
Challenges on real-time monitoring of patients

through the Internet

Duarte Pereira and Adriano Moreira

Department of Information Systems

University of Minho

Campus de Azurém

4800-058 Guimarães, Portugal

adriano@dsi.uminho.pt

Ricardo Simões
Institute for Polymers and Composites

University of Minho, 4800-058 Guimaraes, Portugal

and

Polytechnic Institute of Cávado and Ave

Campus do IPCA, 4750-810 Barcelos, Portugal

rsimoes@ipca.pt; rsimoes@dep.uminho.pt

Abstract— Real-time remote monitoring of patients aims at

improving and facilitating the accessibility to data about the vital

signals of hospitalized patients, or patients that need to be closely

monitored while at their own homes, by medical care

professionals. By resorting to remote monitoring systems, the

need for clinical staff to physically move next to each patient to

supervise their clinical condition is reduced.

This paper focuses on the key issues and challenges faced in the

design and implementation of a distributed remote patient

monitoring system using the Internet as communication

platform, while describing some of the technologies that can be

employed for this purpose. To optimize the systems’ usability by

medical care professionals, intuitive interfaces were developed

using Web technologies, with an Internet browser as the only tool

required to access the system. The study demonstrated that data

updating based on database pooling system (periodic queries) is

not the optimal solution, as the resulting system is not scalable.

Also, monitoring several patients simultaneously (on the same

browser) requires considerable processing at the client machine,

particularly in the case of ECG signals.

Keywords: Real-time health monitoring; System architecture;

ECG signal.

I. INTRODUCTION

Recent advances in wireless networking technologies have
opened up new opportunities in a variety of applications
including healthcare systems [1]. Although continuous
monitoring systems are used in hospitals, these systems require
the sensors to be hardwired to nearby bedside monitors,
essentially confining the patient to his hospital bed. The advent
of wireless technologies like Wi-Fi and Bluetooth enabled
higher mobility of the patients by replacing the cable
connection between patient sensor and bedside equipment by a
wireless connection[1]. However, these systems are often
designed only for breaking the cord between the patient and the
monitor without supporting the transmission of data through a
network for many receivers or monitors [2].

Since its beginning, the World Wide Web has played an
important role in information sharing through the Internet [3].
In this context, our team initiated the development of a system
aiming to provide health professionals with enhanced
information on their patients’ vital signs, and increase the

mobility of the patients while being continuously monitored.
To this endeavor, the objective was to create a patient
monitoring system that would allow health professionals to
access patients information without the need to move next to
the patients, and without requiring the use of specific
applications or proprietary terminals, but instead allowing the
use of a simple Web browser on a desktop computer or mobile
device.

However, monitoring biomedical signals through the
Internet, using wireless networks, sets new requirements and
raises a number of challenges still difficult to overcome. This
paper describes some of these challenges that were identified
through the implementation of a noncritical patient monitoring
system using Web technologies.

II. PATIENT MONITORING SYSTEM

In the past, other researchers developed similar systems to
that being developed by our team, where the visualization of
vital signs is done using a Web browser [3-8], and where the
main advantage of these systems is the remote access to data.

The web based Intelligent Online Monitoring System for
Intensive Care Units (IMI) [3] is a system that collects ECG
data. This is based on a client/server architecture and uses Java
Applets to represent the ECG data in a Web browser.

Another system [4] that only analyzes data from ECG was
developed with the goal of collecting data remotely from
patients at home using the Internet. Through a Web browser,
the ECG values of each patient can be monitored in real time.

Lee [5] also describes a system that consists on remote
monitoring of patients, in real time, using Web browsers for
monitoring the collected data.

The system we developed includes the acquisition of
patients’ vital signs through wireless sensors, including heart
rate (HR), blood pressure (BP), pulse, temperature and
electrocardiogram (ECG), all of which were completely
developed by our team [9-11]. The system also includes data
storage, remote data access, and data visualization. The
developed sensors are equipped with a ZigBee network
interface that sends the collected data to a central server
through a wireless network created for that specific purpose.

164 | CISTI 2010

The central server contains applications that allow data to be
received, stored (in a database) and made available for
visualization The stored data is made available to health
professionals by web applications that can be accessed using a
web browser running on a PC or PDA, both through the
hospital network (WiFi or Ethernet) or from the Internet. The
server can also receive data from the Internet when data
acquisition takes place outside the hospital environment, as in
the case of patients monitored at home.

The monitoring system includes the generation of alarms,
both audible and on-screen, and also the display of historical
data for the indicators of each patient.

