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SUMMARY 

 PHD2 serves as oxygen sensor that rescues blood supply by regulating vessel 

formation and shape in case of oxygen shortage. However, it is unknown whether PHD2 

can influence arteriogenesis. By using hindlimb ischemia as a model, we studied the role 

of PHD2 in collateral artery growth, a process that compensates the lack of blood flow in 

case of major arterial occlusion. Here, we show that PHD2+/- mice displayed preformed 

collateral arteries that ameliorated limb perfusion and prevented ischemic necrosis. The 

improved arteriogenesis in PHD2+/- mice was due to the expansion of circulating and 

tissue-resident Tie2-expressing monocytes/macrophages (TEMs) and their enhanced 

release of PDGFB and SDF1, resulting in increased smooth muscle cell recruitment and 

growth. This program relied on activation of the canonical NF-κB pathway in PHD2+/- 

mononuclear phagocytes. These results show how PHD2 controls blood flow and thus 

tissue oxygenation by skewing the macrophage towards an arteriogenic phenotype in 

ischemia.  

 



          3 

INTRODUCTION 

Vascular stenosis reduces blood supply resulting in ischemia, which causes tissue 

dysfunction and demise. This condition is however associated with the formation of new 

blood vessels (angiogenesis) and remodeling of preexisting collateral arterioles 

(arteriogenesis) that reestablish blood flow to the downstream tissue1-3. Spontaneous 

angiogenesis and arteriogenesis thus attenuate local tissue ischemia and improve the 

clinical outcome of the disease2,4,5. Upon occlusion of an artery, the blood flow is 

redirected into preexisting arteriolar anastomoses, causing enhanced shear stress on the 

endothelium of the collateral circulation6-8. As a consequence, endothelial cells (ECs) 

secrete VEGF, which induces the production of monocyte chemotactic protein-1 

(CCL2/MCP1) from the endothelium itself and from adjacent smooth muscle cells (SMCs), 

leading to monocyte recruitment2,7,9,10. Once in the periarteriolar region, monocyte-derived 

macrophages produce growth factors that enhance the motility and proliferation of SMCs, 

as well as proteases that digest the extracellular matrix to provide space for new SMCs2,8. 

Recent studies have analyzed the functional plasticity of mononuclear phagocytes in 

response to different environmental cues. For instance, in cancer and atherosclerosis, 

macrophages generally display an “alternatively activated” (M2) phenotype11,12, which 

enhances debris scavenging, angiogenesis, tissue remodeling, wound healing, and the 

promotion of type II immunity. On the other hand, in inflamed tissues, macrophages 

display a “classically activated” (M1) phenotype, which facilitates eradication of invading 

microorganisms and the promotion of type I immune responses11,12. However, 

macrophage heterogeneity during ischemia-induced arteriogenesis has not been 

elucidated yet. Although initiation of arteriogenesis by macrophages takes place in a non-

hypoxic environment distant from the ischemic area13,14, some of the cytokines that 

stimulate arteriogenesis are under the control of the prolyl hydroxylase domain protein 

PHD215,16. PHD2 belongs to a larger family of proteins that utilize oxygen to hydroxylate 

the hypoxia-inducible transcription factors (HIF)-1α and HIF-2α and, thereby, target the 

latter for proteasomal degradation and hence inactivation17. In hypoxic conditions, PHDs 

are inactive, which allows HIFs to become stabilized and mount an adaptive response to 

hypoxia. Besides negatively regulating HIF accumulation, PHDs display a repressive role 
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in controlling the activity of NF-κB, a key signaling molecule for inflammation18. The control 

of NF-κB by PHDs can be both dependent and independent of the hydroxylase activity 

and therefore from the presence of oxygen used as a substrate15,19-21.  

Pharmacological inhibition, silencing, or genetic inactivation of PHD2 after birth 

stimulates angiogenesis and therapeutic revascularization through upregulation of 

angiogenic factors from the parenchymal tissue16,22-24. Recently, we have shown that 

heterozygous deficiency of PHD2 in ECs does not affect vessel density or lumen size, but 

normalizes their endothelial lining, barrier, and stability, thus resulting in increased blood 

vessel perfusion in tumors25. However, whether and how PHD2 plays a role in the 

regulation of the arteriogenic process remains enigmatic. By using hindlimb ischemia as a 

model of arteriogenesis, we found that reduced PHD2 levels in macrophages increases 

the production of arteriogenic cytokines, including SDF1 and PDGFB, in an NF-κB 

dependent manner. An increase of Tie2-expressing monocytes/macrophages (TEMs) in 

the blood and tissues accounts for the superior arteriogenesis in PHD2 haplodeficient 

mice. As a consequence of TEMs’ production of SDF1 and PDGFB, the remodeling of 

collateral anastomoses is enhanced, thus conferring protection against ischemic damage. 

Altogether, these data indicate that a reduction of PHD2 levels in monocytes/macrophages 

unleashes NF-κB signals that skew their polarization towards an arteriogenic phenotype.  
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RESULTS 

PHD2 HAPLODEFICIENCY PRESERVES TISSUE PERFUSION AND VIABILITY IN ISCHEMIA 

We recently showed that stromal haplodeficiency of PHD2 increases tumor 

perfusion25. Prompted by these results, we examined whether partial loss of PHD2 also 

enhances perfusion of ischemic tissues. We therefore subjected mice to femoral artery 

ligation, an established procedure that reduces perfusion of the lower limb and causes 

ischemia in the calf (i.e. crural muscle). Laser-doppler measurements revealed that 

perfusion of the lower hindlimb was higher in PHD2+/- than wild-type (WT) mice 12, 24 and 

48 hours after femoral artery ligation, during the critical period when myofibers die if they 

do not receive sufficient oxygen (Figure 1A). The increased perfusion in PHD2+/- mice 

translated into enhanced physical endurance in ischemic conditions (12 hours post-

ligation), whereas both genotypes exhibited similar running capacity at baseline (Figure 

1B). Quantification of oxygen levels in the calf by MRI-based oxymetry 12 hours after 

ligation revealed that femoral occlusion induced a drop of oxygen tension by 66% in WT 

and 46% in PHD2+/- mice (Figure 1C-E). Such differences in oxygen tension have been 

shown to influence the outcome of the ischemic disease26. Staining for the hypoxia-marker 

pimonidazole showed that the hypoxic area in the crural muscle of ligated limbs was 37.1 

± 3.0% in WT mice but only 16.0 ± 7.0% in PHD2+/- mice (Figure 1H-J). Pimonidazole 

staining of baseline WT and PHD2+/- crural muscles was negative (Figure 1F,G). In 

accordance with findings that oxygen consumption in conditions of low oxygen availability 

is associated with formation of reactive oxygen species (ROS), WT but not PHD2+/- crural 

muscles at 12 hours post-ligation stained strongly for 8-hydroxy-2-deoxyguanosine (8-

OHdG), a marker of deoxyguanosine oxidation (Supplementary Figure 1C-E). At baseline, 

oxidative stress in the crural muscle was comparable in both genotypes (Supplementary 

Figure 1A,B,E). We next determined whether the decreased drop in perfusion and thus 

oxygen tension in PHD2+/- ligated limbs prevented ischemic necrosis. Histological analysis 

of the crural muscle (i.e. soleus) showed extensive ischemic damage in WT mice 72 hours 

after ischemia (Figure 1K). In PHD2+/- mice, ischemic necrosis of the soleus was reduced 

by more than 50% (Figure 1K-M). In accordance, crural muscle viability after ischemia was 

almost double in PHD2+/- than in WT mice (Figure 1N-P). Compared to WT mice, muscle 
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fibers in PHD2+/- mice also showed fewer signs of regeneration as assessed by BrdU 

staining, confirming that they were less damaged (Supplementary Figure 1F-H).  

Upon femoral artery ligation, growth factors released by the ischemic crural muscle 

promote angiogenesis1,27. Indeed, in WT mice, 14 days after femoral artery occlusion, 

vessel density and total vessel area in near-completely regenerated regions of the soleus 

(an oxidative unit of the crural muscle) were increased respectively by 33% and 70% 

(Supplementary Figure 1I,J). In contrast, in PHD2+/- mice, these parameters remained 

unchanged compared to the baseline, likely because these muscles never experienced 

sufficient ischemia to stimulate angiogenesis (Supplementary Figure 1I,J).  

We also wanted to assess whether PHD2+/- mice were protected against myocardial 

ischemia and therefore performed ligation of the left anterior descending coronary artery of 

WT and PHD2+/- hearts. The infarcted area was measured in desmin stained cross-

sections 24 hours after coronary ligation. Desmin-negative area (a readout of 

cardiomyocyte death) was about 60% of the left ventricle in WT hearts and only 40% in 

PHD2+/- hearts (Figure 1Q-S). Compared to WT, PHD2+/- hearts displayed higher perfusion 

in both the infarcted and remote myocardium (Figure 1T-W).  

Thus, PHD2 haplodeficiency greatly preserves perfusion and reduces tissue 

damage in ischemia. 

PHD2 HAPLODEFICIENCY ELICITS “COLLATERAL VESSEL PRECONDITIONING” 

Since PHD2+/- muscles were protected against ischemic damage already 12 hours 

after femoral artery ligation, we hypothesized that PHD2 haplodeficient mice were 

preadapted to and therefore capable of better tolerating the ischemic insult. The number 

and caliber of preexisting collaterals (primary, secondary, and tertiary branches) are major 

determinants of the severity of tissue injury in occlusive diseases since these conduits 

allow blood flow to bypass the obstruction2,4,5. We therefore investigated whether PHD2+/- 

mice showed increased collaterals at baseline, independently of ischemia. Macroscopic 

counting of collateral arteries on gelatin-bismuth angiographies in the thigh of non-

occluded limbs revealed a similar number of primary branches in both genotypes (Figure 

2A,B). PHD2+/- mice however, had 1.7 and 2 fold more secondary and tertiary collateral 

arteries, respectively (Figure 2A-D). Histological analysis of the adductor muscles (located 
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in the inner thigh, where collaterals form) showed that the total area and density of 

bismuth-positive collaterals at baseline were respectively 2.0 and 2.3 fold higher in 

PHD2+/- than WT mice (Figure 2E-H). In contrast, capillary density and area in the 

adductor were comparable in both genotypes (Supplementary Figure 2A,B). Consistent 

with these results, X-ray radiography (Figure 2I,J) and micro-CT scans showed a higher 

number of large vessels (>200 µm in diameter) in PHD2+/- than WT thighs at baseline 

(Figure 2K-M), whereas smaller vessels (<200 µm in diameter) were not changed 

(Supplementary Figure 2C). Similar results were obtained in PHD2+/- hearts at baseline, 

displaying a higher density of large vessels (Figure 2N-P), and a similar number of small 

vessels and capillaries, compared to WT (Supplementary Figure 2D,E). 

After femoral artery ligation, evaluation of gelatin-bismuth angiographies in WT 

limbs showed a 30% induction of the collateral vascularization 12 and 72 hours post-

ischemia (Figure 2C,D). Conversely, in PHD2+/- mice the number of collaterals in the 

adductor did not significantly change after occlusion, likely because they were already 

expanded at baseline (Figure 2C,D). Nevertheless, there were still more secondary and 

tertiary collateral branch arteries after ischemia in PHD2+/- than WT mice (Figure 2C,D). 

Histological analysis confirmed that 12 and 72 hours post-ligation, the bismuth-positive 

collateral area and density in adductor muscles were still higher in PHD2+/- than in WT 

controls (Figure 2G,H). 

 To increase blood flow, collateral vessels undergo extensive remodeling 

(arteriogenesis) and thus the tunica media, consisting of α-smooth muscle actin (αSMA)-

positive contractile SMCs, becomes thicker and the diameter of the conduit enlarges. 

Staining of adductor tissue sections for αSMA revealed that number and total area of 

αSMA+ collateral vessels were respectively 1.5 and 2 times increased in PHD2+/- muscles 

at both baseline and after ischemia (Figure 2Q,R). However, the mean area of αSMA+ 

collaterals was higher in PHD2+/- than WT mice only at baseline, since, 72 hours post-

ligation, WT collaterals enlarged to the same size as PHD2+/- collaterals (Figure 2S,U-Y). 

A similar trend was observed by measuring the thickness of the tunica media (Figure 2T). 

These data show that, at baseline, the collateral vessels of PHD2+/- mice were similar to 

those of WT mice after femoral artery ligation. This “collateral vessel preconditioning” 

offered PHD2+/- mice a remarkable protection against lethal muscle ischemia.  
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PHD2+/- MACROPHAGES DISPLAY A SPECIFIC PHENOTYPE 

Since inflammatory cells and in particular macrophages are known to produce 

SMC/EC-mitogens, cytokines and proteases during collateral growth, we expected that the 

increased collateralization in PHD2+/- muscles was due to enhanced infiltration of 

leukocytes in response to HIF-mediated release of chemoattractant proteins28. 

Surprisingly, when we measured the density of leukocytes and macrophages by staining 

adductor tissue sections for CD45 and F4/80, respectively, there was no difference 

between both genotypes at baseline (Figure 3A,B). Ligation of the femoral artery induced 

a significant, but comparable increase in inflammatory cell accumulation in WT and 

PHD2+/- adductors. Consistently, RNA levels of MCP1, one of the most important 

proinflammatory cytokines in limb ischemia2,7,9,10, did not differ in the two genotypes either 

at baseline or after femoral artery occlusion (Supplementary Figure 3A).  

We therefore explored whether the phenotype, not the quantity, of the infiltrating 

macrophages was different in PHD2+/- and WT mice. We measured the density of wound-

healing/proangiogenic macrophages, which can be identified by their enhanced 

expression of the mannose receptor, MRC1/CD20629-31, and correspond to M2-polarized 

macrophages11,12. Notably, costaining adductor sections for MRC1 and the macrophage 

specific marker F4/80 revealed that the number of F4/80+MRC1+ cells was augmented by 

75% at baseline conditions in PHD2+/- as compared to WT mice (Figure 3C-E). Seventy-

two hours after ligation, their numbers were increased by 95% in WT mice and by 54% in 

PHD2+/- mice, but remained higher by 35% in ischemic PHD2+/- than WT mice (Figure 

3C,F,G). 

