CONSTRUÇÃO METÁLICA E MISTA

Paulo J. S. Cruz
pcruz@civil.uminho.pt
Isabel Valente
isabelv@civil.uminho.pt
ISEE, Departamento de Engenharia Civil da Universidade do Minho

Neste artigo são apresentados alguns dos principais resultados dos trabalhos de investigação que, ao longo dos últimos anos, têm sido desenvolvidos na Universidade do Minho com vista ao estudo da aplicabilidade de betões leves em estruturas mistas de aço e betão. Essa investigação, com um carácter bastante aprofundado e um âmbito muito alargado compreende as seguintes fases: caracterização dos agregados leves, caracterização mecânica e de durabilidade de betões leves de várias resistências, caracterização da conexão aço-betão leve para diferentes tipologias de conexão sob carregamentos monotónicos e cíclicos, caracterização do comportamento de vigas mistas de aço e betão leve sob carregamentos monotónicos e cíclicos e caracterização do comportamento de vigas mistas de aço e betão leve sob carregamentos de longa duração.

Tendo por base toda a experiência acumulada nestes estudos, e que neste trabalho é descrita de uma forma sucinta, pode-se afirmar que, em termos estruturais, o betão leve é uma excelente alternativa a considerar na realização pontes e outras estruturas especiais.

1. INTRODUÇÃO

Ao longo da história, os betões leves têm desempenhado um papel relevante na construção de importantes estruturas. Os recentes desenvolvimentos tecnológicos permitiram tornar os betões leves em opções competitivas para a construção de estruturas de betão armado e estruturas mistas de aço e betão. O comportamento adequado dos betões leves e o desenvolvimento tecnológico associado à respectiva produção alargou a sua utilização a grandes edifícios e pontes, tirando partido de algumas vantagens em relação às estruturas com betões de massa volumica normal, [1], nomeadamente a redução de peso, a melhoria de algumas propriedades físicas e a maior durabilidade.

Uma das novas aplicações diz respeito à utilização de betões leves em estruturas mistas de aço e betão, que conduz a uma redução de peso da laje de betão e resulta também num aligeiramento da seção de aço. A realização de estruturas mistas de aço e betão leve implica o funcionamento conjunto destes dois materiais. A transmissão de forças de corte entre a laje de betão e o perfil metálico é garantida pela presença de conectores na sua interface. A tipologia dos conectores depende das características dos dois materiais e do tipo de ligação que se pretende realizar e o seu funcionamento também é condicionado pelas características do betão no qual ficam inseridos.

É, por isso, essencial avaliar o comportamento da conexão entre aço e betão leve e avaliar o comportamento de elementos mistos em que estes dois materiais são utilizados.

2. PRINCIPAIS CARACTERÍSTICAS DOS BETÕES LEVES

As propriedades dos agregados leves dependem sobretudo do material no seu estado natural e do processo de produção. Os agregados mais recomendados para um betão leve estrutural são a argila, o xisto e a ardósia expandidos. Outros agregados naturais também podem ser utilizados. Para obter resistências mais elevadas pode-se, ainda, adicionar agregados provenientes de cinzas vulcânicas, mas as densidades obtidas tendem a ser elevadas.
A principal influência das propriedades dos agregados leves nas do betão leve deve-se ao fato de estes corresponderem a mais de 50% do volume do betão leve. Poder ser apontadas a trabalhabilidade, resistência, módulo de elasticidade, densidade ou durabilidade, como algumas das principais propriedades que são influenciadas.

No betão endurecido, e ao nível micro estrutural, as diferenças entre o betão de agregados leves (BAL) e o betão de massa volumica normal (BDN) são na superfície de contacto pasta/agregados. No caso dos BAL, verificam-se tensões com carácter mais uniforme devido à semelhança entre a resistência e o módulo de elasticidade dos agregados leves e da pasta de cimento. Também a interface agregado pasta é de melhor qualidade, devido às características superficiais dos agregados, sua estrutura celular e respectivo teor de humidade. Nas zonas de interface não se produzem microfissuras.

A excelente ligação entre a partícula e a matriz do betão e a semelhança entre os módulos de elasticidade da pasta de cimento e dos agregados garantem o bom funcionamento da mistura. Como resultado, o BAL não sofre rotura ou separação por deslocamento relativo destes dois componentes. Essa rotura, dá-se antes com o colapso da estrutura formada pela argamassa e pelas partículas, em que a linha de fratura atravessa o agregado, ao contrário do que acontece para betões convencionais.

