
Abstract 

Masonry is a composite material that can be defined as a material incorporating a 
visible internal structure and having a low strength in tension. The latter 
characteristic has shaped most civil engineering structures up to the advent of 
reinforced concrete and iron/steel. The paper will detail two separate modelling 
issues: micro-modelling and homogenisation techniques, which represent both a 
popular and active field on masonry research; the engineering use of sophisticated 
numerical modelling, using one emblematic case study on a heritage structure, 
which poses significant challenges for practitioners.  

Keywords: masonry, non-linear analysis, micro-modelling, homogenization, 
engineering applications. 

1  Introduction 

Masonry is a building material that has been used for more than ten thousand years. 
In many countries, masonry structures still amount to 30 to 50% of the new housing 
developments. Also, most structures built before the 19th century and still surviving 
are built with masonry. Research in the field is essential to understand masonry 
behaviour, to develop new products, to define reliable approaches to assess the 
safety level and to design potential retrofitting measures. To achieve these purposes, 
researchers have been trying to convert the highly indeterminate and non-linear 
behaviour of masonry buildings into something that can be understood with an 
acceptable degree of mathematical certainty. The fulfilment of this objective is 
complex and burdensome, demanding a considerable effort centred on integrated 
research programs, able to combine experimental research with the development of 
consistent constitutive models. 

Masonry is usually described as a composite material formed by units and joint, 
with or without mortar, and different bond arrangements. It is certain that the 
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problems associated with modelling ancient and modern masonry structures are very 
different. Physical evidence shows us that ancient masonry is a very complex 
material with three-dimensional internal arrangement, usually unreinforced, but 
which can include some form of traditional reinforcement, whereas modern masonry 
is made usually with a regular arrangement of masonry units, with or without steel 
reinforcement, see Figure 1. 

   
Figure 1: Examples of different masonry types (from left to right): timber braced 

“Pombalino” system emerging after the 1755 earthquake in Lisbon; irregular stone 
wall with a complex transverse cross section (18th century, Northern Portugal); 

typical European unreinforced masonry used in areas of low seismicity 
using thick blocks to comply with thermal and sound regulations. 

The relevance of the internal structure of masonry in the structural response has 
been demonstrated. Figure 2 shows results in dry stone shear joints by Lourenço and 
Ramos [1], made with the same stone but with different surfaces treatments. The 
results indicate that, even for the same material, the friction and dilatancy angles are 
very dependent on the roughness of the joint. In particular, a smooth (polished) 
surface exhibits very low friction, compared with a sawn surface and a rough 
(artificially induced by a spike) surface. Smooth and sawn surfaces exhibit almost 
zero dilatancy, whereas a rough surface exhibits a negative non-negligible dilatancy 
angle. Similarly, Figure 3 shows results in masonry stone walls with the same 
geometry, subjected to combined vertical and cyclic horizontal in-plane loading, see 
Vasconcelos and Lourenço [2]. Three types of walls are considered, namely dry 
stone (without mortar), and coursed and rubble stone masonry with the same mortar. 
The results indicate that, despite the fact that the geometry is the same for all walls, 
different failure modes, ultimate lateral strength and hysteretic behaviour is found 
for the walls. 

The fact that masonry has so much variability in materials and technology makes 
the computational modelling of masonry structures complex. This paper addresses, 
first, two possibilities to incorporate the internal structure of masonry in the 
constitutive model, be it by explicitly considering it or by the mathematical process 
of homogenization. Secondly, an emblematic case study of using advanced 
computations for engineering applications is presented. 



(a)                                                              (b) 

                           (c)                                                                   (d) 
Figure 2: Behaviour of dry stone masonry joints under shear: (a) test set-up; 

(b) typical shear response in terms of horizontal force vs. displacement; (c) Coulomb 
envelop for (P)olished, (S)awn and (R)ough stone surfaces; (d) negative dilatancy 

(horizontal vs. vertical displacement) for rough stone surfaces. 

