transitions define consumption and

production relationships. The notation to define Petri nets can vary among

the literature. We will adopt the following definition (adapted from the def-

inition of an unmarked generalized Petri net of [15]). A Petri net (Pn) is a
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Figure 5.1: Overview of the main steps of a metabolic model reconstruc-
tion process: Genome annotation and literature data are used to reconstruct
metabolic networks; using Extended Petri nets as a scaffold, rather than sim-
ple Petri nets or constraint-based models, allows the inclusion of enzymatic
regulation; the kinetic inference uses the network’s topology to build a ki-
netic model, using experimental data for parameter estimation; the kinetic
models can be used for time-course and steady-state simulation; optimiza-
tion methods can be used to find optimal targets for rational strain design.
This work focuses only on the kinetic inference and simulation steps (dark
arrows).
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4-tuple:

Pn = < P, T, Pre, Post >

Pre : P × T → N

Post : P × T → N

where P is the set of places, T is the set of transitions, Pre and Post are the

arcs representing, respectively, substrate and product stoichiometries.

We created a Petri net model based on the topology of the original dy-

namic model. The model is able to account for the stoichiometric information

that is present in the original model. However, because transitions are uni-

directional, the reversible reactions are decomposed into irreversible reaction

pairs. This model is essentially equivalent to a constraint-based model (with-

out flux capacity constraints).

Extended Petri nets are extensions to the original Petri net formalism,

that include special types of arcs, such as activator (also know as read or test)

and inhibitor arcs [10, 1]. In the biochemical context these arcs represent

regulatory interactions that modulate enzymatic activity. We will use the

following definition of an Extended Petri net (En):

En = < P, T, Pre, Post, A, I >

Pre : P × T → N

Post : P × T → N

A : P × T → N

I : P × T → N

where P, T, Pre, Post have the same meaning as in the previous case, and A, I

respectively represent activator and inhibitor arcs. We will use the following

125



notation:

•r = {p | p ∈ P, (p, t) ∈ dom(Pre)}

t• = {p | p ∈ P, (p, t) ∈ dom(Post)}
↑t = {p | p ∈ P, (p, t) ∈ dom(A)}
↓t = {p | p ∈ P, (p, t) ∈ dom(I)}

to respectively represent the sets of substrates, products, activators and in-

hibitors of a reaction modeled by transition t.

Similarly to the previous case, we created an Extended Petri net model

based on the original dynamic model. However, in this case, the model not

only accounts for the stoichiometry but also for the enzymatic regulation

relationships that exist in the original model. Figure 5.2 shows a graphical

representation of the model, built with the Snoopy Petri net editor [41]. It

is possible to observe a regulatory layer that is not considered in the simple

Petri net model (or equivalently, in a constraint-based model).

5.2.3 Kinetic inference

The kinetic inference process consists on the generation of kinetic rate laws

for the reactions in the model and the instantiation of the kinetic param-

eters and the initial metabolite concentrations. Approximative kinetic for-

mats facilitate this process as they do not require insight into the enzymatic

mechanism details. Commonly used formats include generalized mass action

(GMA) [20], lin-log [55], and convenience kinetics [31]. For a review in this

topic see [19].

Within the Petri net framework, the kinetic inference process can be

performed by a transformation from the discrete Petri net model into a con-

tinuous Petri net. We will adopt the following definition of a continuous Petri

net (adapted from the definition of a marked continuous Petri net of [15]).
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Figure 5.2: Petri net representation of the central carbon metabolism model
of E. coli built with the Snoopy Petri net editor [41]. Reversible reactions are
decomposed into irreversible pairs. Edges with arrows represent production
and consumption of metabolites. Edges with closed circle (red) and edges
with open circle (green), respectively represent activation and inhibition.
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A continuous Petri net (Cn) is a 6-tuple:

Cn = < P, T, Pre, Post,m0, v >

Pre : P × T → R+

Post : P × T → R+

m0 : P → R+

v : T → R+

where P, T, Pre, Post represents the network topology of the discrete Petri

net, m0 is the initial metabolite concentration and v is the firing rate function,

which is defined according to the approximative kinetic format chosen. In

this case, we have adopted the GMA format:

v(i) = ki
∏
j∈•i

(
m(j)fj,i

)
where ki is the kinetic rate of reaction i and fj,i is the kinetic order of metabo-

lite j in reaction i. The Extended Petri net version can also be mapped into

a continuous version, by adopting the following definition:

Cn = < P, T, Pre, Post, A, I,m0, v >

Pre : P × T → R+

Post : P × T → R+

A : P × T → R

I : P × T → R

m0 : P → R+

v : T → R+

where all the elements have the same meaning as in the previous case. How-

ever, in this case the firing rate function needs to take into consideration

the regulatory effects of the activator and inhibitor arcs. We adopted the
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multiplication by a regulatory factor as suggested in [44]:

v(i) = ki
∏
j∈•i

(
m(j)fj,i

)∏
j∈↑i

(
m(j)

KA,j +m(j)

)∏
j∈↓i

(
KI,j

KI,j +m(j)

)

where KA,j and KI,j respectively represent activation and inhibition con-

stants. Note that when KI → ∞ (never inhibited) and KA → 0 (always

active) the regulatory model is equivalent to the non-regulatory model.

5.2.4 Parameter estimation

After generating the kinetic models it is necessary to estimate the values of

the kinetic parameters. We used the original dynamic model to generate

steady-state fluxomic and metabolomic data. For the reversible reactions,

the flux was decomposed into forward and reverse rates. These data were

used to estimate the kinetic parameters in both models. For the kinetic order

parameters it is common to assume the stoichiometry of the metabolite as

default value [49, 12]. Therefore, in the non-regulatory model, given the

steady-state fluxes (vss) and metabolite concentrations (mss), we can estimate

the kinetic rate constants for each reaction i as :

ki =
vss(i)∏

j∈•i (m(j)Pre(j,i))
.

The case is different for the regulatory model, as there can be many parame-

ters per equation. We opted to set a default value of 1 mM for all regulatory

constants to be in the same order of magnitude as the metabolite concentra-

tions. Again, the kinetic constants can be calculated from the given data:

ki =
vss(i)∏

j∈•i (m(j)Pre(j,i))
∏

j∈↑i

(
m(j)

KA,j+m(j)

)∏
j∈↓i

(
KI,j

KI,j+m(j)

) .
5.2.5 Simulation

Our models are generated using our code and stored in SBML format. Note

that in SBML there is no distinction between activation and inhibition as all
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regulators are simply referred to as modifiers. We circumvented this problem

by manually adding annotations to the reactions with this information, which

are then recognized by our kinetic generation code. This problem is also

discussed in [16] where the authors suggest the utilization of Systems Biology

Ontology (SBO) [28] to annotate the models.

For simulation purposes, the SBML files are converted to Matlab files,

and we use Matlab’s ode15s function to integrate the generated system of

ordinary differential equations (ODEs). The integration is performed in the

time range of zero to infinity, with additional conditions to stop the compu-

tation when the system reaches a steady-state or to abort when it exceeds

a given CPU utilization time limit. Knockouts and changes in enzyme ex-

pression levels are simulated by premultiplying the respective equations with

a factor (e/e0). After simulation, the fluxes of the decomposed reversible

reactions are combined in order to facilitate comparison with the original

model.

5.3 Results

We evaluated the predictive capability of the generated models to determine

mutant phenotypes, by performing single knockouts of the enzymes in the

model. We tested both the regulatory and non-regulatory models and com-

pared with the pseudo-experimental data generated with the original model.

We also tested under and over-expression of enzyme concentration levels by

5-fold decrease and increase, respectively. Table 5.1 shows the results of the

simulations given by the error (ε) of the steady-state flux distribution of the

mutant (vm) compared to the pseudo-experimental data generated with the

original model under the same perturbation (v∗m), normalized by the wild-

type flux distribution (v∗w):

ε =
||vm − v∗m||
||v∗w||

.