Prompted by these results, we gene-profiled WT and PHD2+/- macrophages 

collected by peritoneal lavage (peritoneal macrophages, pMØ) and analyzed the 

expression level of proangiogenic/proarteriogenic, proinflammatory, and antiangiogenic 

genes. Remarkably, the genes that were upregulated in PHD2+/- macrophages were 

markers of wound-healing/proangiogenic (i.e. M2-like) macrophages11,29 and comprised 

Tie2, Arg1, CXCR4, CCR2, Nrp1, HGF, MMP2, FIZZ, CXCL12/SDF1, PDGFB, and TGFβ 

(Figure 3H). Of note, most of these molecules have been reported to play an important 

role during the arteriogenic process6,32-36. Conversely, several proinflammatory or 

antiangiogenic (i.e. M1-type) molecules were downregulated in PHD2+/- macrophages; 
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these included IL1ß, IL6, NOS2, and IL12 (Figure 3H). The changes in the molecular 

signature of macrophages were already detectable at baseline conditions, since F4/80+ 

cells freshly sorted from adductor muscles of PHD2+/- mice expressed higher levels of 

PDGFB, SDF1, Tie2, MMP2, Nrp1 (Figure 3I). After 72 hours of ischemia, the expression 

levels of these markers caught up in WT tissue macrophages (Figure 3I). Interestingly, in 

ischemia, PHD2 levels were reduced by almost 50% in WT macrophages while they were 

half in PHD2+/- macrophages both at baseline and after ischemia (versus WT 

macrophages at baseline; Figure 3I). No differences were detected in WT and PHD2+/- 

ECs, freshly isolated from adductor muscles at baseline and in ischemia (Supplementary 

Table 1). Thus, PHD2+/- macrophages display a unique and cell specific gene signature, 

which is reminiscent, at least in part, of M2-polarized macrophages11,29,30,37. 

HETEROZYGOUS DEFICIENCY OF PHD2 IN MYELOID CELLS PREVENTS ISCHEMIC DAMAGE 

To investigate whether reduced levels of macrophage-derived PHD2 displays 

collateral vessel preconditioning and thus protection against ischemia, we generated 

conditional PHD2 deficient mice lacking one or two PHD2 alleles specifically in myeloid 

cells (PHD2LysCre;lox/wt and PHD2LysCre;lox/lox respectively) by intercrossing PHD2lox/wt and 

PHD2lox/lox mice with LysM:Cre mice expressing the Cre-recombinase under the control of 

the myeloid-specific lysozyme M promoter38. In contrast to PHD2 knockout mice, which die 

between E12.5 and E14.5 due to placental defects25,39, mice with homozygous deficiency 

of PHD2 in myeloid cells (PHD2LysCre;lox/lox) are viable and fertile. Gelatin-bismuth 

angiographies revealed a higher number of secondary and tertiary collateral branch 

arteries in heterozygous PHD2LysCre;lox/wt mice while arterialization was unchanged in 

PHD2LysCre;lox/lox mice (Figure 4A,B). This was likely due to compensatory activity of PHD3 

in PHD2LysCre;lox/lox macrophages (see below). Histological analysis of the same adductor 

samples showed that the total area and density of bismuth positive collaterals were higher 

in PHD2LysCre;lox/wt, but not in PHD2LysCre;lox/lox mice compared to control mice (Figure 4C,D). 

Collateral vessel preconditioning conferred protection against ischemia since, 72 hours 

after femoral artery occlusion, muscle necrosis was reduced by 67% in PHD2LysCre;lox/wt, 

but not in PHD2LysCre;lox/lox mice (Figure 4E-H). Similarly, in ischemia, the running capacity 

of PHD2LysCre;lox/wt, but not of PHD2LysCre;lox/lox mice was 1.6-fold higher compared to 

PHD2LysCre;wt/wt mice while comparable at baseline (Figure 4I). 
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To further explore whether the increased arteriogenesis in PHD2 haplodeficient 

mice could be attributed to the lack of one PHD2 allele in macrophages, we transplanted 

WT or PHD2+/- (hereafter HE for “heterozygous”) bone marrow of syngenic mice, 

ubiquitously expressing GFP, into lethally irradiated WT recipients (referred to as WTàWT 

and HEàWT mice, respectively) or into lethally irradiated PHD2+/- recipients (referred to as 

WTàHE and HEàHE mice, respectively). Collateral arteries were quantified 5 weeks 

after bone marrow transplantation, when hematopoietic reconstitution by GFP+ blood cells 

was, on average, 82 ± 8% and differential white blood counts were comparable in all the 

groups (not shown). Histological analysis of gelatin-bismuth-based angiographies revealed 

greater numbers and area of collateral vessels in HEàWT than WTàWT mice, while not 

differing from HEàHE mice, supporting the key role of bone marrow derived cells in 

enhancing collateralization (Figure 4J,K). Interestingly, collateral vessel parameters in 

WTàWT and WTàHE mice were comparable (Figure 4J,K), indicating that bone marrow 

derived cells are also important to sustain preexisting arteries in PHD2 heterozygous mice. 

In accordance, ischemic necrosis at 72 hours post-ligation was prevented in HEàHE and 

HEàWT mice, while it did not reach statistical significance in WTàHE mice (Figure 4L). 

We also assessed whether transplantation of HE bone marrow into lethally irradiated WT 

recipients would suffice to improve the physical endurance in ischemia. In a treadmill test, 

the running capacity of HEàWT mice was twice as good as in WTàWT mice 12 hours 

after femoral artery ligation while no differences were detected at baseline (Figure 4M). 

Finally, we generated another strain lacking one PHD2 allele in both the 

hematopoietic and endothelial lineage (PHD2Tie2Cre;lox/wt) by using the Tie2:Cre deleter 

mouse line25,40. Reciprocal bone marrow transplantation of PHD2Tie2Cre;lox/wt and 

PHD2Tie2Cre;wt/wt mice revealed that increased arteriogenesis of PHD2 heterozygous mice 

was specifically caused by loss of one PHD2 allele in bone marrow derived hematopoietic 

cells, but not in endothelial cells (Supplementary Table 2). Reduction of collateral 

branches in PHD2Tie2Cre;lox/wt recipient mice transplanted with a WT bone marrow 

(PHD2Tie2Cre;wt/wt) further supported the concept that PHD2 heterozygous macrophages are 

required not only to trigger arteriogenesis but also to preserve existing arteries 

(Supplementary Table 2). Deletion of one PHD2 allele selectively in ECs or SMCs did not 

affect arteriogenesis (Supplementary Table 3). Thus, lower levels of PHD2 in bone marrow 

derived myeloid cells, but not in ECs and/or SMCs, increase collateral vessel formation 
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and prevent ischemic damage. 

MACROPHAGE-DERIVED SDF1 AND PDGFB PROMOTE ARTERIOGENESIS 

In order to unravel the biological mechanism underlying the arteriogenic phenotype, 

we assessed how WT and PHD2+/- macrophages affect the behavior of ECs and SMCs, 

the two main cellular components of arteries. First, we evaluated the chemotactic potential 

of primary ECs and SMCs towards WT and PHD2+/- macrophages. EC migration towards 

WT or PHD2+/- macrophages was comparable and 50-times higher than towards culture 

medium alone (Figure 5A-D). SMCs migrated only 6.5-times more efficiently when WT 

macrophages were seeded in the lower chamber of the transwell (compared to control 

medium), whereas migration towards PHD2+/- macrophages was 44-times higher (Figure 

5E-H). Given the established role of SDF1 and PDGFB in the recruitment of SMCs and/or 

SMC progenitors41-43 and the aforementioned finding that these two cytokines were 

upregulated the highest in PHD2+/- macrophages (see Figure 3H), we tested whether 

inhibiting these pathways, alone or in combination, would abrogate chemoattraction of 

SMCs towards PHD2+/- macrophages. Combined inhibition of SDF1 and PDGFB signaling 

by AMD3100 and imatinib, respectively, abrogated the increased migration of SMCs 

towards PHD2+/- macrophages, while either treatment alone was not effective (Figure 5I). 

Similarly, when silencing both SDF1 and PDGFB in PHD2+/- macrophages, SMC migration 

was almost completely prevented, though each shRNA alone was already partly effective 

(Supplementary Figure 4A and Supplementary Note 1).  

To assess the influence of soluble factors released by WT and PHD2+/- 

macrophages on EC and SMC growth, we performed a cell viability assay. We seeded 

ECs or SMCs on the upper side of a 0.4 µm-pore filter (that does not allow cell migration 

but only protein diffusion), and WT or PHD2+/- macrophages in the lower chamber. 

Notably, growth of SMCs was enhanced by soluble factors released from PHD2+/- (versus 

WT) macrophages (Figure 5J). EC growth was not differently affected by WT and PHD2+/- 

macrophages (Figure 5K). SMCs display a proliferative (or synthetic) phenotype during the 

phase of active growth in contrast to the contractile phenotype in mature vessels44. The 

proliferative or synthetic phenotype is characterized by the reduction of contractile proteins 

including smoothelin, NmMHC, αSMA, and of calponin family proteins, i.e. calponin-1 and 
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Sm22α44, 45.  The down-modulation of these genes in SMCs indicates that these cells are 

under the influence of growth factors and are able to migrate and to proliferate. Consistent 

with the enhanced growth of SMCs seeded in the presence of PHD2+/- macrophages, 

conditioned medium from PHD2+/- macrophages reduced the expression level of calponin-

1, SM22α, smoothelin, NmMHC and αSMA, therefore supporting a proliferative phenotype 

(Figure 5L-P). Unlike what we observed in the migration assays, AMD3100 or imatinib 

alone abrogated the increased SMC growth by PHD2+/- macrophages. The combination of 

both AMD3100 and imatinib did not elicit an additive effect (Figure 5Q). Similarly, both 

single and combined knockdown of SDF1 and PDGFB in PHD2+/- macrophages hindered 

SMC growth (Supplementary Figure 4B).  

 Prompted by the in vitro results, we treated WTàWT and HEàWT mice with daily 

administration of AMD3100 (5 mg/kg) or imatinib (50 mg/kg), alone or in combination. In 

vivo, each drug alone only partially prevented the increased formation of second 

generation collateral branches in HEàWT mice (Figure 5R), while third generation 

collaterals were affected by either treatment alone (Figure 5S). However, the combination 

of AMD3100 and imatinib more potently prevented collateralization in the adductor of 

these mice. In WTàWT mice, the number of collateral branch arteries was not affected in 

all conditions tested (Figure 5R,S). Thus, in mice with reduced level of myeloid PHD2, 

combined PDGFB and SDF1 pathway activation is necessary to complete the arteriogenic 

process.  

MACROPHAGES PROMOTING ARTERIOGENESIS IN PHD2+/- MICE ARE TEMS  

Tie2 is a gene recently found to be significantly upregulated in a subpopulation of 

macrophages, known as TEMs, which express an M2-like, wound healing / proangiogenic 

phenotype29-31,46. Although TEMs express genes that are commonly expressed by other 

macrophage subsets (including PDGFB), they display greatly enhanced expression of 

SDF129. Since Tie2 was strongly induced in PHD2+/- macrophages, we explored if this 

increase was due to an enhanced fraction of TEMs in the total macrophage population. As 

tumor TEMs express MRC1 to higher levels than classically activated macrophages / 

inflammatory macrophages29,31 and because we found that PHD2+/- adductors display 

enhanced infiltration of F4/80+MRC1+ macrophages (Figure 3C), we stained adductor 
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sections from WT and PHD2+/- mice for F4/80, MRC1 and Tie2 in order to rigorously 

identify TEMs. At baseline, F4/80+MRC1+Tie2+ TEMs were scarce in WT mice but were 4-

times more abundant in PHD2+/- mice (Figure 6A). Seventy-two hours after femoral artery 

occlusion, the density of TEMs was 3.2-times higher in WT but 1.3-fold increased in 

PHD2+/- mice towards the baseline (Figure 6A). Thus, TEM density was still 1.6-fold higher 

in ischemic PHD2+/- than WT mice (Figure 6A). The increased presence of tissue-resident 

TEMs in PHD2+/- than WT mice was not due to a differential expression of the Tie2 

ligands, angiopoietin-1 and angiopoietin-2, since transcript levels of these two cytokines 

were similar in WT and PHD2+/- adductors at baseline and ischemic conditions 

(Supplementary Figure 3B,C). When we measured Tie2-expressing monocytes (gated as 

CD115+Tie2+ leukocytes) in the blood, we found a 3.4-fold higher TEM frequency in 

PHD2+/- than WT mice at baseline (Figure 6B). Interestingly, 72 hours after femoral artery 

ligation, the frequency of circulating TEMs was reduced by 3.4-fold in WT and 2.2-fold in 

PHD2+/- mice, although this decrease reached statistical significance in WT mice only 

(Figure 6B). Similar results were observed when quantifying the transcript levels of Tie2 in 

WT and PHD2+/- CD115+ circulating monocytes, though the overall expression of Tie2 was 

low (Figure 6C). In F4/80+ tissue macrophages, Tie2 transcripts were almost 100-times 

higher than in monocytes. After ligation, Tie2 transcript levels were further augmented, but 

only in WT macrophages, likely because PHD2+/- macrophages presented increased Tie2 

expression already at baseline (Figure 6C). In mice, expression of Gr1 distinguishes 

“inflammatory” monocytes (CD115+Gr1high) from “resident” monocytes 

(CD115+Gr1low/neg)47,48. As previously reported29, circulating TEMs in PHD2+/- mice are 

mostly CD115+Gr1low/neg (Supplementary Figure 5). Altogether, these data suggest that, in 

ischemia, TEMs are recruited from the blood to the adductor where they trigger 

arteriogenesis.  