2  Modelling Approaches 

In general, the approach towards the numerical representation of masonry can focus 
on the micro-modelling of the individual components, viz. unit (brick, block, etc.) 
and mortar, or the macro-modelling of masonry as a composite, Rots [3]. Depending 
on the level of accuracy and the simplicity desired, it is possible to use the following 
modelling strategies, see Figure 4: (a) Detailed micro-modelling, in which units and 
mortar in the joints are represented by continuum elements whereas the unit-mortar 
interface is represented by discontinuous elements; (b) Simplified micro-modelling, 
in which expanded units are represented by continuum elements whereas the 
behaviour of the mortar joints and unit-mortar interface is lumped in discontinuous 
elements; (c) Macro-modelling, in which units, mortar and unit-mortar interface are 
smeared out in a homogeneous continuum.  
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(a) 

    
(b) 

Figure 3: Experimental results on stone masonry shear walls: (a) failure 
mechanisms; (b) force-displacements diagrams. Note that the 

vertical load is not the same for all walls. 
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                (a)                                             (b)                                              (c) 
Figure 4: Modelling strategies for masonry structures: (a) detailed micro-modelling; 

(b) simplified micro-modelling; (c) macro-modelling. 

In the first approach, Young's modulus, Poisson's ratio and, optionally, inelastic 
properties of both unit and mortar are taken into account. The interface represents a 
potential crack/slip plane with initial dummy stiffness to avoid interpenetration of 
the continuum. This enables the combined action of unit, mortar and interface to be 
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studied under a magnifying glass. In the second approach, each joint, consisting of 
mortar and the two unit-mortar interfaces, is lumped into an average interface while 
the units are expanded in order to keep the geometry unchanged. Masonry is thus 
considered as a set of blocks bonded by potential fracture/slip lines at the joints. 
Some accuracy is lost since Poisson's effect of the mortar is not included. The third 
approach does not make a distinction between individual units and joints but treats 
masonry as a homogeneous anisotropic continuum. Much effort is made today in the 
link between the micro- and macro-modelling approaches using homogenization 
techniques. One modelling strategy cannot be preferred over the other because 
different application fields exist for micro- and macro-models. Micro-modelling 
studies are necessary to give a better understanding about the local behaviour of 
masonry structures. Macro-modelling and homogenization studies are more 
adequate for engineering applications. 

3  Modelling the Internal Structure 

3.1 Micro-modelling 

Different approaches are possible to represent heterogeneous media, namely, the 
discrete element method (DEM), the discontinuous finite element method (FEM) 
and limit analysis (LAn). 

The typical characteristics of discrete element methods are: (a) the consideration 
of rigid or deformable blocks (in combination with FEM); (b) connection between 
vertices and sides / faces; (c) interpenetration is usually possible; (d) integration of 
the equations of motion for the blocks (explicit solution) using the real damping 
coefficient (dynamic solution) or artificially large (static solution). The main 
advantages are an adequate formulation for large displacements, including contact 
update, and an independent mesh for each block, in case of deformable blocks. The 
main disadvantages are the need of a large number of contact points required for 
accurate representation of interface stresses and a rather time consuming analysis, 
especially for 3D problems. Masonry applications can be found in Lemos [4]. 

The finite element method remains the most used tool for numerical analysis in 
solid mechanics and an extension from standard continuum finite elements to 
represent discrete joints was developed in the early days of non-linear mechanics. 
Interface elements were initially employed in concrete and rock mechanics, being 
used since then in a great variety of structural problems. A complete micro-model 
must include all the failure mechanisms of masonry, namely, cracking of joints, 
sliding over one head or bed joint, cracking of the units and crushing of masonry, as 
done in Lourenço and Rots [5] for monotonic loading and Oliveira and Lourenço [6] 
for cyclic loading. 

Computational limit analysis received far less attention from the technical and 
scientific community for blocky structures. Still, limit analysis has the advantage of 
being a simple tool, while having the disadvantages that only collapse load and 
collapse mechanism can be obtained and loading history can hardly be included. A 
limit analysis constitutive model for masonry that incorporates non-associated flow 



at the joints, tensile, shear and compressive failure and a novel formulation for 
torsion is given in Orduña and Lourenço [7,8]. 