In both models it is possible to observe a low error for most mutations.

However, in the cases with higher errors, there is no clear dominance of any
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Table 5.1: Normalized errors of the simulations performed with the non-
regulatory (-r) and regulatory (+r) models, for all single enzyme perturba-
tions including knockout (KO), under-expression (UE) and over-expression
(OE). In some cases (*) the simulation could not reach a steady-state.

Enzyme KO (-r) KO (+r) UE (-r) UE (+r) OE (-r) OE (+r)
PGI 0.010 0.010 0.000 0.000 0.000 0.000
PGM 0.003 0.003 0.001 0.001 0.000 0.000
G6PDH 0.024 0.024 0.019 0.022 1.112 1.080
PFK 0.018 0.021 0.478 0.361 0.230 0.219
TA (*) (*) 0.005 0.004 0.001 0.001
TKA 0.379 0.816 0.006 0.006 0.001 0.001
TKB (*) 0.048 0.004 0.002 0.001 0.000
ALDO (*) (*) 0.003 0.024 0.000 0.006
GAPDH 0.005 0.005 0.080 0.098 0.037 0.203
TIS 0.036 0.100 0.002 0.020 0.000 0.005
G3PDH 0.002 0.001 0.002 0.001 0.009 0.005
PGK 0.005 0.005 0.002 0.002 0.000 0.000
PGluMu 0.005 0.005 0.001 0.001 0.000 0.000
ENO 0.005 0.005 0.001 0.001 0.000 0.000
PK 0.049 0.029 0.041 0.021 0.134 0.059
PEPC 0.095 0.035 0.066 0.023 0.092 0.053
DAHPS 0.022 0.008 0.017 0.006 0.044 0.033
PDH 1.011 1.010 0.147 0.147 0.060 0.060
PGDH (*) (*) 0.000 0.000 0.000 0.000
R5PI (*) (*) 0.010 0.008 0.002 0.002
Ru5P 0.377 0.823 0.012 0.010 0.002 0.002
PPK 0.012 0.012 0.010 0.009 0.035 0.020
G1PAT 0.003 0.003 0.002 0.002 0.011 0.009
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Figure 5.3: Comparison of the steady-state flux distributions (mM/s) of the
generated models (“Non-Reg”, “Regulatory”) with the pseudo-experimental
data (“Wildtype”, “Mutant”) after knockout of: G6PDH (left side), PDH
(right side).

of the models over the other.

In some of the knockout mutations the simulations were not able to reach

a steady-state. This happened in both models with the exception of the

knockout of TKB, where the simulation was able to reach a steady-state in

the regulatory model but not in the non-regulatory one. In Figures 5.3–5.5

it is possible to observe some cases that will be analyzed in more detail.

The knockout of G6PDH was predicted with great accuracy by both

models (Fig. 5.3). In this case, the flux from G6PDH is redirected through

PGI. It is possible to observe an inversion in the fluxes of Ru5P and TKB,

which were correctly predicted in both cases.

The knockout of PDH resulted in a blocked metabolism that does not

carry any flux (Fig. 5.3). This is a consequence of an accumulation of pyru-
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Figure 5.4: Comparison of the steady-state flux distributions (mM/s) of the
generated models (“Non-Reg”, “Regulatory”) with the pseudo-experimental
data (“Wildtype”, “Mutant”) after under-expression (0.2×) of: PEPC (left
side), PFK (right side).

vate which causes the inhibition of PTS. This inhibition is only temporary

but is however sufficient to allow a depletion of pep by drain reactions, break-

ing the cycle where it re-enters in PTS. We would expect this consequence

to be predicted by the regulatory model. However, due to the fact that we

have adopted GMA kinetics, the model does not account for the saturation

of Synth2, which was able to completely consume the excess of pyruvate.