To address if TEMs are functionally involved in the maturation of collateral arteries 

and thus preadaptation to ischemia in PHD2+/- mice, we used a 'suicide' gene strategy 

based on the Herpes simplex virus (HSV) thymidine kinase (tk)-ganciclovir (GCV) 

system49. We transplanted mice with WT or PHD2+/- bone marrow-derived lineage-

negative cells transduced with a lentiviral vector (LV) expressing the HSV-tk cDNA under 

the control of the Tie2 promoter/enhancer (Tie2:tk-BMT mice; Supplementary Note 2). By 

this approach, bone marrow-derived TEMs can be specifically eliminated upon GCV 
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administration in the transplanted mice (Supplementary Note 3). GCV-treated and 

untreated mice were monitored for arterial growth at baseline as well as 3 and 7 days after 

ligation by staining adductor sections for αSMA. GCV-untreated PHD2+/- Tie2:tk-BMT mice 

displayed increased number of αSMA+ arteries and this density only slightly augmented at 

3 and 7 days after ischemia. Remarkably, the arterial vessel preconditioning was 

completely abolished in GCV-treated PHD2+/- Tie2:tk-BMT mice and thus protection 

against ischemia was lost at both 3 and 7 days post-ligation (Figure 6D,E). In WT mice, 

TEM depletion by GCV administration prevented ischemia-induced arteriogenesis and 

consequent tissue healing 7 days post-ligation (Figure 6D,E). Thus, TEMs fuel 

arteriogenesis in PHD2+/- mice at baseline and in WT mice during ischemia. 

ACUTE DELETION OF PHD2 FAVORS TEMS, ARTERIOGENESIS AND ISCHEMIA 

PROTECTION  
 In order to strengthen the possible therapeutic value of our findings, we assessed 

whether acute deletion of PHD2 in macrophages induced arteriogenesis and protection 

against ischemia as observed in PHD2+/- mice. To this end, we generated tamoxifen-

inducible PHD2 haplodeficient mice (PHD2Rosa26CreERT;lox/wt) where the Rosa26 promoter 

directs the ubiquitous expression of the fusion protein Cre-ERT2. Administration of 4-

hydroxytamoxifen to PHD2Rosa26CreERT;lox/wt peritoneal macrophages induced a 50% 

reduction of PHD2 levels and increased the expression of PDGFB, SDF1, and Tie2, 

therefore resembling the phenotype of PHD2+/- macrophages (Supplementary Figure 6A). 

To address whether acute deletion of PHD2 in macrophage fuels arteriogenesis, bone 

marrows from PHD2Rosa26CreERT;lox/wt mice were transplanted into lethally irradiated WT 

recipient mice (HERosa26CreERTàWT). After five weeks, transplanted mice were treated with 

vehicle or tamoxifen (1 mg/mouse for 5 days). Fourteen days after tamoxifen treatment, 

circulating TEMs were almost 3-fold higher (Supplementary Figure 6B) and both 

secondary and tertiary collateral branches were respectively 1.6 and 2.3 times more 

abundant than in vehicle-treated mice (Supplementary Figure 6C). Consistent with an 

increased arteriogenesis, ischemic damage in tamoxifen-treated HERosa26CreERTàWT mice 

was greatly reduced (Supplementary Figure 6D). These data suggest that acute 

inactivation of PHD2 might represent a preventive medicine for ischemic diseases.  
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HETEROZYGOUS DEFICIENCY OF PHD2 IN MACROPHAGES ENHANCES NF-κB ACTIVITY 

 PHD2 oxygen sensor negatively regulates HIF accumulation and NF-κB activity15,25. 

When analyzing the accumulation of HIF-1α and HIF-2α by Western blot analysis, we 

observed that the levels of HIF-1α  and HIF-2α  in PHD2 haplodeficient macrophages 

(PHD2LysCre;lox/wt) were comparable to the control (PHD2LysCre;wt/wt). In contrast, HIF-1α  and 

HIF-2α  levels in PHD2 null macrophages (PHD2LysCre;lox/lox) were respectively 4 and 2 

times higher than in control macrophages (PHD2LysCre;wt/wt; Figure 6F). We therefore 

quantified NF-κB activity by transducing PHD2LysCre;lox/wt, PHD2LysCre;lox/lox, PHD2LysCre;wt/wt 

macrophages with a lentiviral vector carrying an NF-κB-responsive firefly luciferase 

reporter (Figure 6G). Interestingly, NF-κB activity was increased by 65% in PHD2 

haplodeficient macrophages but unaffected in PHD2 null macrophages.  

We hypothesized that other PHD oxygen sensors might compensate for the 

complete loss of PHD2. We therefore measured RNA levels of PHD1, PHD2, and PHD3 in 

PHD2LysCre;wt/wt, PHD2LysCre;lox/wt and PHD2LysCre;lox/lox macrophages. While PHD2 levels 

were decreased by 40% and 93% in PHD2LysCre;lox/wt and PHD2LysCre;lox/lox macrophages, 

respectively, PHD1 and PHD3 transcript levels were 1.2 and 2.5 fold higher in PHD2 

haplodeficient macrophages, and 1.3 and 12.2 fold higher in PHD2 null macrophages 

(Supplementary Figure 7). PHD3 silencing induced NF-κB activity by 22% and 14% in 

PHD2LysCre;wt/wt and PHD2LysCre;lox/wt macrophages but by 70% in PHD2LysCre;lox/lox 

macrophages compared to their scramble controls (Figure 6G and Supplementary Note 4). 

These data indicate that PHD3 induction in PHD2 null macrophages is responsible for the 

repression of NF-κB activity. This may explain, at least in part, the absence of enhanced 

collateral growth and ischemic protection in mice lacking two PHD2 alleles in myeloid 

cells. 
To understand if hydroxylase function was necessary for PHD2 mediated NF-kB 

regulation, PHD2+/- macrophages were electroporated with a plasmid carrying a wild type 

PHD2 (PHD2wt) or a hydroxylase-deficient PHD2 containing a mutation in a critical residue 

of the catalytic site (PHD2H313A)50. Ectopic expression of PHD2wt greatly blunted the 

activity of NF-κB luciferase induced by PHD2 haplodeficiency, whereas PHD2H313A had no 

effect (Figure 6H), suggesting a functional role of PHD2 hydroxylase activity in the 

downregulation of NF-κB pathway. We also assessed the effect of TNF-α, archetypal 
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cytokine activating the canonical NF-κB pathway18, in WT and PHD2+/- macrophages and 

found that TNF-α-induced NF-κB activation was significantly stronger in PHD2 

haplodeficient macrophages (Figure 6I). In contrast, basal and TNF-α-induced NF-κB 

activity were comparable in WT and PHD2+/- ECs (Supplementary Figure 8A). When 

measuring the nuclear accumulation of NF-κB subunits, we found that the members of the 

canonical pathway p65 (RelA) and p50 (NF-κB1) were more abundant in PHD2+/- than WT 

macrophages (Figure 6J). Silencing of p65 or p50 blocked NF-κB hyperactivation in 

PHD2+/- macrophages and the combined knockdown of both subunits restored NF-κB 

function back to the WT levels (Figure 6K and Supplementary Note 5), thus highlighting 

the prominent role of NF-κB p65/p50 heterodimers in macrophages. 

To evaluate the involvement of the canonical NF-κB signaling in macrophage 

skewing by PHD2 haplodeficiency, we generated a myeloid specific double transgenic 

strain, heterozygous deficient for PHD2 and null for IKKβ, a positive regulator of NF-κB 

canonical pathway. Disruption of NF-κB canonical pathway via genetic deletion of IKKβ 

prevented the upregulation of Tie2, PDGFB and SDF1 in cultured PHD2 haplodeficient 

macrophages (Figure 6L). Similar results were obtained by treating macrophages with the 

NF-κB inhibitor 6-amino-4-(4-phenoxyphenylethylamino)quinazoline (Supplementary 

Figure 8B).  In vivo, genetic inactivation of IKKβ in myeloid cells abolished the enhanced 

production of circulating TEMs (Figure 6M) and collateral vessel preconditioning induced 

by myeloid PHD2 haplodeficiency (Figure 6N). Remarkably, myeloid specific IKKβ gene 

targeting in WT mice greatly prevented ischemia-induced arteriogenesis, occuring 7 days 

post-ligation (Figure 6N). 

Thus, skewing of PHD2 haplodeficient macrophages towards an arteriogenic 

phenotype relies on the activation of the NF-κB canonical pathway.  
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DISCUSSION 

Specific macrophage subsets / differentiation states have been implicated in the 

promotion of angiogenesis during cancer and atherosclerosis progression11,12. However, 

little is known of the significance of macrophage heterogeneity in arteriogenesis and its 

implications on ischemic diseases. This study identifies a role of myeloid PHD2 in oxygen 

delivery by regulating arteriogenesis. Reduced PHD2 levels in macrophages determine a 

specific gene signature that fosters the arteriogenic program by inducing recruitment and 

growth of SMCs. This program relies on NF-κB-dependent upregulation of macrophage-

derived SDF1, PDGFB, and the angiopoietin receptor, Tie2. We show that the phenotype 

of macrophages induced by reduced levels of myeloid PHD2 not only favors the formation 

of new collateral branches, but is also important for collateral vessel homeostasis. Under 

steady-state conditions, blood monocytes act as circulating precursors that migrate into 

non-inflamed tissue to replace certain subsets of tissue macrophages51. PHD2 

haplodeficient bone marrows in WT recipient mice enhanced collateral formation already 

at baseline (“collateral vessel preconditioning”). However, when PHD2+/- mice were 

transplanted with a WT bone marrow, preexisting collaterals regressed to the same level 

as in WT mice, suggesting a role of tissue macrophages in sustaining artery maintenance. 

The proarteriogenic tissue macrophages identified in the present study are reminiscent of 

the M2-like, proangiogenic macrophage subset, known as TEMs, which are found in 

tumors and developing or regenerating tissues29-31,49. The macrophages here described do 

not upregulate either VEGF or inflammatory genes, but express increased levels of Tie2, 

Nrp1, CXCR4, PDGFB and SDF1. Unlike tumor-associated TEMs, the cells described 

here express high levels of the MCP1 receptor, CCR2. Tissue- and tumor-infiltrating TEMs 

appear to originate from a distinct subset of circulating Tie2-expressing monocytes (our 

data and 29). In agreement with previous studies49, Tie2-expressing monocytes as well as 

Tie2-expressing macrophages were scarce in the peripheral blood and adductor of WT 

mice, but were abundant in PHD2 haplodeficient mice in resting conditions or in the 

pericollaterel region of WT mice after occlusion of the major arterial route. Their depletion 

abrogated the arterial vessel preconditioning in PHD2+/- mice and prevented ischemia-

induced arteriogenesis in WT mice, supporting the role of TEMs in blood flow recovery 

during occlusive diseases. The model we propose is described in Supplementary Figure 9. 
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After femoral artery ligation, a surge of chemoattractants recruits TEMs from the blood to 

the pericollateral region. Here, TEMs fuel the tissue with SDF1 and PDGFB. The 

combined activity of these two cytokines will induce SMC migration, positioning, 

dedifferentiation, and growth, altogether resulting in artery maturation. PHD2 

haplodeficiency unleashes constitutive NF-κB signals that result in a larger reservoir of 

circulating and tissue-resident TEMs. Production of SDF1 and PDGFB by TEMs accounts 

for the enhanced arteriogenesis at baseline and thus protection against ischemic tissue 

demise. It remains an open question by which mechanism PHD2 activity / levels are 

reduced in WT mononuclear phagocytes. In general, PHD2 needs oxygen as cosubstrate 

and partly loses its activity under hypoxia. Furthermore, cytokine-driven downregulation of 

PHD2 expression will also result in reduced enzymatic activity independent of oxygen 

availability52,53. Here, we show that PHD2 hydroxylase function (and thus oxygen) is 

required to repress NF-κB and that PHD2 levels are decreased in tissue macrophages 

after ischemia. Thus, there might be two potentially different levels of regulation of 

monocyte/macrophage polarization by PHD2. The first might occur in the bone marrow 

where mean oxygen tension is normally 50 mmHg (ca. 7%)54. At this oxygen tension, 

PHD2 activity will be partly inhibited in WT macrophages, to a similar extent as it occurs in 

PHD2+/- macrophages25,55-57. After femoral artery occlusion, the bulk of blood flow is 

redirected into collateral conduits, generating shear stress that causes the release of 

different cytokines by the endothelium. Collateral formation is recognized as a hypoxia-

independent process13, 14. Nevertheless, stimulation by these cytokines might explain the 

transcriptional repression of PHD2 measured in infiltrating WT macrophages (but not in 

PHD2+/- macrophages that constitutively express half levels of PHD2) and thus strengthen 

their arteriogenic response. Noteworthy, separate studies have reported that 

angiopoietin(s) as well as TGFß reduce PHD2 expression (52,53 and M.M., unpublished), 

and enhance collateral vascularization, in part through a direct effect on 

monocytes/macrophages58-61. Overall, genetic deletion of one PHD2 allele preadapts 

macrophages to ischemia and causes polarization towards an arteriogenic phenotype.   

Genetic studies in mice on macrophage-associated cytokine receptors, or on 

cytokines, have elucidated the importance of specific biological axes such as 

SDF1/CXCR4, MCP1/CCR2, VEGF/Nrp1 and others, in arteriogenesis and post-ischemic 

revascularization6, 32-36, 62-66. The population of macrophages described in the current 
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manuscript is enriched in Tie2, CXCR4, CCR2, and Nrp1 expression. By using Tie2 as a 

marker to identify (and to deplete) a subset of monocytes/macrophages, we define for the 

first time the role of PHD2 in macrophage skewing and unravel a new mechanism 

whereby an oxygen sensor leads to blood recovery through collateral arteriogenesis, 

fostered by M2-like macrophages. Further investigations will be needed to understand if 

this model plays a role during developmental arteriogenesis, if the Tie2-expressing 

population here described is similar to the one found in cancer, and if Tie2 expressed by 

these cells has a functional role as in tumor-associated TEMs29-31. Recently, TEM-like 

embryonic macrophages have been found to be involved in anastomosis of vessels during 

development46. Given the fact that collateral vessels in the limb grow and mature from 

preexisting anastomoses6, we cannot exclude that enhanced collateralization in PHD2+/- 

mice is, at least in part, due to this process as well. Nevertheless, acute deletion of one 

PHD2 allele in macrophages leads to almost complete protection against ischemic 

necrosis by induction of arterial collateral branches, thus supporting the idea that 

enhanced arteriogenesis by PHD2 haplodeficiency can promptly occur in adults. 