 Here, as an example of the possibilities that can be achieved with micro-
modeling, a powerful interface model is detailed and applied to illustrative 
examples. 

3.1.1  Implementation of a cyclic interface model 

A relation between generalized stress and strain vectors is usually expressed as 

= D   (1) 

where D represents the stiffness matrix. For zero-thickness line interface elements, 
the constitutive relation defined by Equation (1) expresses a direct relation between 
the traction vector and the relative displacement vector along the interface, which 
reads 

σ
=

τ
    and   n

t

u
u

Δ=
Δ

(2) 

A constitutive interface model can be defined by a convex composite yield criterion, 
see Figure 5, composed by three individual yield functions, usually with softening 
included for all modes so that experimental observations can be replicated, reading 

 Tensile criterion: ( ) ( )κσσκ tttt ,f −=
 Shear criterion: ( ) ( )κσφστκ ssss tan,f −+=  (3) 

 Compressive criterion: ( ) ( ) ( )κσκ cc
T

cc ,f −= P 2
1

Here, φ represents the friction angle and P is a projection diagonal matrix, based 
on material parameters. σ t , σ s  and σ c  are the isotropic effective stresses of each 
of the adopted yield functions, ruled by the scalar internal variables κ t , κ s  and κ c . 

Figure 5: Multisurface interface constitutive model. 
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In order to include unloading/reloading behaviour in an accurate manner, an 
extension of the plasticity theory is addressed in Oliveira and Lourenço [6]. Two 
new auxiliary yield surfaces (termed unloading surfaces) similar to the monotonic 
ones were introduced in the monotonic model, so that unloading to tension and to 
compression could be modelled. Each unloading surface moves inside the 
admissible stress space towards the similar monotonic yield surface. In a given 
unloading process, when the stress point reaches the monotonic yield surface, the 
surface used for unloading becomes inactive and the loading process becomes 
controlled by the monotonic yield surface. Similarly, if a stress reversal occurs 
during an unloading process, a new unloading surface is started, subsequently 
deactivated when it reaches the monotonic envelope or when a new stress reversal 
occurs. The proposed model comprises six possibilities for unloading/reloading 
movements.  

Unloading/reloading to tension can be started from any allowable stress point, 
except from points on the monotonic tensile surface, see Figure 6a, ruled according 
to the yield function 

(1)( ) ( )UU UU i , tt tt , ,f = −σ γκ κ  (4) 

where αααα is the back-stress vector, Ui, tσ  is the isotropic effective stress and Utκ   is 
the tensile unloading hardening parameter. The scalar γ provides the proportion of 
isotropic and kinematic hardening. The relative (or reduced) stress vector ξξξξ is given 
by 

= − (5) 

In the same way, unloading/reloading to compression can take place from any 
acceptable stress point, except from points on the monotonic compressive surface, 
see Figure 6b, being controlled by the following yield function 

( ) 1
2( , ) ( )U UUU

T
c ci, cc ,f γσκ κ= −P  (6) 

where Ui , cσ  is the isotropic effective stress and U cκ  is the compressive unloading 
hardening parameter. 

For each of the six hypotheses considered for unloading movements, a curve that 
relates the unloading hardening parameter Uκ  and the unloading effective stress   

Uσ  must be defined. Thus, the adoption of appropriate evolution rules makes 
possible to reproduce non-linear behaviour during unloading. Physical reasons imply 
that C1 continuity must be imposed on all the six curves. Also, all functions must 
originate positive effective stress values, their derivatives must always be non-
negative and its shape must be adequately chosen to fit experimental data, obtained 
from uniaxial tests. The six different curves adopted in this study are used in the 



definition of the isotropic and kinematic hardening laws. The definition of the 
hardening laws requires material parameters, which allow to obtain numerical 
responses similar to experimental observations, see Figure 7. Aspects related to the 
algorithm can be found in Oliveira and Lourenço [6]. 