Uma vez que a resistência do agregado é relativamente baixa, verifica-se que a resistência da pasta de cimento é o seu efeito de arco sobre as partículas do agregado condicionam a resistência do betão leve.

Destem modo, vários autores estabeleceram que a resistência à compressão máxima que pode ser atingida por um betão leve [com adição de silice de fumo] é de cerca de 100 MPa. Em betões leves de elevada resistência, são utilizados agregados leves de maior resistência. A capacidade resistente e o módulo de elasticidade da argamassa e do agregado são por isso mais próximos, o que conduz a um material mais homogêneo e com melhor comportamento.

Resistência à compressão do betão leve quando submetido a carregamentos prolongados é cerca de 75 a 80% do betão normal, quando são utilizados agregados de baixa a média densidade e de 80 a 85%, com agregados de densidades altas, [2].

A resistência à tração de um betão é muito importante, tendo em conta a fendilhação. Segundo Zhang, [3], um BAL apresenta uma resistência à tração por compressão diametral um pouco inferior à que se verifica para betões BDN. De acordo com Lucio, [4], a relação entre a resistência à tração por flexão e a resistência à tração por compressão diametral varia entre 1.5 e 1.6.

De acordo com Weigler, [5], a resistência à compressão do BAL aumenta mais rapidamente do que a resistência à tração. Para betões com resistência à compressão superior a 20 MPa, a relação entre a resistência à tração e a resistência à compressão varia entre cerca de 5 e 15%. Smeeply, [6] verificou que o BAL com areia natural ou areia leve apresentam valores de resistência à tração próximos dos obtidos para BDN da mesma classe de resistência. De acordo com Lucio, [4], a resistência à tração por compressão diametral corresponde a cerca de 6-6.5% da resistência à compressão, medida em cilindros. No caso da resistência à tração por flexão, este valor é de 9.8 a 10.5%.

O módulo de elasticidade do BAL é função do módulo de elasticidade dos agregados que constituem o betão, da sua proporção na mistura e da ligação conseguida entre os agregados e a matriz de argamassa. O módulo de elasticidade dos agregados leves é mais baixo que o dos agregados normalmente utilizados no BDN. Devido à elevada percentagem de agregado leve presente na mistura, em volume, resulta que o BAL apresenta valores para este parâmetro inferiores aos obtidos para o BDN. Segundo Smeeply, [6], para betões leves de elevada resistência, entre 60 e 90 MPa, e relações A/C entre 0.32 e 0.43, o módulo de elasticidade é cerca de 20 a 30% inferior ao que se verifica num BDN. Uma redução na relação A/C não altera este parâmetro.

3. PROPRIEDADES DO BETÃO LEVE DE ELEVADA RESISTÊNCIA ESTUDADO

Esta fase do trabalho consistiu em produzir e determinar as características mecânicas de um betão leve de elevada resistência (BLER). O método de Faury foi utilizado na determinação da sua composição e as quantidades de água e superplastificante utilizados foram definidas em função de uma adequada trabalhabilidade do betão. Com o objectivo de produzir um betão leve da classe LC50/SS, procurou-se estudar uma composição que utilizasse os agregados de argila expandida disponíveis em Portugal. Os componentes utilizados nas misturas estudadas foram: agregado leve – argila expandida de tipo A/rita; areia natural com granulometria do 0 ao N4; cimento CEM I S2.5 R; água e superplastificante. A medida do Slump Test correspondeu sempre a valores de aproximadamente 20 cm. A composição escolhida é apresentada na Tabela 1.

<table>
<thead>
<tr>
<th>Tabela 1: Composição da mistura de BLER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cimento</td>
</tr>
<tr>
<td>Agregado leve – argila expandida (AL)</td>
</tr>
<tr>
<td>Areia natural</td>
</tr>
<tr>
<td>Relação A/C</td>
</tr>
<tr>
<td>Superplastificante</td>
</tr>
</tbody>
</table>

Para a composição escolhida, procurou-se avaliar a evolução da resistência à compressão e do módulo de elasticidade. Mediu-se, ainda, a massa volumica em várias amostras, que correspondeu sensivelmente a 1850 kg/m³. A avaliação da resistência à compressão foi realizada em cilindros.

Como se pode observar na Figura 1, este betão atingiu aos 3 dias uma resistência relativamente elevada, de 48.4 MPa. Desta idade até aos 28 dias, o aumento de resistência foi moderado, atingindo o valor de 54.3 MPa. A elevada resistência inicial do BLER, é justificada pela utilização do cimento tipo CEM I S2.5 R e a reduzida evolução da resistência ao longo do tempo é uma característica destes betões.