The under-expression of PEPC caused a redirection of a small part of the

flux from glycolysis to the pentose-phosphate pathway (Fig. 5.4). This was

correctly predicted by the regulatory model but not by the non-regulatory

model. The reason is that the accumulation of pep causes the inhibition of

PFK and consequently a decrease in the whole glycolytic pathway, favoring

the pentose-phosphate pathway.
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Figure 5.5: Comparison of the steady-state flux distributions (mM/s) of the
generated models (“Non-Reg”, “Regulatory”) with the pseudo-experimental
data (“Wildtype”, “Mutant”) after over-expression (5×) of: GAPDH (left
side), PK (right side).

The under-expression of PFK has an effect similar to the previous case

(Fig. 5.4). However, in this case both models predict an exaggerated re-

sponse to the redirection of the flux, with an inversion of PGI coupled with

a substantial flux increase in all the reactions of the pentose-phosphate path-

way.

The over-expression of GAPDH was one of the cases where the regula-

tory model had a larger error than the non-regulatory model (Fig. 5.5). In

this case there was a small shift of the flux from glycolysis to the pentose-

phosphate pathway. The non-regulatory model did not account for this shift,

whereas the regulatory model had an exaggerated response and incorrectly

predicted an inversion of PGI.

The over-expression of PK resulted in a shift of the flux from the pentose-
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phosphate pathway to the glycolytic pathway (Fig. 5.5). One of the causes

for this change is that PK was one of the bottlenecks in this pathway. In

this case the regulatory model predicted the resulting steady-state in good

agreement with the pseudo-experimental data, whereas the non-regulatory

model failed to predict these changes.

5.4 Discussion

5.4.1 Advantages of kinetic modeling

The construction of kinetic models of metabolism has been limited by the

amount of experimental data required to describe in detail the enzymatic

mechanisms and to estimate their respective kinetic parameters. Instead,

constraint-based modeling has become the de facto framework for modeling

the metabolism at the genome scale. However, there are several limitations

with this approach, such as not accounting for metabolite concentrations,

not defining a single steady-state solution and not describing transient be-

havior. The increasing availability of omics data (proteomics, metabolomics,

fluxomics) is driving the development of new approaches for kinetic modeling

at the genome scale.

Mass action stoichiometric simulation (MASS) models were introduced in

[22]. It is a modeling approach that consists on adding mass action kinetics

to a stoichiometric network and using metabolomic and fluxomic data to

estimate the kinetic parameters. The method was tested on a stoichiometric

reconstruction of the human red blood cell model. The authors also evaluate

the impact of enzymatic regulation by adding the regulatory interactions

to the model. However, this requires the decomposition of each enzymatic

mechanism into its elementary steps, which more than doubled the size of

the network. This decomposition step is avoided in our approach by the

introduction of regulatory arcs.

In [50] the authors built a genome-scale kinetic model of S. cerevisiae.

Using the available constraint-based as a scaffold, they generated a kinetic

model using lin-log kinetics. The reference steady-state flux distribution is
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found with the constraint-based model using flux balance analysis and the

stoichiometric coefficients are used as estimates of the elasticity parameters.

Since this kinetic model is based on the underlying constraint-based model,

it does not account for enzymatic regulation.

There are advantages in using kinetic rather than constraint-based mod-

els for steady-state simulation. First, they define an unique steady-state

solution. In this manner, it is possible to calculate the steady-state phe-

notype of mutants without requiring any extra assumptions, which is the

case in constraint-based methods such as flux balance analysis (FBA) [54],

minimization of metabolic adjustment (MOMA) [46] and regulatory on/off

minimization (ROOM) [47]. Also, it is possible to account for the enzyme

expression levels in a straightforward manner. In previous work we analyzed

how the inclusion of proteomic data in kinetic models can improve the sim-

ulation of knockout strains [11]. There are some approaches to account for

enzyme expression levels in simulations of constraint-based models, but their

formulation is not straightforward and usually requires the introduction of

new assumptions or the inclusion of a considerable amount of experimental

data [35, 56, 53].