(a) 

(b) 
Figure 6: Hypothetic motion of the unloading surface in stress space to: 

(a) tension and to (b) compression. 
  
3.1.2  Results 

The ability of the model to reproduce the main features of structural masonry 
elements is now assessed through the numerical analysis of masonry walls submitted 
to cyclic loads, see Figure 8. In these simulations, the units were modelled using 
eight-node continuum plane stress elements with Gauss integration and, for the 
joints, six-node zero-thickness line interface elements with Lobatto integration were 
used. 
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                                  (a)                                                              (b)

  
                                     (c)                                                             (d) 

Figure 7: Comparison between experimental and numerical results for uniaxial 
testing: (a) tension; (b) compression; (c) shear; (d) tension-compression. 

It was found that the geometric asymmetry in the micro-structure (arrangement of 
the units) influenced significantly the structural behaviour of the wall. Note that, 
depending in the loading direction, the masonry course starts either with a full unit 
or only with half unit. Figure 8a shows that the monotonic collapse load is 112.0 kN 
in the LR direction and 90.8 kN in the RL direction, where L indicates left and R 
indicates right. The cyclic collapse load is 78.7 kN, which represents a loss of ~13% 
with respect to the minimum monotonic value but a loss of ~30% with respect to the 
maximum monotonic value. This demonstrates the importance of cyclic loading but 
also the importance of taking into account the micro-structure. It is also clear from 
these analyses that masonry shear walls with diagonal zigzag cracks possess an 
appropriate seismic behaviour with respect to energy dissipation, see Figure 8b. 

Figure 8c presents the results of a high wall, which simply rocks in both ways. 
The highly non-linear shape of the load-displacement curve is essentially due to the 
opening and subsequent closing, under load reversal, of the top and bottom bed 
joints. Similar deformed patterns, involving the opening of extreme bed joints, were 
observed during the experimental test. Numerical results show that the cyclic 
behaviour of the wall is controlled by the opening and closing of the extreme bed 
joints, where damage is mainly concentrated, see Figure 8d. The model also shows 
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low energy dissipation, which is a consequence of the activated non-linear 
mechanism (opening-closing of joints). As shown, the failure of this wall is much 
different from the previous wall, stressing the relevance of the internal structure. 

   
(a) 

            
(b) 

Figure 8: Results obtained with interface cyclic loading model for shear walls, in 
terms of force-displacement diagram and failure mode: (a) wall failing 

in shear; (b) wall failing in bending. 

3.2 Homogenization 

The approach based on the use of averaged constitutive equations seems to be the 
only one suitable to be employed a large scale finite element analyses, Lourenço 
[9,10]. Two different approaches are illustrated in Figure 9, one collating 
experimental date at average level and another from homogenization techniques. A 
major difference is that homogenization techniques provide continuum average 
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results as a mathematical process that include the information on the micro-
structure. Average information, namely a continuum failure surface is not known, 
even if it can be calculated for different stress paths. 

The complex geometry of the masonry representative volume, i.e. the geometrical 
pattern that repeats periodically in space, means that no closed form solution of the 
problems exists for running bond masonry. One of the first ideas presented was to 
substitute the complex geometry of the basic cell with a simplified geometry, so that 
a closed-form solution for the homogenization problem was possible. This approach, 
rooted in geotechnical engineering applications, assumed masonry as a layered 
material, see Lourenço [11] for a matrix formulation, and a so called “two-step 
homogenization”. In the first step, a single row of masonry units and vertical mortar 
joints were taken into consideration and homogenized as a layered system. In the 
second step, the “intermediate” homogenized material was further homogenized 
with horizontal joints in order to obtain the final material. This simplification does 
not allow to include information on the arrangement of the masonry units with 
significant errors in the case of non-linear analysis. Moreover, the results depend on 
the sequence of homogenization steps. 

     
(a) 

(b) 
Figure 9: Constitutive behaviour of materials with micro-structure: (a) collating 

experimental data and defining failure surfaces; (b) a mathematical process 
that uses information on geometry and mechanics of components. 