Although different proarteriogenic molecules such as MMP2 are upregulated in 

PHD2+/- macrophages, SDF1 and PDGFB were expressed more abundantly. Both 

cytokines are potent chemoattractants for SMCs and/or SMC progenitors41-43. SDF1 more 

specifically plays a key-role in recruiting, retaining and positioning CXCR4+ cells67,68. This 

might be the case for SMCs and SMC progenitors, both positive for the SDF1 receptor 

CXCR441,69, which can find their way towards collaterals by following a gradient of SDF1 

released by pericollateral TEMs. PDGFB sustains recruitment and proliferation of SMCs 

and SMC progenitors at the site of expression42. In our experiments, combined activation 

of SDF1 and PDGFB results in the complete formation of collateral branches, suggesting 

that in SMCs, these two pathways can converge to, at least in part, overlapping 

downstream effectors. An open question is to understand whether, in PHD2+/- 

monocytes/macrophages, the release of SDF1 and PDGFB are directly downstream of the 

NF-κB pathway or are consequent to Tie2 signaling activation29.  

TEMs are a subpopulation of alternatively activated (M2) macrophages. We show 

here that macrophage skewing by PHD2 haplodeficiency is driven by the canonical NF-κB 

pathway. The NF-κB family consists of 5 members: NF-κB1 (p105/p50), NF-κB2 

(p100/p52), RelA (p65), RelB, and c-Rel18,70,71, which may form different homo- and 



          20 

heterodimers associated with differential regulation of target genes. Activation of NF-κB 

typically involves phosphorylation-dependent degradation of IκB inhibitors by the IκB 

kinase (IKK) complex. This releases NF-κB and allows it to translocate freely to the 

nucleus. HIF-prolyl hydroxylases are repressors of NF-κB activity, likely via their potential 

to directly hydroxylate IKKβ20,21. Alternatively, PHD3 has been also shown to associate 

with IKKβ independently of its hydroxylase function, thereby blocking further interaction 

between IKKβ and the chaperone Hsp90, which is required for IKKβ phosphorylation and 

release of NF-κB19. Thus, the hydroxylase function of PHD oxygen sensors can be either 

necessary or dispensable for the downregulation of NF-κB depending on the cellular 

context (our data and 15). By different means, we prove that PHD2 haplodeficiency results 

in the hyperactivation of the canonical NF-κB pathway in macrophages via accumulation of 

p65 and p50 subunits. Genetic or pharmacological inhibition of the NF-κB pathway 

prevents the upregulation of Tie2, PDGFB, and SDF1 in cultured PHD2 haplodeficient 

macrophages. In vivo, genetic inactivation of myeloid IKKβ inhibits TEM production and 

collateral vessel preconditioning induced by PHD2 haplodeficiency. Previous evidence has 

shown that IKKβ suppresses the M1 phenotype and promotes M2 macrophage skewing 

through positive regulation of the canonical NF-κB pathway72-74. From a molecular point of 

view, the main downstream effectors of the canonical NF-κB pathway are p65 and p50, 

existing mostly as heterodimers. Homodimers of the p50 subunit of NF-κB, which lack 

transactivation domains, can repress expression of NF-κB target genes and inhibit 

inflammation, whereas the homodimers of p65 as well as the p65/p50 heterodimers are 

responsible for NF-κB-mediated gene transcription18,70,71. Consistent with a role of PHD 

oxygen sensors in the negative regulation of IKKβ, we show that PHD2 haplodeficiency 

triggers p65 and p50 accumulation and thus leads to the repression of M1 genes and 

reinforcement of M2 genes. This is in line with the above-cited literature showing 

repression of M2-markers and increased expression of M1-markers in IKKβ deficient 

macrophages72-74. Another study shows that deficiency, not accumulation, of p50 in bone 

marrow cells prompts macrophage infiltration and elicits arteriogenesis75. At first glance, 

this might appear in conflict with our findings. Nevertheless, the same study reports that 

p50 ablation favors a (compensatory) p65 accumulation. Thus, both the elimination of 

negative (p50-mediated) NF-κB breaking cues and endorsement of the (p65-mediated) 
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NF-κB transactivating potential will tilt the balance towards a positive regulation of the NF-

κB canonical pathway and enhanced macrophage-initiated arteriogenesis. Interestingly, 

complete deletion of PHD2 in macrophages elicits a potent induction of PHD3 levels that 

compensate for the absence of PHD2 and thus reestablish the activity of NF-κB to the WT 

levels. In contrast, a mild induction of PHD3 in PHD2 haplodeficient macrophages does 

not counterbalance the positive effect of PHD2 downmodulation on NF-κB pathway. 

Therefore, consistent with previous findings76, feedback loops involving PHD3 oxygen 

sensor tune the genetic program triggered by PHD2 inactivation. As a consequence, 

heterozygous but not homozygous inactivation of PHD2 is able to mount a safety program 

in myeloid cells through NF-κB activation that enhances collateralization and thus prevents 

ischemic necrosis. 

In our previous work, we show that deficiency or inhibition of the oxygen sensor 

PHD1, belonging to the same family as PHD2, induces hypoxia tolerance by 

reprogramming basal metabolism towards glycolysis, that allows anaerobic ATP 

production in ischemia77. This phenotype was specific for PHD1-/- mice but not for PHD2+/- 

and PHD3-/- mice77. However, while the previous investigation was carried out in a mixed 

background (Swiss/129), the current study was performed in a BalbC and 129S6 

background. It is known that strain-related genetic differences profoundly affect the 

formation of collateral vasculature and thus the outcome of ischemia after femoral artery 

ligation78. Indeed, collateral formation in PHD2+/- mice and ischemic necrosis in a 

Swiss/129 background were comparable to their littermate controls (data not shown). Also, 

in any of the PHD2+/- strains analyzed, the levels of the peroxisome proliferator-activated 

receptor α (PPARα) and the pyruvate dehydrogenase kinases PDK1 and PDK4 (induced 

in PHD1-/- fibers and driving the metabolic reprogramming at baseline) were not affected77, 

supporting a different mechanism of protection against ischemia in PHD2+/- mice. 

Finally, our findings have potential medical implications. Previous studies have 

shown that unspecific inhibitors of PHD2 or silencing of PHD2 promotes therapeutic 

revascularization against ischemia16,22-24. However, this approach can have some 

limitations. First, angiogenesis is a late response; therefore, organ function might be 

compromised until new vessel formation is complete. In contrast, arteriogenesis takes 

place on preexisting vascular shunts and this process is actually the first to be triggered in 
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case of ischemia6. Second, the generation of PHD2-specific inhibitors will be challenging 

due to the high homology of the catalytic pocket of the three PHD family members (PHD1, 

PHD2 and PHD3)17. Overall, a cell-based therapy with PHD2 hypomorphic macrophages 

or Tie2-expressing macrophages might promote collateral vascularization in patients at 

risk of ischemic damage, i.e. diabetic or hypercholesterolemic patients79; similar results 

may be obtained by combined administration of SDF1 and PDGFB. At this stage, our 

study provides insight into how PHD2 oxygen sensor regulates arteriogenesis via 

controlling a specific monocyte / macrophage phenotype and thus guarantees oxygen 

delivery in case of shortage, as it occurs during ischemia. 
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METHODS SUMMARY 
 

129/S6 or Balb/C WT and PHD2+/- mice (8-12 weeks old) were obtained from our mouse 

facility. PHD2+/- and PHD2 conditional knockout mice were obtained as previously 

described25. To induce hind limb ischemia, unilateral or bilateral ligations of the femoral 

artery and vein and the cutaneous vessels branching from the caudal femoral artery side 

branch were performed without damaging the nervus femoralis80. Oxgen tension (pO2) in 

the lower limb was measured 12 hours after femoral artery ligation by using 19F-MRI 

oximetry. Adductor crural muscles were dissected, fixed in 2% PFA, dehydrated, 

embedded in paraffin and sectioned at 7µm thickness for histology, immunostaining and 

morphometry analysis. Macrophages were either harvested from the peritoneal cavity of 

the mice (peritoneal macrophages (pMØ)) or derived from bone marrow precursors as 

described before81. Balb/c WT and PHD2+/- recipient mice were irradiated with 7.5 Gy. 

Subsequently, 5x106 bone marrow cells from green fluorescent protein+ (GFP+) WT or 

GFP+ PHD2+/- mice were injected intravenously via the tail vein. Femoral artery ligation, 

treadmill running test and bismuth angiography were performed 6 weeks after bone 

marrow reconstitution. Full Methods and any associated references are available in the 

Supplementary Information. 
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FIGURE LEGENDS  

FIGURE 1: PHD2 HAPLODEFICIENCY ENHANCES PERFUSION AND REDUCES ISCHEMIC DAMAGE 

A, PHD2+/- mice present increased toe perfusion (laser Doppler analysis) at 12, 24 and 48 

hours after femoral artery ligation compared to WT mice (N=7-13; P<0.05). B, Partial loss 

of PHD2 improves functional endurance (treadmill running test) 12 hours after ligation, 

despite comparable performance at baseline (N=5; P<0.05). C,D, Micrographs of the MRI-

based oxymetry revealing increased oxygenation of the crural muscle in PHD2+/- mice (D) 

versus WT controls (C) 12 hours after ligation. E, Quantification of the MRI-based 

oxymetry represented in C,D (N=5; P=0.02). F-I, Staining for pimonidazole on cross-

sections through the crural muscle at baseline (F,G) and 12 hours after femoral artery 

ligation (H,I) in WT and PHD2+/- mice. J, Pimonidazole positive area is significantly 

reduced in PHD2+/- compared to WT mice 12 hours after ligation (N=4; P=0.03). K,L, H&E 

staining illustrating reduced necrotic area in PHD2+/- soleus (as part of the crural muscle) 

(L) versus WT soleus (K) 72 hours after femoral artery ligation. M, Quantification of the 

necrotic area represented in K,L (N=8; P=0.002). N,O, Crural muscle viability by 2,3,5-

tripheniltetrazolium chloride (TTC) staining is increased in PHD2+/- mice (O) 72 hours after 

ischemia. P, Quantification of the TTC staining represented in N,O (N=8; P=0.0002). Q,R 

Cross-sections through the heart (desmin staining) in WT (Q) and PHD2+/- (R) mice 24 

hours after coronary artery occlusion. S, The quantification of the infarcted area (% of left 

ventricular area [LV]) shows reduced infarct size in PHD2+/- mice (R) compared to WT 

mice (Q) (N=4-5; P=0.03). T,U, Representative micrographs of infarcted areas (Sirius red) 

in WT (T) and PHD2+/- (U) hearts upon gelatin-bismuth-based angiographies (black spots). 

V,W, Collateral vessel area (V) and density (W) are increased in PHD2+/- hearts (U) 

compared to WT (T) in both remote healthy myocardium and infarct site (N=4-5; 

P=0.0002). Scale bars denote 50 µm in F-I; 100 µm in K,L; 1000 µm in Q,R; 50 µm in T,U. 

Asterisks in A,B,E,J,M,P,S,V, and W denote statistical significance versus WT. Error bars 

in A,B,E,J,M,P,S,V, and W show the standard error of the mean (SEM); all subsequent 

error bars are defined similarly.  
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FIGURE 2: ENHANCED COLLATERALIZATION IN PHD2+/- MUSCLES  

A,B, Macroscopic view of gelatin-bismuth-based angiographies at baseline. PHD2+/- 

adductors (B) show comparable primary (blue arrow) and enhanced secondary (red arrow) 

and tertiary (black arrow) collateral vessels compared to WT (A) mice. The green arrow 

points to the femoral artery. C,D, PHD2+/- mice present increased number of secondary 

(C) and tertiary (D) collateral vessels, both at baseline and after ischemia (12 and 72 

hours post-ischemia) (N=6-11; P<0.05). E,F, H&E staining of adductor sections after 

gelatin-bismuth-based angiography. Bismuth+ collaterals appear black. G,H, PHD2 

haplodeficient mice present increased collateral vessel area (G) and density (H) compared 

to WT mice (N=8-14; P<0.01). I,J, Increased number of collaterals in PHD2+/- hindlimbs 

evaluated by X-ray radiography. K-M, Quantification of the micro-CT angiograms of hind 

limbs at baseline (K) showing increased number of large vessels (>200 µm in diameter) in 

the thigh of PHD2+/- (M) versus WT (L) mice (N=6; P=0.04). N-P, Quantification of micro-

CT angiograms at baseline (N) showing increased number of large vessels (>200 µm in 

diameter) in PHD2+/- hearts (P) versus WT (O) hearts (N=6; P=0.04). Q-T, Morphometric 

analysis of α-smooth muscle actin (αSMA) collateral vessels in non-occluded and 

occluded adductor muscles of WT and PHD2+/- mice: Q, Density of αSMA+ collateral 

vessels (N=12; P<0.04); R, Total αSMA+ collateral area (N=12; P<0.05); S, Mean αSMA+ 

collateral vessel area (N=12; P<0.05). T, Thickness of the tunica media (N=8; P=0.04). U-

Y, Staining of adductor sections for αSMA showing increased caliber and tunica media 

thickness of PHD2+/- collateral arteries at baseline; 72 hours after ligation, WT collaterals 

enlarge to the same size and thickness of PHD2+/- collaterals. Scale bars denote 50 µm in 

E,F and 10 µm in U,V,W,Y. Asterisks in C,D,G,H,K,N,Q,R,S, and T denote statistical 

significance versus WT. Hash signs in C,D,R,S, and T denote statistical significance 

compared to the baseline. 