III. DEVELOPED SYSTEM

The system being developed by our team includes: A) the
design and implementation of a set of wireless sensors that
measure the vital signs and send the corresponding data over a
wireless (ZigBee) network to a gateway; B) the integration of
data originated from multiple sensor networks into a central
repository; C) the remote visualization of the vital signs of one
or more patients; D) the management of the complete system,
including users’ management, remote configuration of the
sensors, and management of the patients information. The
overall architecture of the system is illustrated in Figure 1.

Figure 1: System Architecture

This paper only addresses parts B and C of the global
system: data integration and data visualization (several aspects
of part A are described in [9-11]). Parts B and C consist mainly
of three services: 1) a Data Collection Application (DCA)
responsible for continuously receiving data from the network
of sensors, either from the local network or from the Internet,
and store it in a database, 2) a Web Application Server
responsible for providing an interface that allows users to
interact with the system, including visualizing the monitored
vital signs, and 3) a database (DB) where all the data is stored
(such as information on patients, sensors, users, alerts and
sensor data).

The DCA is a server application and was developed to meet
the demands of the sensor networks. A gateway, in each sensor
network, collects data frames from the sensors and transmits
them to the DCA, over the local network or Internet, using the
HTTP protocol. During the design phase, several options have
been considered for the communications protocol between the
several components of the system. Among them, UDP and

HTTP have been considered since some parts of the system
were to be connected through the public Internet. The final
choice was the HTTP protocol since it is the one that presents
the lowest probability of being blocked by proxies, or firewalls.
.The DCA has been implemented using Java and uses Java
Servlet technology to respond to requests from the gateways.
To support its implementation, an Apache Tomcat Web server
was used mostly because it is known for being fast, stable and
designed for multi-tasking, being able to serve multiple
simultaneous requests [6], being free and supporting Java
Servlets and Java Server Pages [12].

The Web Application Server supports three functionalities:
the User Interface, Monitoring and remote Data Access. The
User Interface is a Web application that allows users to manage
the system. This provides features such as authentication,
management of patients, sensors and users, setting up alerts,
association of sensors to patients, and monitoring of indicators
for each patient, all through a Web interface. The Monitoring
functionality allows the user to graphically visualize each of
the patient signals. This functionality is embedded into the
above mentioned Web application, but due to its requirements
deserves special attention. This feature was developed in Java,
using Java Applet technology, due to the possibility of
incorporating existing Java APIs, such as graphical
components (e.g. JFrame, JPanel and JLabel). It can be
embedded in HTML pages, and is supported by any web
browser [13]. Figure 2 illustrates the interface where the user
performs patient monitoring. In this scenario, six patients are
being monitored with sensors for ECG, temperature and HR.

Figure 2: Monitoring System Interface (Portuguese version)

For each patient, the corresponding data is rendered by an
embedded Java Applet, which constantly receives data from
the central application server.

The database stores all the important information for the
operation of the system, including patient information (such as
name, birth date, room number, bed number, and any
diagnostic information), sensors, and measurements (for each
sensor type). It uses MySQL as Database Management System
(DBMS) [14], for being multi-user, multi-task and robust, and
featuring speed, strength and flexibility to store large amounts
of data, such as that produced by ECG sensors [6].

While implementing the system, several challenges and
problems were identified for which it was necessary to find the
appropriate solutions.

CISTI 2010 | 165

One of the first challenges resulted from the large amount
of data produced by each sensor network, and the respective
storage of that data in the database in a small amount of time,
particularly in the case of the ECG data. The pace at which
data is transmitted by each sensor to the DCA server is
presented in Table I.

TABLE I. SENSOR DATA RATE

Sensor Data Rate

ECG 250 milliseconds (50 samples)

Oximetry 500 milliseconds

Heart Rate 500 milliseconds

Blood Pressure 10 milliseconds

Temperature 10 milliseconds

Battery charge for each sensor 60 seconds

Although the transmission of the data over the local area
(Ethernet) does not raise significant issues, its reception and
storing by the DCA is a demanding task. To overcome this
challenge, the DCA server resorts to an input queue (a FIFO -
First In First Out) to isolate the processes of reception and
storing. The reception is supported by a servlet running on
Apache Tomcat, and accepts HTTP POST request. When the
DCA receives a request from one gateway, it validates the
variables that comprise the message sent by the sensor network
and store them in the input queue. At the same time, a running
thread picks up messages from the queue and stores them in the
database, as illustrated in Figure 3. This allows the DCA to be
constantly receiving data frames from the sensor networks,
regardless of whether or not they entered the database.