To overcome the limitations of the two-step homogenization procedure, micro-
mechanical homogenization approaches that consider additional internal 
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deformation mechanisms have been derived, e.g. Zucchini and Lourenço [12,13]. 
The implementation of these approaches in standard macroscopic finite element 
non-linear codes is simple and the approaches can compete favourably with 
macroscopic approaches, see Lourenço at al. [14] for a review. 

Here, a micro-mechanical model for the limit analysis for masonry is briefly 
reviewed [15,16]. In the model, the elementary cell is subdivided along its thickness 
in several layers. For each layer, fully equilibrated stress fields are assumed, 
adopting polynomial expressions for the stress tensor components in a finite number 
of sub-domains. The continuity of the stress vector on the interfaces between 
adjacent sub-domains and suitable anti-periodicity conditions on the boundary 
surface are further imposed. In this way, linearized homogenized surfaces in six 
dimensions for masonry in- and out-of-plane loaded are obtained. Such surfaces are 
then implemented in a finite element limit analysis code for simulation of 3D 
structures, and including, as recent advances, blast analysis and quasi-periodic 
masonry internal structure.  

3.2.1 Homogenized Failure Surfaces 

Figure 10 shows a masonry wall constituted by a periodic arrangement of bricks and 
mortar arranged in running bond. For a general rigid-plastic heterogeneous material, 
homogenization techniques combined with limit analysis can be applied for the 
evaluation of the homogenized in- and out-of-plane strength domain. In the 
framework of perfect plasticity and associated flow rule for the constituent 
materials, and by means of the lower bound limit analysis theorem, homS  can be 
derived by means of the following (non-linear) optimization problem:    
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where: 
-  N  and M  are the macroscopic in-plane (membrane forces) and out-of-plane 

(bending moments and torsion) tensors; 
-    denotes the microscopic stress tensor; 
-   n  is the outward versor of lY∂  surface; 
-  [ ][ ]  is the jump of micro-stresses across any discontinuity surface of normal 

intn ; 
-   mS  and  bS  denote respectively the strength domains of mortar and bricks; 



-   Y  is the cross section of the 3D elementary cell with 03 =y , Y   is its area, V
is the elementary cell volume, h  represents the wall thickness and 

( )321 yyy=y   are the assumed material axes; 
-   mY  and  bY  represent mortar joints and bricks respectively. 

In order to solve Equations (7) numerically, an admissible and equilibrated 
micro-mechanical model is adopted, Milani et al. [15]. The unit cell is subdivided 
into a fixed number of layers along its thickness, as shown in Figure 10b. For each 
layer in the wall thickness direction, one-fourth of the representative volume 
element is sub-divided into nine geometrical elementary entities (sub-domains), so 
that the entire elementary cell is sub-divided into 36 sub-domains. 

For each sub-domain )(k  and layer )(L , polynomial distributions of degree  ( )m
in the variables ( )21 , yy  are a priori assumed for the stress components. For out-of-
plane actions the proposed model requires a subdivision of the wall thickness into 
several layers, with a fixed constant thickness for each layer.  

                      (a)                                            (b)                                      (c) 
Figure 10: Proposed micro-mechanical model: (a) elementary cell; (b) subdivision in 
layers along thickness and subdivision of each layer in sub-domains; (c) imposition 

of internal equilibrium, equilibrium on interfaces and anti-periodicity. 

3.2.2 Examples of Application 

The homogenized failure surface obtained with the above approach has been 
coupled with finite element limit analysis. Both upper and lower bound approaches 
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have been developed, with the aim to provide a complete set of numerical data for 
the design and/or the structural assessment of complex structures. The finite element 
lower bound analysis is based on an equilibrated triangular element, while the upper 
bound is based on a triangular element with discontinuities of the velocity field in 
the interfaces. Recent developments include the extension of the model to blast 
analysis, Milani et al. [17], and to quasi-periodic masonry, Milani and Lourenço 
[18]. 