A evolução do módulo de elasticidade foi também medida para as mesmas idades, tal como se
apresenta na Tabela 2. A avaliação realizada confirma a tendência observada em outros trabalhos de investigação, onde os valores deste parâmetro são mais reduzidos, quando comparados com os mesmos valores para um betão de densidade normal (BDN). De acordo com a EN 1992-1-1 [8], a estimativa do módulo de elasticidade de um betão leve pode ser realizada afectando o valor do módulo de elasticidade de um BDN da mesma classe de resistência com um factor igual [pr/2200], o que corresponde, neste caso, a uma redução de 29.3% do valor do módulo de elasticidade quando o BDN é substituído pelo BLER.

4. SISTEMAS DE CONEXÃO ENTRE AÇO E BETÃO LEVE

Neste trabalho experimental, seguiram-se as disposições definidas no EN 1994-1-1 [9], para ensaios de conexão. Realizaram-se ensaios com conectores de tipo perno com diâmetros de 19, 22 e 25 mm, conectores de tipo Perforbond e conectores de tipo T obtidos a partir de perfis laminados do tipo IPE200 (Figura 2). Todos os conectores foram soldados ao perfil metálico na sua direcção longitudinal e ficaram inseridos na loja de betão após a betonagem.

Com estes ensaios, é possível caracterizar os diferentes tipos de conexão e avaliar a respectiva capacidade de carga e ductilidade. Para aplicar a carga vertical já referida, foi utilizada um sistema óleo-hidráulico ligado a um actuador com capacidade de carga máxima de 5000 kN. Numa primeira fase do ensaio foram realizados 25 ciclos de carga e descarga entre patamares de 5 e 40% do valor da carga de rotura esperada. De seguida, o ensaio passou a ser controlado pelo deslizamento relativo entre o perfil metálico e a loja de betão, até que a carga aplicada fosse inferior a 80% da carga máxima. O deslizamento relativo entre as lajes de betão e o perfil metálico foi medido em ambas as lajes, em intervalos de tempo regulares. O deslocamento lateral entre as lajes de betão também foi medido com a mesma periodicidade. A montagem do ensaio é ilustrada na Figura 3.

A capacidade de carga de conectores tipo perno, quando são utilizados betões de resistência normal, resulta de quatro parcelas: compressão do betão junto ao colar de soldadura na base do conector, corte e flexão do conector na zona inferior da haste, tracção na haste e fricção na interface da ligação. No caso de betão de elevada resistência, a parcela referente à força de tracção no conector tem um valor mais reduzido. A fixação proporcionada por este betão torna a deformação por flexão da haste mais reduzida. No caso dos dois betões leves, e uma vez que o comportamento da sua ligação com o aço é menos conhecido, torna-se necessária a realização de ensaios experimentais.

O comportamento deste tipo de ligação caracteriza-se por uma fase inicial mais rígida e de evolução linear, à qual se segue uma fase de plastificação, em que a carga aplicada é mais ou menos constante e a deformação aumenta progressivamente. No caso geral, a rotura da conexão de pernos com betões de resistência normal ocorre por corte do conector. Em algumas situações essa rotura pode também ocorrer por tracção, o que pode ser explicado pela elevada força de alavancas resultante do
movimento para o exterior, sofrendo pelas bases das lajes de betão durante o ensaio experimental. No caso presente, esse efeito foi reduzido, já que se colocaram barras metálicas de travamento na zona inferior dos provetes.

Nos ensaios realizados, a ruptura dos provetes resultou de corte nos conectores, com exceção de dois ensaios realizados com pernos de diâmetro igual a 25 mm. Nestes ensaios, o betão sofreu maiores danos, apresentando uma fendilhação generalizada e os conectores não sofreram ruptura. Dos vários ensaios realizados, verificou-se que a fendilhação das lajes de betão aumenta com o diâmetro dos conectores.

Tal como aconteceu para os conectores de tipo perno, também os conectores de tipo T sofreram uma rotura por corte. Estes conectores apresentaram elevada capacidade de carga, associada a grande capacidade de deformação. O conector de tipo T testado (meio IPE200) apresentou uma capacidade de carga mais elevada do que um perno com 25 mm de diâmetro (Figura 4). Em relação aos pernos, verificou-se que os conectores em T permitiram uma melhor distribuição de tensões na laje de betão, evitando o esmagamento do betão para cargas elevadas.

O conector de tipo Perfobond consiste numa chapa metálica, soldada à viga metálica, na qual são realizadas aberturas circulares. Durante a betonagem, esta chapa fica inserida na laje de betão e as aberturas são preenchidas com este material, formando cavilhas que resistem às forças de corte longitudinais que se mobilizam entre a laje de betão e a viga metálica e impedem a separação vertical entre as duas secções.