Figure 3: Data Flow of Data Collection Application

Testing the DCA with a large number of simultaneous
sensors revealed that the amount of time spent to store the
received data into the database was too high. A MySQL DBMS
was being used, and the response time was exceeding what was
expected given this product specs. Therefore, tests were carried
out to determine the maximum number of insertions per unit
time, in order to identify the bottleneck. These testes consisted
in measuring the time required to insert data into the DB, and
are shown in Table II. As shown, for all the three tests, more
than one second was being spent for 50 insertions in the
database. In conducting 500 insertions, the time spent was
approximately ten times larger than before. With these results,
it became obvious that storage of the sensors’ measurements
was not feasible using the current solution. For example, if one

takes into account the pace of ECG, HR, and Oximetry sensors,
presented in Table I, eight DB inserts are required per second
for each patient (four insertions for ECG, two for HR and two
for Oximetry). In a scenario of ten patients being monitored,
that would result in 80 insertions per second, and this only for
the three sensors mentioned above. The database would not be
able to respond adequately under this scenario, since at this
stage the maximum capability was 40 insertions per second.

TABLE II. DATABASE INSERTION TIME – BEFORE CONFIGURATION

50 insertions in Database 500 insertions in Database

Test Time (milliseconds) Test Time (milliseconds)

1 Total 1219 1 Total 12204

2 Total 1172 2 Total 11828

3 Total 1203 3 Total 11671

The cause for this slow performance was found to be the
logging defaults of MySQL which records every transaction in
the log file and saves them to disk immediately. To solve this
problem, the option "innodb_flush_log_at_trx_commit" was
changed to the value of 2. This way, the record in the log
records every transaction, but the log is only flushed to disk
approximately once per second [15]. With this change, the
process of integration become much faster, and the results after
these changes are shown in Table III.

TABLE III. DATABASE INSERTION TIME – AFTER CONFIGURATION

50 insertions in Database 500 insertions in Database

Test Time (milliseconds) Test Time (milliseconds)

1 Total 16 1 Total 125

2 Total 31 2 Total 141

3 Total 31 3 Total 125

As can be seen by comparing the tests carried out before
and after modifying the MySQL configuration, the system
performance suffered a significant improvement, making it
possible to carry about four thousand insertions per second.

Another challenge arose in the communication between the
Applet and the Web server, which is supported by the HTTP
protocol. The HTTP paradigm is based on the request/response,
where the client makes a request and the server, in turn, returns
the data to the client and terminates the communication. In this
implementation, it was intended that when an applet was
initiated, it ordered a monitoring request to the server that, in
turn, consulted the DB regularly. When there were new values,
they would be sent to the Java Applet through the open
communication channel, as shown in Figure 4. This intention
has proved difficult with the HTTP protocol, since the
communication is closed once the server finishes its answer,
and what was intended was for the channel to remain open so
the server would be able to send multiple responses to the same
application (periodic updates of the indicators). In order to
solve this problem, while the applet is running, it receives a

166 | CISTI 2010

response composed of various parts, using the delimiter
character, '\n'. In that way, each delimiter character lets the
applet know that the first part is completed, but the server
continues to answer because the link has not been terminated.
Thus, it is possible for the server to send values to the applet
whenever there are updates to the database. This method
proved effective in tests and, as such, was the solution selected
and implemented.

Figure 4: Web Communication between the Applet and
Web server

The visualization feature was, undoubtedly, the most
complex part of the system. In particular, rendering the ECG
waveform accordingly to the medical professionals’
requirements showed to be more difficult that was initially
expected, which triggered the design of a specific architecture
for the applet, as illustrated in Figure 5.

Figure 5: Applet Architecture – Monitoring

The Applet is implemented by the DataView class. When
initiated, it creates a HTTP connection with the server and
waits for data to arrive. Whenever new data is received, the
corresponding values are stored on a list (Array), where each
position corresponds to a data type. Concurrently, a thread
reads these values (pulse, temperature, BP, HR signals, and the
battery level of the sensors) from the array, every 500
milliseconds, and updates the display. For the ECG, the data
received from the server is stored in a list (Queue) where each
position contains a sample of the ECG time series. Also
concurrently, a second thread removes the samples from the
queue at a rate of 25 samples every 250 milliseconds and draws
the waveform on the screen. The removal of the samples
creates room for the new samples arriving from the server.