FIGURE 3: PHD2+/- MACROPHAGES DISPLAY A SPECIFIC PHENOTYPE 

A,B, Quantification of leukocytes by CD45 immunostaining (A) and macrophages by F4/80 

immunostaining (B) in adductor sections of WT and PHD2+/- mice at baseline and after 
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femoral artery ligation (N=8-20; P=NS). C, Histogram showing increased percentage of 

mannose receptor C, type 1+ (MRC1+) cells out of the F4/80+ population in PHD2+/- 

adductors at baseline and 72 hours post-ligation (N=8; P=0.04 in baseline and N=8; 

P=0.03 in ischemia); MRC1+F4/80+ cells are significantly augmented in occluded WT and 

PHD2+/- limbs compared to the baseline (N=8; P<0.001 in WT mice; N=8; P=0.03 in 

PHD2+/- mice). D-G, Costaining of adductor sections for F4/80 (green), and MRC1 (red) 

quantified in C. Arrowheads in panels F and G point to F4/80 and MRC1 double positive 

cells. Collateral vessels are stained for αSMA (blue). H, Gene expression analysis (RT-

PCR) in WT and PHD2+/- peritoneal macrophages (pMØ). PHD2 haplodeficiency 

upregulates some M2-like-markers, whereas some other M2-like-markers and all the M1-

like genes tested are downmodulated (N=8-23, P<0.05). Data are expressed in fold 

change relative to WT, where the RNA levels in WT macrophages are represented by 

1; all subsequent gene expression data are defined similarly, unless otherwise specified. I, 

Gene expression analysis (RT-PCR) in F4/80+ tissue macrophages sorted from adductor 

muscles confirms increased levels of M2-markers (PDGFB, SDF1, Tie2, MMP2, Nrp1) in 

PHD2+/- mice at baseline (N=6; P<0.03). Seventy-two hours after femoral artery occlusion, 

RNA expression levels of all the genes tested, except SDF1 (N=6; P=0.01), caught up in 

WT macrophages (N=6; P=NS). Conversely, at baseline, PHD2 expression is about half in 

PHD2+/- versus WT macrophages; in ischemia (72 hours post-ligation), PHD2 expression 

in WT macrophages goes down to the levels in PHD2+/- macrophages, while it remains 

unchanged in PHD2+/- macrophages. Scale bars denote 20 µm in D,E,F and G. Asterisks 

in C,H and I denote statistical significance versus WT. Hash signs in A,B,C and I denote 

statistical significance compared to baseline. 

FIGURE 4: MYELOID SPECIFIC DELETION OF ONE PHD2 ALLELE PREVENTS ISCHEMIC DAMAGE  

A,B, Heterozygous deficiency of PHD2 in myeloid cells (PHD2LysCre;lox/wt; labeled as lox/wt) 

increases the basal number of secondary (A) and tertiary (B) collateral branches 

(assessed by gelatin bismuth-based angiography) compared to both WT (PHD2LysCre;wt/wt; 

labeled as wt/wt) and PHD2 homozygous deficiency (PHD2LysCre;lox/lox; labeled as lox/lox) 

(N=18; P=0.01 and P=0.02, respectively). C,D, Histological quantification on adductor 
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sections of bismuth+ collateral vessel area (C) and density (D) at baseline (N=20; P=0.01 

and P=0.003 respectively). E, Quantification of necrotic area (%) represented in F,G, and 

H (N=5-12; P=0.03). F-H, H&E staining of crural muscle sections showing that 

heterozygous (G), but not homozygous (H) deficiency of PHD2 in myeloid cells preserves 

perfusion (black spots of bismuth-gelatin) and thus protects fibers against ischemic 

necrosis when compared to wt/wt (F) mice. I, Heterozygous, but not homozygous loss of 

PHD2 in myeloid cells improves functional endurance (treadmill running test) 12 hours 

after ligation, despite comparable performance at baseline (N=5; P<0.05). J,K, Histograms 

showing collateral vessel density (J) and area (K) of non-occluded limbs 5 weeks after 

bone marrow transplantation. PHD2+/- bone marrow in WT and PHD2+/- recipient mice 

(HEàWT and HEàHE respectively) increases the number of bismuth+ collateral vessels 

at baseline; WT bone marrow transplants result in a lower number of collateral branches 

regardless of the genotype of the recipient mice (WTàWT and WTàHE). L, Quantification 

of ischemic necrosis 72 hours post-ischemia. M, The running capacity at 12 hours after 

femoral artery occlusion is increased in HEàWT mice compared to controls (WTàWT). 

Scale bars denote 100 µm in F,G, and H. Asterisks in A,B,C,D,E,I,J,K,L, and M denote 

statistical significance towards wt/wt and lox/lox (or WTàWT in J,K,L, and M).  

FIGURE 5: PHD2+/- MACROPHAGE DERIVED SDF1 AND PDGFB PROMOTE ARTERIOGENESIS 

A-D, Migration of primary endothelial cells (ECs) towards control medium (A), WT (B) and 

PHD2+/- (C) macrophages. Quantification of transmigrating ECs is represented in D (N=8; 

P=NS). E-H, Migration of primary smooth muscle cells (SMCs) towards control medium 

(E), WT (F) and PHD2+/- (G) macrophages. Quantification of transmigrating SMCs is 

represented in H (N=16; P<0.0001). I, Combined pharmacological inhibition of SDF1 

pathway by AMD3100 and PDGFB pathway by imatinib reduces SMC migration towards 

PHD2+/- macrophages (N=8; P<0.02). J,K, SMC growth (J) is enhanced in presence of 

medium conditioned by PHD2+/- macrophages (N=4; P<0.001). Conversely, EC growth (K) 

is comparable (N=4; P=NS). L-P, The stimulation of SMCs with PHD2+/- macrophage-

conditioned medium promotes a synthetic (proliferative) phenotype characterized by 

reduced RNA expression of calponin-1 (L), SM22α (M), smoothelin (N), NmMHC (O), and 
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αSMA (P) (N=4; P<0.001). Q, The pharmacological inhibition of SDF1 and PDGFB 

pathways, alone or in combination, prevents SMC growth induced by PHD2+/- 

macrophage-conditioned medium (N=4; P<0.05). R,S, Combined administration of 

AMD3100 and imatinib reduces more efficiently the formation of secondary (R) and tertiary 

(S) collateral vessels induced in HEàWT mice (N=8; P<0.05). Scale bars denote 50 µm in 

A,B,C,E,F, and G. Asterisks in H,I,J,L,M,N,O,P,Q,R, and S denote statistical significance 

versus WT (or WTàWT in R and S). Hash signs in D and H denote statistical significance 

towards control medium, in Q and S towards the baseline. Dollar sign in I,R, and S 

denotes statistical significance (P<0.01) towards the baseline and either treatment alone. 

FIGURE 6: TEMS TRIGGER ARTERIOGENESIS IN PHD2+/- MICE VIA CANONICAL NF-κB PATHWAY 

A, Quantification of Tie2+ macrophages, infiltrating WT and PHD2+/- adductor muscle 

represented at baseline and 72 hours after ligation (N=8-14; P<0.04). B, The number of 

Tie2+ circulating monocytes (CD115+Tie2+ double positive cells) is increased in PHD2+/- 

mice at baseline and 72 hours after ligation (N=6-14; P<0.01). C, Tie2 mRNA levels in WT 

and PHD2+/- circulating monocytes and tissue macrophages at baseline and 72 hours after 

femoral artery occlusion (N=4; P<0.05). D, Arterial growth (αSMA immunostaining) at 

baseline and after ischemia (day 3 and 7) in adductor sections of WT Tie2:tk-BMT and 

PHD2+/- Tie2:tk-BMT mice treated with saline or GCV. The administration of GCV 

completely abolishes the arterial vessel preconditioning observed in PHD2+/- Tie2:tk-BMT 

mice at baseline as well as after ischemia. In WT Tie2:tk-BMT mice, GCV prevents arterial 

growth occurring at 7 days post-ligation in the untreated group. E, At day 3 after femoral 

artery occlusion, GCV-treated PHD2+/- Tie2:tk-BMT mice present levels of fiber necrosis 

similar to those of WT Tie2:tk-BMT mice; GCV prevents healing of the tissue at 7 days 

post-ligation in both WT and PHD2+/- Tie2:tk-BMT mice (N=6; P<0.04). F, HIF-1α and HIF-

2α accumulation in macrophages showing increased levels of HIF-1α and HIF-2α in PHD2 

null (PHD2LysCre;lox/lox), but not PHD2 haplodeficient (PHD2LysCre;lox/wt) macrophages 

compared to control (PHD2LysCre;wt/wt; N=4; P<0.001). Vinculin was used as loading control. 

G, NF-κB activity (luciferase reporter assay) is enhanced in PHD2LysCre;lox/wt, but not in 
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PHD2LysCre;lox/lox macrophages. Silencing of PHD3 unleashes NFκB in PHD2LysCre;lox/lox 

macrophages. H, NF-κB is modulated by the hydroxylase activity of PHD2 in 

macrophages. The electroporation of PHD2+/- macrophages with a wild type PHD2 

(PHD2wt) blunts NF-κB activation, whereas a PHD2 construct containing a mutation at the 

catalytic site (PHD2H313A) is not effective (N=4; P<0.05). I, PHD2+/- macrophages present 

enhanced NF-κB activity at baseline and upon TNF-α stimulation compared to WT 

macrophages (N=4; P<0.05). J, Western blot analysis of nuclear extracts from WT and 

PHD2+/- macrophages showing increased accumulation of both p65 (RelA) and p50 (NF-

κB1) in PHD2+/- macrophages at baseline (N=3; P<0.05). K, Silencing of p65 or p50 

inhibits NF-κB hyperactivation in PHD2+/- macrophages and combined knockdown of both 

subunits restores NF-κB function back to the WT levels (N=4; P<0.05). L, Genetic 

inactivation of IKKβ in PHD2 haplodeficient pMØ abrogates the upregulation of PDGFB, 

SDF1, and Tie2, while it did not have any effect on PHD2wt/wt macrophages (N=4; P<0.05). 

M, Histogram showing reduction of circulating CD115+Tie2+ double positive cells at 

baseline upon myeloid specific IKKβ gene targeting in myeloid specific PHD2 

haplodeficient mice (N=6-12; P<0.05). N, αSMA immunostainings of adductor sections, 

revealing abrogation of collateral vessel preconditioning induced by PHD2 haplodeficiency 

upon myeloid specific IKKβ knockout; in WT mice, IKKβ gene deletion greatly prevented 

ischemia-induced arteriogenesis 7 days post-ligation (N=4-12, P<0.05). Asterisks in 

A,B,C,D,E,G,H,I,K,L,M, and N denote statistical significance (P<0.05). Hash signs in 

A,B,C,D,E,I, and N denote statistical significance compared to baseline, in G and K 

towards their scramble controls. Dollar signs in E denote statistical significance towards 

the baseline and GCV treatment, in K towards the baseline and either treatment alone. 
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SUPPLEMENTARY METHODS 

ANIMALS: 129/S6 or Balb/C WT and PHD2+/- mice (8-12 weeks old) were obtained from 

our mouse facility. PHD2+/- and PHD2 conditional knock-out mice were obtained as 

previously described1. VE-Cadherin:CreERT and PDGFRB:Cre transgenic mice were 

generated by Dr. Adams at the Cancer Research UK (London, UK), currently at the 

Max-Planck-Institute (Munster, Germany)2,3. IKKβ conditional knock-out mice were 

obtained from Dr. Karin (UCSD, California)4. Tie2:Cre and Rosa26:CreERT transgenic 

mice were purchased by the Jackson Laboratory. Housing and all experimental animal 

procedures were approved by the Institutional Animal Care and Research Advisory 

Committee of the K.U.Leuven. 

MOUSE MODEL OF HINDLIMB ISCHEMIA: To induce hindlimb ischemia, unilateral or bilateral 

ligations of the femoral artery and vein (proximal to the popliteal artery) and the 

cutaneous vessels branching from the caudal femoral artery side branch were 

performed without damaging the nervus femoralis5. By using this procedure, collateral 

flow to adductor muscles is preserved via arterioles branching from the femoral artery, 

therefore 50% up to 60% of perfusion is preserved by this method. Two superficial 

preexisting collateral arterioles, connecting the femoral and saphenous artery, were 

used for analysis. Functional perfusion measurements of the collateral region were 

performed using a Lisca PIM II camera (Gambro). Gelatin-bismuth-based angiography 

was performed as described6 and analyzed by photoangiographs (Nikon D1 digital 

camera). Collateral side branches were categorized as follows: second-generation 

collateral arterioles directly branched from the main collateral, whereas third-generation 

collateral arterioles were orientated perpendicularly to the second-generation branches. 

The number of secondary and tertiary collateral arterioles was counted. After perfusion-

fixation, the muscle tissue between the 2 superficial collateral arterioles (adductor) was 

post-fixed in 2% paraformaldehyde (PFA), paraffin-embedded, and morphometrically 

analyzed. An endurance treadmill-running test was performed at baseline and 12 hours 

post-bilateral-ligation. 

MOUSE MODEL OF MYOCARDIAL INFARCTION: Myocardial infarction (MI) was induced by 

permanent ligation of the left anterior descending coronary artery as previously 



 

described7. Briefly, animals were anesthetized with pentobarbital (100 mg/kg i.p.), fixed 

in the supine position and the trachea was intubated with a 1.1-mm steel tube. Positive 

pressure respiration (1.5-2 ml, 70 strokes/min) was started and the left thorax was 

opened in the fourth intercostal space. All muscles overlying the intercostal space were 

dissected and retracted with 5-0 silk threads; only the intercostal muscles were 

transected. After opening the pericardium, the main left coronary artery, which was 

clearly visible, was ligated just proximal to the main bifurcation by  using 6-0 silk and an 

atraumatic needle (Ethicon K801). Infarction was evident from discoloration of the 

ventricle. The thorax was closed and the skin sutured with 5-0 silk. Animals recovered 

at 30ºC. Gelatin-bismuth-based angiography was performed 24 hours after ligation and 

hearts were then collected in 2% PFA. 

OXYMETRY: Oxygen tension (pO2) in the lower limb was measured using 19F-MRI 

oxymetry in non-ligated and ligated legs 12 hours after femoral artery ligation. The 

oxygen reporter probe hexafluorobenzene (HFB) was injected directly into the crural 

muscle. MRI was performed with a 4.7T (200 MHz, 1H), 40 cm inner diameter bore 

system (Bruker Biospec). A tunable 1H/19F surface coil was used for radiofrequency 

transmission and reception8. 