A rotura de um conector de tipo Perfobond é caracterizada pelo aparecimento e evolução de uma fendilha longitudinal principal alinhada com a posição do conector, que se desenvolve desde a base da laje até ao seu topo. A presença de armadura transversal proporciona um aumento da capacidade de carga da conexão e limita a abertura das fendas longitudinais. Na fase inicial do ensaio e até ser atingida a carga máxima de ensaio, o conector Perfobond apresenta um comportamento muito mais rígido do que os conectores de tipo perno e T. Após ser atingida a carga máxima, mantém-se uma elevada capacidade de carga, que decresce lentamente, atingindo-se uma muito elevada capacidade de deformação.
A capacidade de carga de um conector de tipo Perfibond resulta das seguintes parcelas, [10]: a resistência à tração na laje de betão, ao longo da superfície onde se forma a fenda longitudinal; a resistência à tração das armaduras transversais; a resistência ao corte das cavilhas de betão confinado que atravessam as aberturas do conector, e a resistência à compressão do betão que está localizado na parte frontal do conector. Normalmente, o próprio conector apresenta uma elevada capacidade resistente, pelo que a sua rotação pelo corte não é usual, ao contrário do que acontece com os pernos. Desta forma, a rotação dá-se principalmente na laje de betão. Após a rotação das cavilhas de betão que atravessam as aberturas do conector, este ainda mantém uma considerável capacidade resistente que resulta de forças de fricção que se desenvolvem ao longo das superfícies das fendas, [11].

Na Figura 4 apresentam-se curvas de carga e deformação para cada um dos ensaios tipo realizados.

5. UTILIZAÇÃO DE BETÕES LEVES DE ELEVADO DESEMPENHO EM VIGAS MISTAS

As vigas mistas estudadas são constituídas por um perfil metálico laminado e uma laje de betão leve. A conexão foi realizada com conectores de tipo perno, de diâmetro igual a 13 mm, 50 mm de altura e espaçamento uniforme entre si. A distribuição escolhida para os elementos de conexão visou dimensionar as vigas para uma conexão total ou para uma conexão parcial.

Foram consideradas duas configurações para o carregamento destas vigas mistas. A primeira correspondeu a quatro cargas concentradas e igualmente espaçadas ao longo das vigas. Esta configuração aproxima-se de um carregamento uniformemente distribuído. A segunda correspondeu a duas cargas concentradas, aplicadas na proximidade do meio vão das vigas. O carregamento foi conseguido desmultiplicando em vários pontos a carga aplicada pelo actuador, tal como se apresenta na Figura 5. Na mesma figura apresenta-se o aspecto final da montagem experimental das vigas.

Para monitorizar o ensaio, foram colocados transdutores de deslocamento para medir a deformação vertical e, também, o deslizamento relativo entre a laje de betão leve e o perfil metálico. Em secções pré-definidas foram colocados, também, extensômetros elétricos. As vigas dimensionadas para uma conexão total sofreram rotação por flexão, com esmagamento do betão na zona superior da laje, em zonas próximas aos pontos de aplicação das cargas. A este esmagamento, associou-se a formação de uma fenda longitudinal localizada a meia altura da laje, que se desenvolveu em direcção ao meio vão da viga (Figura 6.a). No caso das vigas dimensionadas para uma conexão parcial, a rotação deu-se por corte na ligação entre a laje de betão e o perfil metálico. Deste modo, verificou-se um descolamento entre a laje e o perfil nas zonas de rotação dos conectores (Figura 6.b). A rotação dos conectores deu-se essencialmente...
de um dos lados da viga. Na fase final do carregamento, verificou-se uma rotura faseada de alguns conectores metálicos, verificando-se perdas de carga associadas a cada rotura.

Em duas das vigas testadas, observaram-se fendas de tracção na face inferior da viga, na proximidade das secções de rotura, apesar de a faixa de betão estar completamente comprimida na fase inicial do ensaio.

Essa fissurificação é distribuída, com espaçamento uniforme entre fendas. Verificou-se também a desilização horizontal na interface entre a faixa de betão e o perfil metálico (Figura 6.c).

De acordo com Oguchi [9], as vigas dimensionadas para uma conexão total enxofrem roturas por flexão, quer por esmagamento do betão comprimido, quer por extensão excessiva da secção de aço.