5.4.2 The effects of enzymatic regulation

In this work we propose a new approach for large-scale kinetic reconstruction

that accounts for enzymatic regulation. We evaluate the impact of accounting

for this kind of regulation in metabolic reconstructions by generating kinetic

models with and without regulation and comparing the results with those

obtained from the original dynamic model of the central carbon metabolism

of E. coli [8]. In particular, we evaluate the effect of enzymatic regulation in

the determination of the steady-state flux distribution of mutant strains by

performing enzyme knockouts and changes in expression levels.

Our results show that enzymatic regulation has an influence on the steady-

state flux distribution obtained with the kinetic model. We can observe that

there is not a clear gain in the precision of the predictions. This is most likely

due to the fact the regulatory model has more parameters than the non-

136



regulatory model, which were given a default value rather than estimated.

Nonetheless, it is possible to observe that in some cases there were changes in

the flux distribution which could not be predicted without accounting for the

regulatory effects (e.g.: under-expression of PEPC, over-expression of PK ).

Along with simulation, metabolic models are also used for optimization

purposes. Optimization algorithms search for optimal modification targets in

order to improve the production of compounds of industrial interest [4, 34].

The inclusion of enzymatic regulation in kinetic reconstructions can reveal

new optimization targets. This idea is also explored in [33] where the author

proposes an optimization method for kinetic models that not only adjusts the

enzyme expression levels but also the regulatory parameters. The method is

applied in a model of the central carbon metabolism of E. coli in order to

improve glucose uptake and serine synthesis.

5.4.3 Limitations and directions for improvement

In order to improve the simulation results it is important to find an appropri-

ate combination of rate laws and strategies for parameter estimation. Since

this is not the main focus of the work, we adopted GMA kinetics which is one

of the most simple formats. Default parameter values were used wherever

possible, and the rest were fitted to the steady-state flux distribution of the

original model.

One interesting remark is that the simulation results were reasonably

accurate in most cases although we have used default values for several pa-

rameters. This indicates that although these models may not be able to ac-

curately simulate the transient behavior of the system, they are good enough

for steady-state prediction.

For the selection of the rate laws, convenience kinetics were also consid-

ered. They have a semi-mechanistic format, which gives a closer description

to the enzymatic mechanisms and accounts for enzyme saturation [31]. How-

ever, preliminary tests showed no evidence of significant improvement when

compared to GMA kinetics. This is likely due to the fact that it uses a higher

number of parameters and requires a more sophisticate strategy for parame-
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ter estimation. The lin-log format is also a strong candidate [55]. It is based

on a reference steady-state, and has the advantage that only the elasticity

coefficients need to be estimated if the wild-type steady-state is given. How-

ever, it is important to keep in mind that increasing the complexity of the

rate laws not only increases the number of parameters but also the compu-

tational cost of the simulations performed. This is an fundamental aspect to

consider in order to apply this approach at the genome scale.

Regarding parameter estimation, one hypothesis is to use time-course

fluxomic and metabolomic data if available, to find better estimates for the

activation and inhibition constants. It is also possible to search these param-

eters in databases such as BRENDA [45] and SABIO-RK [42] to use as initial

estimates. However, the computational cost of time-course fitting strategies

becomes problematic for large models.

Steady-state parameter fitting with fluxomic and metabolomic data may

become mandatory at the genome scale. However, since there are typically

many parameters per equation, there is an underdetermined solution space

for the parameters. The most suitable values can be found through non-

linear optimization. The objective functions and conditions should rely on

generalized biological principles. For instance, it has been observed that sub-

strate concentrations are typically above the KM values to optimize enzyme

efficiency [2], and that the enzyme concentrations are optimally distributed

along the metabolic pathways [25]. The stability and robustness of the system

at the solution point should also be a required condition in the formulation

of the problem [5, 33].