An enclosure running bond masonry wall subjected to a distributed blast pressure 
is considered first. The wall is supposed simply supported at the base and on vertical 
edges, whereas the top edge is assumed unconstrained, due to the typical imperfect 
connection between infill wall and RC beam. A full 3D FE heterogeneous elastic-
plastic dynamic analysis has been also conducted, in order to have a deep insight 
into the problem and to collect alternative data to compare the results with those 
provided by the present rigid-plastic approach. For the 3D model, a rigid infinitely 
resistant behavior for bricks was assumed, whereas for joints a Mohr-Coulomb 
failure criterion with the same tensile strength and friction angle used in the 
homogenised approach for joints was adopted. Eight-noded brick elements were 
utilized both for joints and bricks, with a double row of elements along wall 
thickness.  

A comparison between the deformed shapes at t=400 msec obtained with the 
present model and the commercial software is schematically depicted in Figure 
11a,b. As it is possible to notice, the models give almost the same response in terms 
of deformed shape for the particular instant time inspected, confirming that reliable 
results may be obtained with the model proposed. On the other hand, it is worth 
underlining that the homogenized rigid plastic model required only 101 seconds to 
be performed on a standard PC Intel Celeron 1.40 GHz equipped with 1Gb RAM, a 
processing time around 10-3 lower than the 3D case. Comparisons of time-maximum 
displacement diagrams provided by the two models analyzed is reported in Figure 
11c, together with the evolution of the deformation provided by the homogenized 
model proposed. 

Recently, in Milani and Lourenço [18] two different classes of problems have 
been investigated, the first consisting of full stochastic representative element of 
volume (REV) assemblages without horizontal and vertical alignment of joints, the 
second assuming the presence of a horizontal alignment along bed joints, i.e. 
allowing blocks height variability only row by row. The model is characterized by a 
few material parameters and it is therefore particularly suited to perform large scale 
Monte Carlo simulations. Masonry strength domains are obtained equating the 
power dissipated in the heterogeneous model with the power dissipated by a 
fictitious homogeneous macroscopic plate. A stochastic estimation of out-of-plane 
masonry strength domains (both bending moments and torsion are considered) 
accounting for the geometrical statistical variability of blocks dimensions is obtained 
with the proposed model. The case of deterministic block height (quasi-periodic 
texture) can be obtained as a subclass of this latter case. As an important benchmark, 
the case in which joints obey a Mohr-Coulomb failure criterion is also tested and 
compared with results obtained assuming a more complex interfacial behaviour for 
mortar.  



       
(a) 

      
(b) 

    
(c) 

Figure 11: Masonry infill wall subjected to blast pressure: Comparison among 
deformed shapes at t = 400 msec for (a) Homogenized limit analysis approach 
and (b) heterogeneous 3D elastic-plastic FE approach; (c) comparison between 

maximum out of plane displacements and limit analysis failure mode. 

In order to show the capabilities of the approach proposed when dealing with 
large scale structures, the ultimate behaviour prediction of a Romanesque masonry 
church façade located in Portugal. Comparisons with finite element heterogeneous 
approaches and “at hand” calculations show that reliable predictions of the load 
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the core and constitution of structural elements, associated with long construction 
periods; construction sequence is unknown; existing damage in the structure is 
unknown; regulations and codes are non-applicable. Lourenço [19] addresses the 
possibilities and relevance of advanced computations. 
 Monastery of Jerónimos is, probably, the crown asset of Portuguese architectural 
heritage. The construction of the monastery started in 1499 or 1500. The monastery 
is built with limestone (usually denoted by “lioz” type) quarried locally. The 
monumental set has considerable dimensions in plan, more than 300 × 50 m2, and an 
average height of 20 m (50 m in the towers), see Figure 13. The monastery is 
arranged around two courts.  

Several different analyses have been carried out in this monastery, see Lourenço 
et al. [20] and Roque [21] for more information. The analysis were carried out 
sequentially, taking into consideration the data available, the sought information and 
the available budget for structural assessment. 