Estes limites são condicionados pelas características da secção transversal. A distribuição plástica de tensões na secção transversal pode ser admitida desde que este seja classificado na classe 1, de acordo com o estipulado em [9]. As vigas dimensionadas para uma conexão parcial sofrem roturas associadas à conexão entre aço e betão, resultando geralmente em valores inferiores do momento flector resistente.

Na Tabela 3 apresentam-se os valores experimentais obtidos para o momento flector máximo aplicado e a correspondente deformação vertical medida.

A Figura 7 apresenta os diagramas que relacionam o momento flector aplicado com a deformação vertical, ambos medidos no meio vão das vigas.

Todas as vigas apresentam um comportamento inicial aproximadamente elástico. Considerando esta primeira fase do comportamento das vigas, verifica-se que as vigas dimensionadas para uma conexão total (VM4 e VM7) apresentam uma rigidez maior do que as vigas dimensionadas para uma conexão parcial (VM6 e VM8). A fase de comportamento aproximadamente elástico que foi referida, deixa de se verificar quando o momento flector aplicado é superior a cerca de 0,45 M_{\text{máx}}. Antes da rotação, as vigas dimensionadas para uma conexão parcial apresentam sempre deformação vertical superior à que se verifica para as vigas com conexão total, tendo em consideração o mesmo nível de carregamento. Os valores de M_{\text{máx}} obtidos mostram que se verificou uma redistribuição de esforços entre os vários conectores dispostos ao longo das vigas. Todas as vigas sofreram roturas ducteis, uma vez que se desenvolveu elevada deformação sob cargas aplicadas de valor aproximadamente constante.

6. CONCLUSÕES

Em relação à caracterização mecânica de betões leves, verificou-se que a massa volumica, o módulo de elasticidade e a energia de fratura são
> Tabela 3: Momento fletor máximo e correspondente deformação vertical, medidos a meio vão.

<table>
<thead>
<tr>
<th>Retão</th>
<th>Viga</th>
<th>Tipo de conexão</th>
<th>Tipo de rotação</th>
<th>M_{max} (kNm)</th>
<th>ε_y (mm)</th>
<th>ε_v (mm)</th>
<th>$d_f(M_{max})$ (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL33</td>
<td>VM4</td>
<td>Total</td>
<td>Flexão</td>
<td>52.60</td>
<td>9.46</td>
<td>-3.12</td>
<td>161.5 a 170.1</td>
</tr>
<tr>
<td>BL34</td>
<td>VM6</td>
<td>Parcial</td>
<td>Corte na conexão</td>
<td>41.96</td>
<td>10.48</td>
<td>-1.94</td>
<td>146.5 a 154.3</td>
</tr>
<tr>
<td>BL38</td>
<td>VM7</td>
<td>Total</td>
<td>Flexão</td>
<td>50.10</td>
<td>15.64</td>
<td>-3.79</td>
<td>124.2 a 130.9</td>
</tr>
<tr>
<td>BL39</td>
<td>VM8</td>
<td>Parcial</td>
<td>Flexão e corte na conexão</td>
<td>44.51</td>
<td>*</td>
<td>-4.59</td>
<td>236.1 a 244.9</td>
</tr>
</tbody>
</table>

- * - decisão da norma internacional, mevo valor não fornecido
- ε_y - valor de deformação medida no eixo inferior da seção de biela quando $M=M_{max}$
- ε_v - valor de deformação medida na faja inferior da seção de apoio quando $M=M_{max}$

a) VM4 e VM6 [Carregamento 1]
b) VM7 e VM8 [Carregamento 2]

Figura 7: Momento fletor vs. deformação vertical, medidos a meio vão das vigas.

as propriedades que ficam sujeitas à maior alteração, apresentando valores inferiores aos que seriam de esperar para os BDN de igual resistência à compressão.

Os resultados obtidos nos vários ensaios de tipo Push-out realizados mostram que o BAL é adequado para utilização em estruturas mistas. De forma geral, os resultados mostram que há uma ligeira perda de capacidade de carga na conexão, quando comparados com resultados obtidos em ensaios realizados com os BDN, embora no caso dos BAL, o comportamento tenda a ser mais dúctil, já que se desenvolvem maiores deformações.

De acordo com os resultados obtidos nos ensaios em vigas mistas, verifica-se que o comportamento da laje de BAL inserida na viga mista, se aproxima do comportamento que seria de esperar para um BDN. O comportamento da conexão mostrou ser similar ao que anteriormente tinha sido observado durante a realização dos ensaios de tipo Push-out, já que as rotações na conexão ocorreram por corte junto à base dos conectores e não por esmagamento na laje de betão. Todas as vigas testadas apresentaram um comportamento muito dúctil.

REFERENCIAS