HISTOLOGY, IMMUNOSTAINING, AND MORPHOMETRY: Adductor, crural muscles and hearts 

were dissected, fixed in 2% PFA, dehydrated, embedded in paraffin, and sectioned at 7-

µm-thickness. Area of necrotic tissues in the crural muscle was analyzed by 

Hematoxylin & Eosin (H&E) staining. Necrotic cells display a more glassy homogeneous 

appearance in the cytoplasm with increased eosinophilia, while the nuclear changes are 

reflected by karyolysis, pyknosis, and karyorrhexis. Necrotic area was defined as the 

percentage of area which includes these necrotic myocytes, inflammatory cells, and 

interstitial cells, compared to the total soleus area. Infarct size was measured in desmin 

stained hearts 24 hours after ischemia as previously described9. After deparaffinization 

and rehydration, sections were blocked and incubated overnight with primary 

antibodies: rat anti-CD31, dilution 1/500 (BD-pharmingen), mouse anti-aSMA, dilution 

1/500 (Dako), rat anti-F4/80, dilution 1/100 (Serotec), dilution 1/50 (BD-pharmingen), rat 

anti-CD45, dilution 1/100 (BD-pharmingen), goat anti-MRC1, dilution 1/200 (R&D), rat 

anti-Tie-2, dilution 1/100 (Reliatech), rabbit anti-desmin dilution 1/150 (Cappel). In order 



 

to analyze capillary density and area, images of CD31 stained sections of the entire 

soleus were taken at 40x. In order to measure bismuth-positive vessel density and area, 

H&E stained paraffin sections were analyzed and vessels filled with bismuth-gelatin 

(black spots) were taken in account. Images of the entire soleus were acquired at 20x 

for this analysis. The values in the graph represent the averages of the mean vessel 

density and area per soleus muscle. The same method was used to quantify vessel 

capillaries and collateral branches in cardiac tissues. Density and area were measure 

by using a KS300 (Leica) software analysis. Hypoxic cells were analyzed 2 hours after 

injection of 60 mg/kg pimonidazole into operated mice. Mice were sacrificed and 

muscles were harvested. Paraffin sections were stained with Hypoxiprobe-1-Mab-1 

(Hypoxiprobe kit; Chemicon International) following the manufacturer’s instructions. 

Oxidative stress and proliferation rate were assessed on 7µm-thick cryosections by 

using the goat anti-8-OHdG antibody, dilution 1/200 (Serotec) and the rat anti-BrdU 

antibody, dilution 1/300 (Serotec). Sections were subsequently incubated with 

appropriate secondary antibodies, developed with fluorescent dies or 3,3’-

disminobenzidine (DAB, Sigma). Whole muscle viability was assessed on unfixed 2-

mm-thick tissue slices by staining with 2,3,5-triphenyltetrazolium chloride (TCC). Viable 

area, stained in red, was traced and analyzed. Pictures for morphometric analysis were 

taken using a Retiga EXi camera (Q Imaging) connected to a Nikon E800 microscope or 

a Zeiss Axio Imager connected to an Axiocam MRc5 camera (Zeiss) and analysis was 

performed using KS300 (Leica). Angiograms were obtained by X-Ray and CT 

angiographies of hearts and legs at baseline.  

MACROPHAGE PREPARATION: To harvest peritoneal macrophages (pMØ), the peritoneal 

cavity was washed with 5 ml of RPMI 10% FBS. The pooled cells were then seeded in 

RPMI 10% FBS in 6-well plates (2x106 cells/well), 12-well plates (1x106 cells/well), or 

24-well plates (5x105 cells/well). After 6 hours of incubation at 37°C in a moist 

atmosphere of 5% CO2 and 95% air, non-adhering cells on each plate were removed by 

rinsing with phosphate-buffered saline (PBS). The attached macrophages were cultured 

in different media for 12 hours or 48 hours depending on the experiments performed, as 

described below. When high amounts of cells were needed (analysis for HIF 

accumulation and NF-κB activity), macrophages were derived from bone marrow 



 

precursors as described before10. Briefly, bone marrow cells (2x106 cells/ml) were 

cultured in a volume of 5 ml in a 10 cm Petri dish (non tissue culture treated, bacterial 

grade) for 7 to 10 days in DMEM supplemented with 20% FBS and 30% L929 

conditioned medium as a source of M-CSF. The cells obtained in those cultures are 

uniformly macrophages. Tamoxifen-inducible PHD2 haplodeficient pMØ 

(PHD2Rosa26CreERT;lox/wt) were isolated as described above. After 8 hours in culture 

(RPMI, 10% FBS), pMØ were washed twice with PBS and treated with or without 2 µM 

4-hydroxytamoxifen (4-OHT, Sigma) in complete medium for 48 hours to allow Cre 

recombinase activity. Cells were then washed and kept in culture for other 48 hours 

before mRNA isolation and gene expression analysis.  

QUANTITATIVE PCR ANALYSIS: In order to investigate gene expression in pMØ, 

quantitative RT-PCR was performed. After preparing pMØ, the cells were cultured in 

normoxic condition for 12 hours and RNA was extracted. To analyze the expression 

levels of chemoattractants in the adductor, tissues were collected at baseline or 24 

hours post-ischemia and RNA was extracted. Macrophages and ECs were freshly 

sorted from dissected adductors as described below and RNA was extracted. 

Quantitative RT-PCR was performed with commercially available or home-made 

primers and probes for the studied genes. The assay ID (Applied Biosystems, Foster 

City, CA) or the sequence of primers and probes (when home-made) are listed in 

Supplementary Table 5. RNA levels of Tie-2, SDF1, and PDGFB after inhibition of NF-

kB pathway were measured by RT-PCR on pMØ exposed for 12 hours to 500 nM 6-

amino-4-(4-phenoxyphenylethylamino)quinazoline.  

PROTEIN EXTRACTION AND IMMUNOBLOT: Protein extraction was performed using 8M urea 

buffer (10% glycerol, 1% SDS, 5 mM DTT, 10mM Tris-HCl, pH 6.8) as previously 

described1. Nuclear proteins were extracted in 1% SDS buffer upon cytoplasmic 

separation by using a hypotonic lysis buffer (10 mM KCl, 10 mM EDTA, 0.5% NP40, 10 

mM HEPES, pH=8, supplemented with phosphatase and protease inhibitors, from 

Roche). Signal was detected using ECL system (Invitrogen) according to the 

manufacture’s instructions. The following antibodies were used: rabbit anti-HIF-1α 

(Novus), rabbit anti-p105/50, rabbit anti-HIF-2α (Abcam), PM9 rabbit anti-HIF-2α (from 



 

Dr. Maxwell), mouse anti-vinculin (Sigma), rabbit anti-lamin A/C, rabbit anti-p65 (Cell 

Signaling).  

TRANSDUCTION AND TRANSFECTION OF BONE MARROW DERIVED MACROPHAGES AND LUNG 

ENDOTHELIAL CELLS: To express an inducible NF-κB responsive firefly luciferase 

reporter, commercially available lentiviral vector particles (LV) were used (Cignal Lenti 

NF-κB Reporter; SABiosciences). 2.5x105 bone marrow derived macrophages and 105 

primary lung endothelial cells (isolated as previously described1) were seeded in a 24-

well plate in DMEM 10% FBS or M199 20% FBS for 8 hours. Cells were transduced 

with 108 TU/ml. Eight hours after transduction, the medium was replaced. After 48 

hours, cells were stimulated with TNFα (20 ng/mL) for 8 hours and the same amount of 

protein extract was read in a luminometer. For PHD3 silencing, siRNA oligonucleotides 

were designed using the Invitrogen online siRNA design tool 

(http://rnaidesigner.invitrogen.com). The following sequences (sense strands) and target 

positions were used: PHD3 siRNA: 5’-GCCGGCUGGGCAAAUACUAUGUCA-3’; 

scramble siRNA:5’-CACCGCTTAACCCGTATTGCCTAT-3’. In brief, one day after the 

transduction of macrophages with LV, cells were transfected using Lipofectamine 2000 

(Invitrogen) according to the manufacturer’s instructions. Preparation of the 

oligonucleotide-Lipofectamine 2000 complexes was done as followed: 25 pmol siRNA 

oligonucleotide (stock: 20 µM) was diluted in 50 µl Opti-MEM I reduced serum medium. 

Lipofectamine 2000 (1.5 µl) was diluted in 50 µl Opti-MEM I reduced serum medium and 

incubated for 5 minutes at room temperature. siRNA oligonucleotides were gently mixed 

with Lipofectamine 2000 and allowed to incubate at room temperature for 20 minutes to 

form complexes. Just before transfection, the cell culture medium was removed and 

cells were rinsed twice with serum-free Opti-MEM I medium. The Lipofectamine 2000-

siRNA oligonucleotide complexes were added to each well in 400 µl of serum-free Opti-

MEM medium for 5 hours. Afterwards, cells were incubated in complete medium for 48 

hours at 37°C in a CO2 incubator and assayed for gene knockdown (RT-PCR) and 

luciferase activity. To assess if the increased NF-κB activity observed in PHD2+/- 

macrophages was dependent on the hydroxylase activity of PHD2, 48h before 



 

transduction, 4x106 bone marrow derived macrophages were resuspended in 240 µl of 

Opti-MEM and were electroporated (250V, 950uF,∞ Ω) with 7 µg of plasmids 

expressing a wild type PHD2 (PHD2wt) or a PHD2 containing a mutation at the catalytic 

site (PHD2H313A). Silencing of the canonical pathway subunits p65 (RelA) and p50 (NF-

κB1) was achieved by electroporation with specific siRNAs. Briefly, 48h before 

transduction, 2.4x106  bone marrow derived macrophages were resuspended in 320 µl 

of Opti-MEM and were electroporated (250V, 950µF, ∞Ω) with 60 pmol of siRNA for 

either scramble, p65, p50, or combination of p50 and p65. For higher efficiency of 

silencing, two different siRNA sequences for each respective gene were designed 

(http://rnaidesigner.invitrogen.com). For p65: 5’-TGTCTGCACCTGTTCCAAATT-3’ and 

5’-TGCTGATGGAGTACCCTGATT-3’; for p50: 5’-GAATACTTCATGTGACTAATT-3’ 

and 5’-CAAAGGTTATCGTTCAGTTTT-3’; for the scramble siRNA: 5’-

CACCGCTTAACCCGTATTGCCTAT-3’.  

CELL MIGRATION AND VIABILITY ASSAYS: Migration and proliferation of SMCs and ECs 

were assessed by using 8µm-pore Transwell permeable plate for migration assays and 

0.4µm-pore Transwell permeable plate for proliferation assays (Corning Life Science). 

To determine cell migration towards the factors secreted by pMØ, pMØ were cultured in 

the lower chamber for 12 hours in RPMI 1% FBS or in M-199 1% FBS (migration 

assay), or 48 hours in DMEM-F12 1% FBS or in M-199 1% FBS (proliferation assay). 

For migration assays, hCASMC (Human coronary artery smooth muscle cells; from 

Lonza) and HUVEC (Human umbilical vein endothelial cells; from Lonza) were starved 

for 12 hours in their own medium at 1% FBS and then seeded in the upper chamber 

(5x103 cells in 200 µl of medium 1% FBS), with or without AMD3100 (1 µg/ml, Sigma-

Aldrich, Dorset, U.K) and/or imatinib (2.5 µg/ml, Novartis). SMCs and HUVECs were 

incubated for 2 days or 24 hours respectively, and migrated cells were fixed with 4% 

PFA, stained with 0.25% crystal violet/ 50% methanol and counted under the 

microscope. VEGF (100 ng/mL, R&D), PDGFB (100 ng/mL, R&D), or SDF1 (100 ng/mL, 

R&D) were used as positive controls. For cell growth assays, RAOSMC (Rat Aortic 

Smooth Muscle Cells) and HUVEC were seeded on the upper chambers (5x103 cells/ 

transwell) and cultivated with pMØ for 24 hours in DMEM-F12 1% FBS or M-199 1% 



 

FBS for RAOSMC and HUVEC cells, respectively. The cell proliferative ability was then 

analyzed using WST-1 Cell Proliferation Assay (Roche Applied Biosciences) according 

to the manufacturer instructions. Alternatively, WT and PHD2+/- pMØ were seeded in the 

lower chamber of a Transwell and transduced with lentiviral vectors (108 TU/ml; Sigma) 

carrying an shRNA against SDF1, PDGFB, or a scramble control (purchased from 

Sigma). Sixty hours after macrophage transduction, SMC migration or growth assays 

were performed by seeding the SMCs in the upper side of the Transwell as described 

above. 

SMC DIFFERENTIATION ASSAY: pMØ were seeded in a 24-well plate with DMEM F-12 5% 

FBS. Conditioned medium was harvested after 2 days and supplemented with 25 mM 

HEPES. RAOSMC were seeded in a 24-well plate (80x103 cells/ well) and incubated for 

5 hours at 37°C in a moist atmosphere of 5% CO2 and 95% air. After 2 hours of 

starvation in DMEM-F12 1% FBS, SMC were stimulated with conditioned medium from 

WT and PHD2+/- pMØ. After 24 hours, differentiation status of the SMCs was assessed 

by RT-PCR. 

FACS ANALYSIS AND MACROPHAGE AND ENDOTHELIAL CELL SORTING: FACS analysis of 

circulating TEMs was performed in 200 µl of peripheral blood, harvested by eye 

bleeding at baseline or 3 days after femoral artery ligation. Blood samples were 

incubated for 20 minutes at 4°C with a rat APC-conjugated anti-CD115, a mouse PE-

conjugated anti-Tie2 (eBiosciences), or a rat FITC conjugated anti-Gr1 (BD-

pharmingen). For cell sorting of adductor macrophages and ECs, the adductors were 

dissected, dissociated mechanically, and digested using collagenase I for 45 minutes at 

37°C. For macrophage sorting, the digested cell suspension was incubated for 15 

minutes with mouse anti-CD16/CD32 mAb (Fc Block™, BD-pharmingen) and stained 

with rat FITC-conjugated anti-F4/80 antibody (Serotec) for 20 minutes at 4 °C. 

CD31+CD45- endothelial cells were sorted from the digested adductor cell suspension 

after incubation with rat APC-conjugated anti-CD31 and rat FITC-conjugated anti-CD45 

(BD-pharmingen) for 20 minutes at 4 °C.  