Methods such as the ensemble modeling approach [52] may also be suit-

able in these cases. Rather than fitting particular parameter values, we may

sample the parameter space, and iteratively refine the ensemble by comparing

the simulation results with given experimental data.

5.5 Conclusions

The creation of kinetic models at the genome scale is an important step

towards the whole-cell simulation goals of Systems Biology. Several recent
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efforts in this field are also addressing the integration of metabolic, regulatory

and signaling networks in order to account for the control that these exert

over the cellular metabolism [13, 48, 14, 30]. This work addressed the inte-

gration of another layer of control which comes from enzymatic regulation. In

fact, it has been shown that this kind of regulation precedes transcriptional

regulation in situations where an immediate response is required [37].

Accounting for enzymatic regulation in large-scale kinetic reconstructions

of metabolism yields more accurate descriptions of metabolic networks by

expressing interactions that would otherwise be unforeseen. Moreover, it

can reveal new sets of targets for strain optimization in biotechnological

applications.

The computational cost of performing simulations with kinetic models of

increasingly larger sizes may become a bottleneck in this kind of approaches.

Model reduction strategies will have an important role to solve this issue.

In previous work we suggested an approach for structural network reduction

prior to the kinetic inference process, in order to reduce the network size,

and consequently, the complexity of the generated models [32].

In this work we used a dynamic model of the central carbon metabolism

of E. coli as a case-study in order to validate our approach. In the future,

this will be applied to larger network sizes for which dynamic model re-

constructions are not available. However, the latest genome-scale metabolic

reconstructions [17] do not account for the enzymatic regulation interac-

tions. Therefore, it will be necessary to annotate these models with such

information, which can be obtained from databases such as EcoCyc [23] and

BRENDA [45], before generating the kinetic models.
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Chapter 6

Conclusions

The work developed during this thesis addressed the creation of a solid mod-

eling framework for metabolic networks that will facilitate the integration

with other kinds of networks, namely gene regulatory and signaling. The

bacterium Escherichia coli was used as our case-study as it is the most well

characterized model organism and an important microbe for biotechnological

production processes [4].

Ideally, one would immediately attempt to integrate the available gene

regulatory and metabolic reconstructions. However, there is no well-estab-

lished framework for this integration so far. Current integration approaches

are based on constraint-based methods which present several shortcomings

[2, 8]. Gene regulatory networks are usually modeled with boolean networks,

and the integration with constraint-based metabolic models involves trans-

lating these rules into constraints to be imposed in the solution space [5, 11].

However, such translation may not be trivial or intuitive.

A very thorough review on the modeling formalisms that have been used

in Systems Biology shows that Petri nets are a suitable candidate for the cre-

ation of a modeling framework that supports all kinds of biological networks.

It is a graphical and mathematically sound formalism, therefore simultane-

ously intuitive and highly expressive. The integration of gene regulatory and

metabolic networks can be attained by “gluing” together both networks with

activation and inhibition arcs, rather than adapting the regulatory rules to
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a reaction-based scheme.

There is a current separation of approaches in the modeling of metabolic

networks. On one hand, there are dynamic model reconstructions of central

pathways that include fully detailed and parameterized kinetic equations [1].

On the other hand, there are genome-scale models based on more abstract

representations that only account for stoichiometry and reversibility con-

straints [3]. We explored the gap between both formulations for the same

metabolic network, and concluded that it is possible to take advantage of

the availability of dynamic models, even if incomplete, to refine the solution

space of constraint-based models.

The modeling trade-off between size and detail is also present in gene

regulatory networks, where genome-scale models with abstract representation

(boolean) and small kinetic models coexist separately [7]. Therefore the

previous study may also be applied to this kind of networks, and consequently

to integrated regulatory and metabolic networks.

Given the limitations associated with the constraint-based modeling ap-

proach, different authors have proposed the automatic generation of kinetic

models based on stoichiometric reconstructions [12, 13, 6]. Considering that

stoichiometric models and dynamic models are essentially equivalent to dis-

crete and continuous Petri nets respectively, we implemented the kinetic

inference process within a Petri net framework as a transformation from dis-

crete to continuous Petri nets. The implementation of this procedure within

the same formalism provides an intuitive and straightforward approach.