The most significant challenge was the graphical
representation of the ECG in real time. This was because the
data are received through the network, and it is necessary to
deal with its latency and also with the processing power of the
computer where the Applet is running. This underscores the

fact that the representation of the ECG signal has strict
specifications that are important for its proper implementation.
First, it is necessary that the graph represents 2.5 seconds of the
ECG signal on a 2.4 millivolts vertical scale. It is also
necessary to represent a range that includes two different
measurements, as illustrated in Figure 6: 1) small squares that
represent 0.1mV/0.04s and 2) large squares (corresponding to
small 5x5 squares) that represent 0.5mV/0.2s [16]. Finally, the
visual representation must have a refresh rate that emulates the
notion of a continuously drawn graphic and a separate line
behaviour, that is, when the line reaches the rightmost limit of
the graph (the time axis maximum of 2.5 seconds) the
representation must return to the beginning of the graph (at 0
seconds), continuously erasing the previously drawn line only
as the new one is drawn.

Figure 6: ECG Scale

In order to address the different requirements of ECG
representation, we decided first to use free libraries, such as
JFreeChart. This is characterized by being 100% free,
developed in Java and designed to facilitate the development,
containing an extensive list of features [17]. This type of
solution was very complex due to the very specific
requirements of the ECG chart. This led us to consider that a
novel implementation supported by basic drawing would be
more feasible. As such, we selected the Graphics2D class in
Java API. This class allows the creation of images through the
drawing of basic shapes, such as lines, polygons and circles,
and its placement on graphical objects, such as the Panel or
JPanel. For each monitored patient, an individual ECG is
represented with all features described above. This, in a setting
of six concurrent patients (the limit set at the beginning of the
project), represents high processing requirements on the
client’s side. However, successful tests were conducted with
the final developed solution.

IV. DISCUSSION AND CONCLUSION

During the system’s development, many difficulties were
encountered and had to be successfully overcome in order to
fulfill the initial objectives.

One of the first challenges was to ensure that the server was
constantly receiving values from the sensor network. This was
achieved using the implementation of an application level
protocol based on the HTTP protocol for data communication
and the implementation of a Java Servlet on the server side.

The choice of DBMS was also an important point, as a fast
and reliable system was needed, particularly for the demanding
case of the ECG. MySQL met these requirements with the
advantage of being a free solution. However, specific
configuration of this DBMS was required.

CISTI 2010 | 167

The Web server used was Apache Tomcat since it supports
all the requirements of the project, namely through
technologies such as Java Servlet and Java Server Pages. The
ECG graphical representation was also a considerable
challenge due to the specifications of the representation of the
ECG signal. The solution was to the use the Graphics2D class,
from Java API, and to implement this representation at the
expense of very simple geometric shapes (lines and rectangles).

Another major obstacle was the communication between
the applet and the server, because, as stated above, the applet
runs on the client and needs to communicate remotely with the
server. What was intended was for the applet to make the
request for communication to the server, and the server, in turn,
sending data to the Applet whenever new data becomes
available, through the already open channel of communication.
However, this approach became complex when based on the
HTTP protocol, since HTTP closes the communication at the
end of the response and it was necessary for several responses
to be sent to each request. By designing a communication
protocol at the application level, where each HTTP response is
used to carry asynchronous chunks of data, this problem was
solved. The implemented solutions enabled the materialization
of the main objective of developing a remote monitoring
system. This required the synergic use of Java Servlet
technologies, Java Applet, Java Server Pages, MySQL and
Apache Tomcat. However, tests have shown that a complex
visualization as ECG in real time using a database pooling
system (periodic searches) is not the optimal solution. The
database requirement was proved to be quite high, since a large
number of queries and insertions are made to the database in a
fairly short time. It was also concluded that using a Web
browser for a complex visualization, such as an ECG signal in
real time, might not be the best solution due to the demanding
processing requirement on the client machine. This becomes
particularly critical with the increase in the number of
simultaneously monitored patients. As the number of patients
increases, the line representation of the ECG can become
slower along time, creating problems with the interpretation of
the signal. All these identified features led to the conclusion
that the initial system architecture presented is not scalable.
Thus, future work should include the analysis of alternative
implementations that will scale with the increase in the number
of monitored patients.

In the future, we intend to implement other methods that
may prove more efficient that the developed solution. One
method is to use publish/subscribe technology for data
communication. That will prevent the server from periodically
checking the database for new values. With this solution,
whenever a new value is available, it would be published on
the network. In turn, customers would subscribe values they
would like to receive. This solution will improve the
processing demand (no need for periodic searches to the DB),
but it is not known if it will meet response time demands (on
the case of the ECG, the value must not take more than 250ms
to arrive to the client).