BONE MARROW (BM) TRANSPLANTATION AND HEMATOLOGICAL ANALYSIS: Balb/c WT and 

PHD2+/- recipient mice were irradiated with 7.5 Gy. Subsequently, 5 x 106 bone marrow 



 

cells from green fluorescent protein+ (GFP+) WT or GFP+ PHD2+/- mice were injected 

intravenously via the tail vein. After one week, saline or AMD3100 (5mg/kg) was 

administered intravenously and saline or imatinib (50mg/ml) was administered by oral 

gavage for 4 weeks. Femoral artery ligation, treadmill running test, and bismuth 

angiography were performed at 6 weeks after bone marrow reconstitution. Red and 

white blood cell count was determined using a hemocytometer (Cell-Dyn 3700, Abbott) 

on peripheral blood collected in heparin by retro-orbital bleeding. To assess the effect of 

acute deletion of macrophage borne PHD2 on arteriogenesis, PHD2Rosa26CreERT;lox/wt 

bone marrows were transplanted into lethally irradiated WT recipient mice. After five 

weeks, transplanted mice were injected i.p. with tamoxifen (1 mg/mouse; Sigma) or 

vehicle for 5 days. TEM quantification and femoral artery ligation were performed 10 

days after tamoxifen treatment as explained above.  

BONE MARROW-DERIVED, LINEAGE NEGATIVE HEMATOPOIETIC CELL ISOLATION, 
TRANSDUCTION AND TRANSPLANTATION: Six to 12-week–old WT or PHD2+/- Balb/C mice 

were killed and their BM was harvested by flushing the femurs and the tibias. Lineage-

negative cells (lin– cells) enriched in hematopoietic stem/progenitor cells (HS/PCs) were 

isolated from BM cells using a cell purification kit (StemCell Technologies) and 

transduced by concentrated lentiviral vectors. Briefly, 106 cells/ml were pre-stimulated 

for 4-6 hours in serum-free StemSpan medium (StemCell Technologies) containing a 

cocktail of IL-3 (20 ng/ml), SCF (100 ng/ml), TPO (100 ng/ml), and FLT-3L (100 ng/ml) 

(all from Peprotech), and transduced with 108 TU/ml of two lentiviral vectors (LVs), 

Tie2:tk (to deplete TEMs in transplanted mice) and PGK:GFP (to assess the efficiency 

of BM reconstitution in transplanted mice). After 12 hours, 106 cells were washed and 

infused into the tail vein of lethally irradiated 6-week-old female Balb/C mice (radiation 

dose: 7.5 Gy).  

VECTOR COPY NUMBER ANALYSIS: Transduced lin– cells were cultured and collected after 

9 days while blood from the transplanted mice was collected 4 weeks after HS/PCs tail 

vein injection to measure the number of integrated LV copies/cell genome (vector copy 

number, VCN) by RT-PCR as previously described11. Briefly, for vector copy number 

(VCN) analysis, we performed RT-PCR using custom TaqMan assays specific for β-

actin, HSV-tk, or HIV-gag sequences (Applied Biosystems). Standard curves for HSV-tk 



 

(contained by Tie2:tk LV) or HIV-gag (contained by both Tie2:tk and PGK:GFP LVs) 

were obtained from genomic DNA samples containing known amounts of integrated LV. 

The VCN of genomic DNA standard curves was determined using custom TaqMan 

assays specific for LVs (Applied Biosystems). The SDS 2.2.1 software was used to 

extract raw data (CT) and to perform VCN analysis. To calculate VCN, we used the 

following formula: VCN = VCN(standard curve) * ng of "LV of interest" / ng of β-actin, where 

"LV of interest" is either HIV-gag or HSV-tk. The VCN of PGK:GFP LV was obtained by 

subtracting the VCN of HSV-tk from the total HIV-gag VCN.  

STATISTICS: The data were represented as mean ± SEM of the indicated number of 

measurements. Statistical significance was calculated by t test where indicated (Prism 

v4.0b), with p<0.05 considered statistically significant. 
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SUPPLEMENTARY TABLES 

 
SUPPLEMENTARY TABLE 1: GENE EXPRESSION IN WT AND PHD2+/- ENDOTHELIAL CELLS. 

 

 WT PHD2+/- 

GENE BASELINE LIGATED BASELINE LIGATED 

Phd2 1 ± 0.16 1.2 ± 0.17  0.5 ± 0.03 * 0.5 ± 0.09 * 

Tie2 1 ± 0.02 1.1 ± 0.39 1.1 ± 0.13 0.9 ± 0.40 

Ang1 1 ± 0.25 1 ± 0.5 1.25 ± 0.5 1.25 ± 0.75 

Ang2 1 ± 0.19 1.5 ± 0.05 # 1.04 ± 0.09 1.5 ± 0.16 # 

Cxcl1 1 ± 0.38 2.5 ± 0.71 1.3 ± 0.29 2.8 ± 0.80 

Cxcl2 n.d.  n.d.  

Cxcr4 1 ± 0.11 0.6 ± 0.11 # 0.9 ± 0.17 0.5 ± 0.08 # 

Cx3cr1 1 ± 0.13 0.6 ± 0.13  0.9 ± 0.13 0.6 ± 0.11 

hgf 1 ± 0.01 1.2 ± 0.36 1.2 ± 0.11 1.0 ± 0.25 

Pdgfb 1 ± 0.06 0.9 ± 0.08 0.9 ± 0.15 0.9 ±0 .19 

Plgf 1 ± 0.16 3.1 ± 0.84 1.5 ± 0.38 3.3 ± 0.56 

Rantes n.d.  n.d.  

Ccl17 n.d.  n.d.  

Ccl22 n.d.  n.d.  

Flk1 1 ± 0.14 0.4 ± 0.09 # 0.86 ± 0.09 0.4 ± 0.04 # 

Flt1 1 ± 0.26 0.7 ± 0.17 0.9 ± 0.47 0.7 ± 0.24 

sFlt1 1 ± 0.10 0.7 ± 0.03 1.0 ± 0.10 0.7 ± 0.12 

Nrp1 1 ± 0.04 0.4 ± 0.08 # 0.9 ± 0.38 0.5 ± 0.05 # 

Cdh5 1 ± 0.06 0.8 ± 0.06 1.2 ± 0.17 0.8 ± 0.17 

Vegfa 1 ± 0.5 1 ± 0.30 0.8 ± 0.20 1.2 ± 0.20 

Mmp2 1 ± 0.30 1.5 ± 0.42 1.2 ±0.37 1.4 ± 0.36 

Mmp9 1 ± 0.48 0.6 ± 0.26 1.2 ±0.68 0.5 ± 0.11 

Sdf1 1 ± 0.12 1.2 ± 0.26 0.8 ±0.12 1,0 ± 0.22 

Tgfβ 1 ± 0.04 0.8 ± 0.05 0.9 ±0.09 1.0 ± 0.38 

IL1β n.d.  n.d.  



 

IL6 1 ± 0.23 1.6 ± 0.28 1.1 ± 0.14 1.72 ± 0.31 

Nos3 1 ± 0.17 0.8 ± 0.11 0.8 ± 0.16 0.8 ± 0.14 

Mcp1 1 ± 0.18 5.4 ± 0.13 # 0.9 ± 0.16 6.0 ±0.13 # 

Tnfα 1 ± 0.21 0.8 ± 0.28 1.0 ± 0.18 0.7 ± 0.15 

Cxcl10 1 ± 0.23 2.1 ± 0.19 # 1.1 ± 0.41 2.4 ± 0.27 # 

IL12α n.d.  n.d.  

IFNβ n.d.  n.d.  

Cox2 1 ± 0.12 1.2 ± 0.04 1.1 ± 0.2 1.1 ± 0.2 

Jagged1 1 ± 0.09 0.9 ± 0.07 1.1 ± 0.10 1.0 ± 0.15 

Icam1 1 ± 0.11 0.8 ± 0.13 0.8 ± 0.09 0.6 ± 0.08 

The data represent the expression analysis of endothelial cells, freshly sorted from WT 

and PHD2+/- adductor muscles at baseline and 72 hours after femoral artery occlusion 

(N=4-8, P<0.05). Data are normalized towards the expression levels of WT ECs at 

baseline; n.d.= not determined. Asterisks denote statistical significance versus WT. 

Hash signs denote statistical significance compared to the baseline. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

SUPPLEMENTARY TABLE 2: COLLATERALIZATION IN MICE HAPLODEFICIENT FOR PHD2 IN 

HEMATOPOIETIC CELLS AND/OR ENDOTHELIAL CELLS. 
 

Donor PHD2Tie2Cre;wt/wt PHD2Tie2Cre;lox/wt PHD2Tie2Cre;wt/wt PHD2Tie2Cre;lox/wt 

Recipient PHD2Tie2Cre;wt/wt PHD2Tie2Cre;wt/wt PHD2Tie2Cre;lox/wt PHD2Tie2Cre;lox/wt 

2nd generation 

collaterals 
5.9 ± 1.0 13.3 ± 1.4 *# 8.2 ± 0.7 14.4 ± 1.6 *# 

3rd generation 

collaterals 
3.8 ± 0.7 7.2 ± 1.3 *# 2.7 ± 1.1 7.1 ± 1.0 *# 

Reciprocal bone marrow transplantation in lethally irradiated mice reveals that the 

enhanced arteriogenesis of PHD2 heterozygous mice is specifically caused by loss of 

one PHD2 allele in bone marrow derived hematopoietic cells (green column) but not in 

endothelial cells (pink column) compared to WT controls (yellow column). Combined 

deletion of one PHD2 allele in both the hematopoietic and EC lineage (light blue 

column) does not modify the biological effect elicited on collateral arteries by PHD2 

haplodeficient hematopoietic cells alone. Asterisks denote statistical significance versus 

PHD2Tie2Cre;wt/wt àPHD2Tie2Cre;wt/wt. Hash signs denote statistical significance compared 

to PHD2Tie2Cre;wt/wt àPHD2Tie2Cre;lox/wt . 

 

  

 

 

 

 

 

 



 

SUPPLEMENTARY TABLE 3: HETEROZYGOUS DEFICIENCY OF PHD2 IN ENDOTHELIAL CELLS OR 

SMOOTH MUSCLE CELLS DOES NOT CONFER COLLATERAL PRECONDITIONING.  

 

 PHD2Cre;wt/wt PHD2Cre;wt/lox 

Promoter of Cre 

recombinase 
2nd generation 

collaterals  

3rd generation 

collaterals  

2nd generation 

collaterals  

3rd generation 

collaterals  

VE-Cadherin  9.0 ± 0.6 10.8 ± 1.3 9.7 ± 1.1 11.0 ± 2.0 

PDGFRB 8.2 ± 0.9 7.4 ± 1.4   7.2 ± 1.1 6.9 ± 1.6 

The data represent the number of secondary (light grey column) and tertiary (light blue 

column) collateral branches in mice haplodeficient for PHD2 in ECs or SMCs at 

baseline. Mice carrying one floxed PHD2 allele were intercrossed with deleters 

expressing the Cre recombinase under an EC specific promoter, i.e. VE-Cadherin, or a 

SMC specific promoter, i.e. PDGFRB.  

 

 

SUPPLEMENTARY TABLE 4: VECTOR COPY NUMBER IN BLOOD CELLS OF WT TIE2:TK-BMT AND 

PHD2+/- TIE2:TK-BMT MICE.  

 

 HSV-tk HIV-gag PGK:GFP 

WT Tie2:tk-BMT 8.93 ± 0.40 15.79 ± 0.02 6.85 ± 0.43 

PHD2+/- Tie2:tk-BMT 10.53 ± 0.30 19.39 ± 0.01 8.85 ± 0.31 

The data represent the number of integrated LV copies per cell genome (vector copy 

number, VCN ± SEM) of HSV-tk and HIV-gag in blood cells, collected at 4 weeks after 

transplantation from WT Tie2:tk-BMT and PHD2+/- Tie2:tk-BMT mice. The VCN of 

PGK:GFP was obtained by subtracting the VCN of HSV-tk from the total HIV-gag VCN 

(N=6; P=NS). See Experimental Methods for technical details.  



 

SUPPLEMENTARY TABLE 5: LIST OF PRIMERS USED FOR RT-PCR.  

 

GENE PROBE FORWARD REVERSE 

Nos2 

ACT-ATA-ACT-

CCA-TCA-AAA-

GGA-GTG-GCT-

CCC-AG 

AGC-CCG-GGA-

CTT-CAT-CAA-TC 

TGA-AGC-CGC-TGC-

TCA-TGA-G 

Nos3	  

ACT-ATA-ACT-

CCA-TCA-

AAAGGA-GTG-

GCT-CCC-AG 

AGC-CCG-GGA-

CTTCAT-CAA-TC 

TGA-AGC-CGC-

TGCTCA-TGA-G 

Icam1 
CCT-CAT-GCA-

AGG-AGG-ACC-

TCA-GCC-T 

GTC-CGT-GCA-

GGT-GAA-CTG-

TTC 

CTT-TCA-GCC-ACT-

GAG-TCT-CCA-A 

Pdgfb 

CCC-ATC-TTC-

AAG-AAG-GCC-

ACA-GTG-ACC-T 

CGG-TCC-AGG-

TGA-GAA-AGA-

TTG 

CGT-CTT-GGC-TCG-

CTG-CTC 

Egln1/Phd2 
ACG-AAA-GCC-

ATG-GTT-GCT-

TGT-TAC-CCA 

GCT-GGG-CAA-

CTA-CAG-GAT-

AAA-C 

CAT-AGC-CTG-TTC-

GTT-GCC-T 

Flt4 
CGG-CGA-GCC-

CCA-CTT-GTC-CA 

GGT-TCC-TGA-

TGG-GCA-AAG-G 

TCA-GTG-GGC-TCA-

GCC-ATA-GG 

sFlt1 
TTT-GCC-GCA-

GTG-CTCACC-

TCT-AAC-G 

GAA-GAC-ATC-

CTTCGG-AAG-

CAC-GAA 

TTG-GAG-ATC-

CGAGAG-AAA-ATG-G 

Cxcl12/Sdf1 
CGG-TAA-ACC-

AGT-CAG-CCT-

GAG-CTA-CCG 

CCG-CGC-TCT-

GCAT-CAG-T 

GCG-ATG-TGG-CTC-

TCGAAG-A 



 

Tgfβ 
TGC-TAA-AGA-

GGT-CAC-CCG-

CGT-GCT 

GAG-CCC-GAA-

GCG-GAC-TAC-T 

GCG-TTG-TTG-CGG-

TCC-AC 

For the following genes with sequence ID (enclosed between brackets), commercially 

available primers were ordered from Applied Biosystems 

(https://products.appliedbiosystems.com): Ang1 (Mm00456498_m1), Ang2 

(Mm00545822_m1), Arg1 (Mm00475991_m1), Calponin-1 (Mm00487032_m1), Ccl17 

(Mm00516136_m1), Ccl22 (Mm00436439_m1), Cox2 (Mm00478374_m1), Cxcl1 

(Mm00433859_m1), Cxcl10 (Mm99999072_m1), Cxcl2 (Mm00436450_m1), Cx3cr1 
(Mm0262011_s1), Cxcr4 (Mm01292123_m1), Fizz (Mm00445109_m1), Flt1 

(Mm01210866_m1), Hgf (Mm01135185_m1), Ifnβ (Mm00439552_s1), 

IL12α (Mm00434169_m1), IL1β (Mm01336189_m1), IL6 (Mm01210733_m1), Mcp1 

(Mm00441242_m1), Mmp2 (Mm00439506_m1), Mmp9 (Mm00442991_m1), Nrp1 

(Mm01253210_m1), NmMHC (Mm00805131_m1), Egln2/Phd1 (Mm00519067_m1), 

Egln3/Phd3 (Mm00472200_m1), Plgf (Mm00435613_m1), Rantes 

(Mm01302428_m1), SM22α (Mm00441660_m1), Smoothelin (Mm00449973_m1), 

Tie2 (Mm00443243_m1), Tnfα (Mm00443258_m1), Vegfa (Mm00437304_m1), Ym1 

(Mm00657889_mH), αSMA (Mm01546133_m1), Jagged1 (Mm00496902_m1), Flk1 

(Mm01222419_m1), Cdh5	  	  (Mm00486938_M1). 