4.1 Global Structural Analysis of the Compound 

The first analysis carried out focused in the behaviour of the full monastery 
compound under seismic loading. For this purpose, non-linear static (pushover) 
analysis was adopted. Pushover analysis is a non-linear static analysis carried out 
under conditions of constant gravity loads and monotonically increasing horizontal 
loads. In the complete model only the very large openings were considered. The 
geometry of the model was referred to the average surfaces of the elements. All the 
walls, columns, buttresses, vaults and towers were included in the model, with the 
exception of a few minor elements. All elements possess quadratic displacement 
fields. The mesh includes around 8000 elements, 23500 nodes and 135000 degrees 
of freedom. The time-effort necessary for total mesh generation, including definition 
of supports, loads and thicknesses, can be estimated in three man-months. 

For the safety assessment, five independent push-over non-linear analyses were 
carried out, namely for vertical loads and for seismic loading along two directions 
(with positive and negative sign). Figure 13b shows the deformed mesh for seismic 
loading along the transversal direction to the church nave. It can be seen that the 
towers of the Museum are the critical structural elements featuring displacements of 
around 0.10 m in each case and a maximum crack width of around 0.01 m. The 
maximum compressive stresses reach values up to 4.0 N/mm2. These values are very 
localized in the buttresses, in one of the bodies adjacent to the monument and in the 
arcade. Given the fact that this is an accidental loading condition and that the 
stresses are localized, it is assumed that the structure is not at risk. The average 
maximum values are around 2.0-2.5 N/mm2, which seem acceptable.  

4.2 Detailed Structural Analysis of the Church (Gravity Load) 

The columns of the church are very slender and exhibit moderate out-of-plumbness. 
As the model previously adopted for the church was very simplified and the vaults 
were not adequately represented, more refined models have been adopted for a new 
study of the church under vertical and earthquake loading. 



(a) 

(b) 
Figure 13: Monumental set of Monastery of Jerónimos: (a) aerial view; (b) deformed 

meshes and contour of maximum displacements for seismic load along the  
transversal Z axis of the model 

The church has considerable dimensions, namely a length of 70 m, a width of 
40 m and a height of 24 m. The plan includes a single bell tower (south side), a 
single nave, a transept, the chancel and two lateral chapels. The south wall has a 
thickness of around 1.9 m and possesses very large openings. Three large 
trapezoidal buttresses ensure the stability of the wall. The north wall is extremely 
robust (with an average thickness of around 3.5 m). This wall includes an internal 
staircase that provides access to the cloister. The chancel walls are also rather thick 
(around 2.5-2.65 m). The nave is divided by two rows of columns, with a free height 
of around 16.0 m. Each column possesses large bases and fan capitals. The 



transverse sections of the 
m (nave-transept). The co
the nave, and four blocks
to the columns by large 
slightly curved barrel vau
placed on top of the stone
exists. The part of the sl
with stones and clay mor
during the 1930’s to prov

The adopted model for
of the vault under the 
symmetric boundary con
collapse of the central-sou
volume elements, for the 
and stones slabs, see Figu
elements, properly tied t
being rotations possible
elements have quadratic 
freedom. The time-effort 
supports, loads and thickn

                                         

                                         
Figure 14: Detailed mo

basic plan; (b) de
(d)

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.05 0.10

Vertical d

Lo
ad

 fa
ct

or
octagonal columns have a radius of 1.04 m (

olumns seem to be made of a single block or t
s, for the transept. The vaults are ribbed and
fan capitals. Cross section of the nave vaul

ult, even if supported at the columns. Thin s
e ribs. On top of the slabs, a variable thicknes
ab inside the capital is filled with a concret
rtar. On top of the vaults, brick masonry wal

vide support for the roofing tiles.
r the main nave includes the structural detail

most unfavourable possibility, see Figu
nditions. Therefore, the model represents a
uth part of the nave. The model includes thre
ribs and columns, and curved shell element

ure 14b. The external (south) wall was repres
o the volume elements. The supports are fu

e given the non-linear material behaviour 
interpolation, resulting in a mesh with 333
necessary for total mesh generation, includin

nesses, can be estimated in three man-months

     (a)                                                          (b)

   
(c)                                                       (d) 

odel of the church for vertical loading: (a) chu
tails around capital; (c) load-displacement dia
incremental deformed mesh at failure 

0.15 0.20 0.25

displacement (m)

Vault key
Column

(nave) and 1.88 
two blocks, for 

d are connected 
lt is, mostly, a 
stone slabs are 
ss mortar layer 
te-like material 
llets were built 

l representative 
ure 14a, using 
adequately the 
ee-dimensional 
ts, for the infill 
sented by beam 
ully restrained, 

assumed. All 
335 degrees of 
ng definition of 
s.