Another future goal is implementing fault tolerance
mechanisms on the database, because it is important to ensure
that it always remains available to receive data from the sensor
network and respond to requests from Web applications. Since

the database is a critical component of the system, it is vital to
create redundancy. Security is another issue to consider in the
future, as the system is sending clinical information through the
Internet.

ACKNOWLEDGMENT

Casa de Saúde de Guimarães, through Project MOHLL –
Mobile Health Living Lab, under a cooperative development
protocol with the University of Minho.

Fundação para a Ciência e a Tecnologia, Lisbon, through
the 3° Quadro Comunitário de Apoio, and the POCTI and
FEDER programmes.

REFERENCES

[1] A. Hande, T. Polk, W. Walker, and D. Bhatia, “Self-Powered Wireless
Sensor Networks for Remote Patient Monitoring in Hospitals”, Sensors,
vol 6(9), 2006, pp. 1102-1117.

[2] V. Shnayder, B. Chen, K. Lorincz, T. R. F. Fulford-Jones, and M.
Welsh. Sensor networks for medical care. Harvard University Technical
Report TR-08-05, April 2005.

[3] K. Wang, I. Kohane, K. L. Bradshaw, and J. Fackler, “A real time
patient monitoring system on the World Wide Web”, Proc. AMIA
Annual Fall Symp. 1996, pp. 729–732.

[4] F. Magrabi, N. H. Lovell, and B. G. Celler, “Web based longitudinal
ECG monitoring”, Proceedings of the 20th Annual International
Conference of the IEEE, Hong Kong, 1998, pp. 1155-1158.

[5] H. S. Lee, S. H. Park, and E. J. Woo, “Remote patient monitoring
service through World Wide Web”, Proceedings of the 19th Annual
International Conference of the IEEE, Chicago, IL , USA, 1997, pp.
928-931.

[6] M. A. Paracha, S. N. Mohammad, P. W. Macfarlane, and J. M. Jenkins,
“Implementation of web database for ECG”. Computers in Cardiology,
vol 30, 2003, pp. 271-274.

[7] P. J. C. Pizarro, C. Lopes, R. Moraes, and J. L. B. Marques,
“Monitoramento remoto de sinais bioelétricos”, Anais II Congresso
Latinoamericano de Engenharia Biomédica, 2001

[8] I. Feghali, R. V. Andreão, M. V. Segatto, “Abordagem na Web para o
Telemonitoramento do electrocardiograma de Pacientes Domesticos”,
Anais do VI Workshop de Informática Médica, 2006.

[9] H. Fernandez-Lopez, P. Macedo, J.A. Afonso, J. A. Correia, R. Simoes,
“Extended health visibility in the hospital environment”, Biodevices
2009 – Second International Conference on Biomedical Electronics and
Devices, Porto, Portugal, 2009.

[10] H. Fernandez-Lopez, P. Macedo, J. A. Afonso, J. H. Correia, R. Simões,
“Performance analysis of a ZigBee based medical sensor network”,
Pervasive Healthcare – 3rd International Conference on Pervasive
Computing Technologies for Healthcare, London, UK, 2009.

[11] H. Fernandez-Lopez, P. Macedo, J.A. Afonso, J. H. Correia, R. Simões,
“Evaluation of the Impact of the Topology and Hidden Nodes in the
Performance of a ZigBee Network”, Proc. 1st Intern. Conf. on Sensor
Systems and Software (S-Cube 2009), Pisa, Italy, 2009, pp. 256–271

[12] T. A. S. Foundation (1999). Apache Tomcat, Retrieved Mar. 6, 2009,
from http://tomcat.apache.org/

[13] Sun Microsystems (1994). Applets, Retrieved Mar. 11, 2009, from
http://java.sun.com/applets/

[14] Oracle Corporation (1995b). MySQL: The world's most popular open
source database, Retrieved Jan. 10, 2009, from http://www.mysql.com/

[15] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, et
al, “Hypertext Transfer Protocol-HTTP/1.1”, Network Working Group,
1999.

[16] M. A. B. Goncalves, Nocoes Basicas de Eletrocardiograma e Arritmias.
Senac, São Paulo, 1995.

[17] O. R. Limited (2005). JFreeChart Retrieved Apr. 16, 2009, from
http://www.jfree.org/jfreechart/

168 | CISTI 2010