One of the consequences of applying this procedure to genome-scale mod-

els is the complexity of the generated models which comprise hundreds or

even thousands of kinetic equations and parameters. The size of metabolic

networks is also well known to be problematic when performing metabolic

pathway analysis as the number of possible pathways suffers from combina-

torial explosion given a large number of reactions [10]. In order to reduce the

complexity of metabolic networks we implemented network transformation

methods within this framework that merge together biochemical reactions

by eliminating intermediate metabolites. These transformations can be ap-

plied prior to the kinetic inference process, hence reducing the complexity
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and number of parameters in the generated dynamic models.

The top-down construction of kinetic models based on the available ge-

nome-scale stoichiometric reconstructions is a promising approach for genome-

scale kinetic modeling. It allows for a straightforward incorporation of high-

throughput data from several omics, including proteomics, metabolomics and

fluxomics. However, the utilization of constraint-based models as a scaffold

for this process results in the generation of kinetic models that do not account

for enzymatic regulation. This kind of regulation is used by the metabolism

for self-control and acts on a faster time-scale when compared to transcrip-

tional regulation. We proposed the utilization of Extended Petri nets, that

include activation and inhibition arcs, as a suitable formalism to model this

kind of regulation, and as a better scaffold for the kinetic inference process.

Accounting for enzymatic regulation results in more realistic metabolic

models, and may reveal new manipulation targets for rational strain design.

Although there has been much focus in the integration of transcriptional

regulation into metabolic networks [2, 8, 11], it seemed more urgent to address

the integration of enzymatic regulation, has it is part of the metabolism

itself. Moreover, it has been shown that the control imposed by this kind

of regulation precedes transcriptional regulation in adaptive responses [9].

Nevertheless, the approach used to incorporate enzymatic regulation should

support the integration of transcriptional regulation with minor adaptation

efforts.

As more heterogeneous high-throughput data becomes available, the de-

mand for a whole-cell simulation framework increases. From a metabolic

engineering perspective, the integration of gene regulatory and metabolic

networks is an important step for the creation of better models for rational

strain design. Building genome-scale kinetic models presents several advan-

tages compared to the popular constraint-based approach, such as accounting

for enzymatic regulation and intracellular dynamics, and determining unique

steady-state phenotypes. It remains unclear how to integrate gene regulatory

networks with such models. One strong possibility is to similarly generate

kinetic regulatory models from their boolean representation, or alternatively,

to consider hybrid network representations that account for discrete and con-
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tinuous nodes. In either case, Petri nets (with all their extensions) present a

solid framework for such purpose.

The top-down and bottom-up approaches for building kinetic models may

converge by replacing the central pathways of the automatically generated

models with available dynamic reconstructions of these pathways. To cope

with the size and complexity of the generated models, network modularity

and hierarchy concepts will become even more important. The methods here

developed for lumping selected modules into macroscopic reactions can play

an important role, specially if one takes advantage of the well characterized

central pathways to create genome-scale models with a detailed core comple-

mented with lumped versions of secondary pathways.

Two aspects of our framework have not yet been explored in detail and

will require further emphasis in the future. The first concerns the selection of

the ideal set of intermediary nodes to be eliminated in the model reduction

methods. Considering that this step is performed prior to kinetic inference,

the criteria for selection should be based on topological properties. Further

studies could elucidate how the structural changes of the network reflect in

its dynamic properties. The second aspect involves the parameter estima-

tion after the kinetic inference process. The large number of parameters

in genome-scale kinetic reconstructions, and the genome-scale omics data

available mainly at steady-state, will require new methods for parameter es-

timation rather than the traditional time-course fitting. Working with sets

of parameter samples instead of unique values, and iteratively refining these

sets of samples, as in the ensemble modeling approach [14], may be a possible

direction to address this issue.
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