)

urch plan and 
agram;



The actions considered in the analysis include only the self-weight of the 
structure. Figure 14c illustrates the load-displacement diagrams for the vault key and 
top of the column. Here, the load factor represents the ratio between the self-weight 
of the structure and the applied load. It is possible to observe that the response of the 
structure is severely nonlinear from the beginning of loading, for the nave, and from 
a load factor of 1.5, for the column. The behaviour of the nave is justified by the 
rather high tensile stresses found in the ribs, using a linear elastic model. The 
collapse of the columns is due to the normal and flexural action. 

The deformed mesh at failure, see Figure 14d, indicates that the structural 
behaviour is similar to a two-dimensional frame, with a collapse mechanism of five 
hinges (four hinges at the top and base of the columns and one at the key of the 
vault. The compressive strength of the columns controls the safety of the church for 
vertical loading. Nevertheless, there is some vault effect with slightly larger 
displacements at the central octagon, formed between the four capitals. The stresses 
are bounded in tension and compression, meaning that cracking and crushing occurs.  

4.3 Detailed Structural Analysis of the Church (Earthquake Load) 

For the seismic analysis of the church, a simplified model using beam elements was 
used, with a total of 25452 degrees of freedom, see Figure 15a. The time-effort 
necessary for total mesh generation, including definition of supports, loads and 
thicknesses, can be estimated in three man-months. This model was subjected to 
push-over analyses and time integration. The time for analysis and testing different 
retrofitting techniques can be estimated in nine man-months. 
 Initially the model was validated using modal identification, as well as a 
comparison with the previous detailed model for gravity loading. Subsequently, 
pushover analyses parallel and perpendicular to the nave of the church were carried 
out. Figure 15b-f shows results in terms of seismic load vs. selected horizontal 
displacements, failure mechanism in the finite element model and virtual collapse 
mechanisms. The results indicated that the columns are again much relevant for the 
collapse of the nave, with eccentric compression and cracking. The weakest 
mechanism for the seismic loading is the transverse one involving collapse for the 
non-constrained side of the nave, but only with 10% difference with respect the 
collapse to the cloister side. Still, adequate global strength seems to be found. 
 In order to further validate these observations and discuss the damage introduced 
by an earthquake, non-linear time integration analyses were carried out, see Figure 
15g for the typical results involving collapse of one of the columns. The results 
indicate that no local or total collapse is to be expected for a 475 or 975 years return 
period (yrp) earthquake.  Collapse is obtained for a 5000 yrp earthquake, with 
collapse of the northern columns of the nave (on the side of the cloister), together 
with the collapse of the bell tower. 
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Figure 15: Detailed model of the church for horizontal loading: (a) finite element 
mesh; (b) push-over results, seismic action vs. displacement at given nodes; 

(c) example of failure mechanism; (d) virtual collapse mechanisms for different 
push-over analyses; (e) example of column response for time integration analysis. 



5  Conclusions 

Constraints to be considered in the use of advanced modelling are the cost, the need 
of an experienced user / engineer, the level of accuracy required, the availability of 
input data, the need for validation and the use of the results. 

As a rule, advanced modelling is a necessary means for understanding the 
behaviour and damage of masonry constructions. Micro-modelling techniques for 
masonry structures allow a deep understanding of the mechanical phenomena 
involved. For large scale applications, average continuum mechanics must be 
adopted and homogenization techniques represent a popular and active field in 
masonry research. An example of an outstanding cultural heritage building is 
provided here, showing how different modelling strategies can be used to assess 
structural safety. 
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