 

SUPPLEMENTARY NOTES 

 

SUPPLEMENTARY NOTE 1: To measure the silencing of SDF1 and PDGFB, we performed 

RT-PCR on WT and PHD2+/- pMØ at 4 days after transduction with a lentiviral vector 

carrying an shRNA against SDF1 or PDGFB. Compared to their scramble control, the 

knockdown for SDF1 was 77 ± 5.0% and 71 ± 2.6%, and for PDGFB 81 ± 3.2% and 87 

± 5.9% in WT and PHD2+/- pMØ, respectively (N=4; P<0.01).   

SUPPLEMENTARY NOTE 2: We also cotransduced WT and PHD2+/- bone marrow cells 

with a lentiviral vector ubiquitously expressing GFP under the PGK promoter, in order to 

measure bone marrow engraftment in the transplanted mice by scoring GFP 

expression. By using flow cytometry of GFP+ cells and RT-PCR analysis of integrated 

vectors in blood cells, we found that PHD2 haplodeficiency in bone marrow 

hematopoietic cells did not preclude their full engraftment upon transplantation in 

irradiated mice (GFP+ cells, % of leukocyte population: 92.6 ± 2.5% in WT Tie2:tk-BMT 

mice and 89.3 ± 5.5% in PHD2+/- Tie2:tk-BMT mice; N=6; P=NS; and Supplementary 

Table 4). 

SUPPLEMENTARY NOTE 3: Four weeks after transplantation, WT and PHD2+/- Tie2:tk-BMT 

mice were treated with either saline or GCV (50 mg/kg daily) for ten days before and 

three days after femoral artery ligation. The depletion of TEMs was assessed by F4/80 

and Tie2 double staining of baseline and ligated adductor sections. We found that GCV 

treatment reduced the density of F4/80+Tie2+ cells by 46 ± 10% in WT Tie2:tk-BMT 

mice and 58 ± 11% in PHD2+/- Tie2:tk-BMT mice at baseline (N=6; P<0.001), and by 39 

± 6% in WT Tie2:tk-BMT mice and 68 ± 5% in PHD2+/- Tie2:tk-BMT mice 3 days post-

ligation (N=6; P<0.001); similar levels of TEM depletion were obtained at 7 days post-

ligation carrying on the GCV treatment for the entire period of ischemia (not shown). 

SUPPLEMENTARY NOTE 4: To address whether the induction of PHD3 rescued the 

activation of NF-κB pathway by loss of PHD2, we silenced PHD3 in PHD2LysCre;wt/wt, 

PHD2LysCre;lox/wt and PHD2LysCre;lox/lox macrophages carrying the NF-κB-responsive 



 

luciferase reporter. The knockdown of PHD3 was 63 ± 0.03%, 60 ± 0.04%, and 37 ± 

0.01% in PHD2LysCre;wt/wt, PHD2LysCre;lox/wt, and PHD2LysCre;lox/lox macrophages, 

respectively, compared to their scramble controls (N=4; P<0.001).   

SUPPLEMENTARY NOTE 5: To dissect the axis of NF-κB activation in PHD2+/- 

macrophages, we silenced the main components of the canonical pathway, i.e. p65 

(RelA) and p50 (NF-κB1) in macrophages carrying the NF-κB-responsive luciferase 

reporter. The efficiency of knockdown for p65 was 52.7% ± 1.4% and 50.2% ± 0.4% in 

WT and PHD2+/- macrophages compared to their scramble control. Respectively, the 

efficiency of knockdown for p50 was 49.6% ± 0.9% and 59.1% ± 1.2% in WT and 

PHD2+/- macrophages compared to their scramble control (N=4, p<0.001). 
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SUPPLEMENTARY FIGURE 1: PHD2 HAPLODEFICIENCY PREVENTS ISCHEMIC DAMAGE

A-D, Staining for 8-hydroxy-2-deoxyguanosine (8-OHdG; red) and cell nuclei (DAPI, blue) in WT and PHD2+/- crural muscles before and after ischemia (12h). 
At baseline, 8-OHdG+ area is similar in both genotypes (A,B). After occlusion, WT (C), but not PHD2+/- crural muscles present enhanced oxidative stress. E, 
4XDQWL¿FDWLRQ�RI�WKH���2+G*+ area represented in A-D (N=8; P=0.02). F,G, Cell proliferation assessed by BrdU immunostaining indicates reduced muscle 
regeneration in PHD2+/- mice (G) 72 hours post-ischemia. H,�4XDQWL¿FDWLRQ�RI�%UG8+ cells in the crural muscle represented in F,G (N=3; P=0.02). I, J, Ves-
sel density (I) and area (J) at baseline and after femoral artery ligation in the soleus of WT and PHD2+/-�PLFH��1 �����3��������6FDOH�EDUV�GHQRWH����ȝP�LQ�

$�%�&�'�)�DQG�*��$VWHULVN�LQ�(�+�,��DQG�-�GHQRWHV�VWDWLVWLFDO�VLJQL¿FDQFH��3�������FRPSDUHG�WR�:7��+DVK�VLJQV�LQ�(�,��DQG�-�GHQRWH�VWDWLVWLFDO�VLJQL¿FDQFH�

(P<0.05) towards baseline. 
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SUPPLEMENTARY FIGURE 2: PHD2 HAPLODEFICIENCY DOES NOT AFFECT 
CAPILLARY VESSELS
 
A,B, Capillary density (A) and  total capillary area (B) in the adductor of WT and PHD2+/- mice 
at baseline (N=8; P=NS). C, Number of small vessels (<200 m in diameter) in the thigh 
of non-ligated WT and PHD2+/- mice by micro-CT angiography (N=6; P=NS). D, Capillary 
density in WT and PHD2+/- hearts at baseline (N=5; P=NS). E, Number of small vessels 
(<200 m in diameter) in WT and  PHD2+/- hearts at baseline by micro-CT angiography (N=5; 
P=NS). 
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SUPPLEMENTARY  FIGURE 3: PHD2 HAPLODEFICIENCY DOES NOT CHANGE THE EXPRESSION OF 
CHEMOATTRACTANTS 

A-C, Histograms showing comparable expression (qRT-PCR) of MCP1 (A), angiopoietin-1 (B) and angiopoietin-2 
(C) in adductor muscles of non-ligated and ligated WT and PHD2+/- mice (N=6-18; P=NS). MCP1, angiopoietin-1 
and angiopoietin-2 levels increased after ligation and were comparable in both genotypes (N=6-18; P<0.005). 
+DVK�VLJQV�LQ�$��%�DQG�&�GHQRWH�VWDWLVWLFDO�VLJQL¿FDQFH��3�������YHUVXV�EDVHOLQH�
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SUPPLEMENTARY FIGURE 4: SILENCING OF SDF1 AND PDGFB IN PHD2+/- MACROPHAGES REDUCES 
SMC MIGRATION AND GROWTH IN VITRO

A,B,  WT and PHD2+/- macrophages were transduced with lentiviral vectors carrying a shRNA against  SDF1 or 
PDGFB. A, Knock-down of SDF1 or PDGFB alone abrogates SMC migration induced by PHD2+/- macrophages, 
whereas combined silencing is more effective  (N=7-12; P<0.05). B, Single knockdown of  SDF1 or PDGB de-
creases SMC growth induced by PHD2+/- macrophages. However, the combined  silencing does not have an ad-
GLWLYH�HIIHFW��$�VFUDPEOH�VK51$�ZDV�XVHG�DV�FRQWURO�LQ�$�%���$VWHULVN�GHQRWHV�VWDWLVWLFDO�VLJQL¿FDQFH�YHUVXV�:7��

+DVK�VLJQV�GHQRWH�VWDWLVWLFDO�VLJQL¿FDQFH�WRZDUGV�VFUDPEOH��'ROODU�VLJQV�GHQRWH�VWDWLVWLFDO�VLJQL¿FDQFH�WRZDUGV�

the baseline and either treatment alone.
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SUPPLEMENTARY FIGURE 5: FLOW CYTOMETRIC ANALYSIS OF CIRCULATING MONOCYTES

A-C,�%ORRG�PRQRQXFOHDU�FHOOV�IURP�:7�PLFH�ZHUH�JDWHG�DV�LQ�WKH�LQVHW�LQ�$��DQG�DXWRÀXRUHVFHQFH�RI�WKH�JDWHG�FHOOV�ZDV�DQDO\]HG�XVLQJ�WKH�$3&��3(�

and FITC channels. D-F,�%ORRG�PRQRQXFOHDU�FHOOV�IURP�:7�PLFH�ZHUH�JDWHG�DV�LQ�WKH�LQVHW�LQ�'�DQG�DQDO\]HG�IRU�WKH�H[SUHVVLRQ�RI�WKH�PRQRF\WH�PDUNHU�

CD115 (D). CD115+�PRQRF\WHV��JDWH�LQ�'��ZHUH�WKHQ�DQDO\]HG�IRU�WKH�H[SUHVVLRQ�RI�7LH���(���&'���+7LH�+�7(0V��JDWH�LQ�(��ZHUH�IXUWKHU�DQDO\]HG�IRU�WKH�
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SUPPLEMENTARY FIGURE 6: ACUTE DELETION OF ONE PHD2 ALLELE PROMOTES ARTERIOGENIC MACROPHAGES

A, PHD2Rosa26CreERT;lox/wt�SHULWRQHDO�PDFURSKDJHV�WUHDWHG�ZLWK���ȝ0���K\GUR[\WDPR[LIHQ�IRU����KRXUV�SUHVHQW�LQFUHDVHG�H[SUHVVLRQ�RI�

3'*)%��6')���DQG�7LH��UHVHPEOLQJ�WKH�SKHQRW\SH�RI�3+'�����PDFURSKDJHV��1 ���3��������B, WT mice transplanted with the bone 
PDUURZ�RI�3+'�Rosa26CreERT;lox/wt mice (HERosa26CreERT����:7��SUHVHQW�LQFUHDVHG�QXPEHU�RI�7LH�+�FLUFXODWLQJ�PRQRF\WHV��&'���+Tie2+ 
GRXEOH�SRVLWLYH�FHOOV��DIWHU�WDPR[LIHQ�WUHDWPHQW��1 ���3��������C,�7DPR[LIHQ�WUHDWHG�+(Rosa26CreERT    WT mice present increased 
QXPEHU�RI��QG�DQG��UG�JHQHUDWLRQ�FROODWHUDO�YHVVHOV�FRPSDUHG�WR�XQWUHDWHG�PLFH�DW�EDVHOLQH��1 �������3��������D,����KRXUV�DIWHU�
IHPRUDO�DUWHU\�OLJDWLRQ��WDPR[LIHQ�WUHDWHG�+(Rosa26CreERT����:7�PLFH�SUHVHQW�UHGXFHG�QHFURWLF�DUHD�FRPSDUHG�WR�XQWUHDWHG�DQLPDOV��

$VWHULVNV�LQ�$�%�&��DQG�'�GHQRWH�VWDWLVWLFDO�VLJQL¿FDQFH��3�������FRPSDUHG�WR�XQWUHDWHG�+(Rosa26CreERT����:7�PLFH��
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SUPPLEMENTARY FIGURE 7: PHD EXPRESSION IN PHD2 HETEROZYGOUS AND PHD2 
NULL MACROPHAGES
 
RNA levels of PHD1, PHD2, and PHD3 in macrophages from PHD2LysCre;wt/wt, PHD2LysCre;lox/wt, 
and PHD2LysCre;lox/lox (labeled as wt/wt, lox/wt, and lox/lox respectively) mice. As expected, PHD2 
OHYHOV�ZHUH�VLJQL¿FDQWO\�GHFUHDVHG�LQ�3+'�LysCre;lox/wt and PHD2LysCre;lox/lox macrophages. PHD1 
and PHD3 transcript levels were higher in PHD2 heterozygous and null macrophages (N=4; 
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SUPPLEMENTARY FIGURE 8: NF-KB IS  SELECTIVELY ACTIVATED IN PHD2+/- MACROPHAGES 

A, Histogram showing comparable NF- B activity in WT and PHD2+/- ECs at baseline; stimulation with 
TNF-  (20 ng/mL, 8 hours) unleashes NF- B activity to the same level in both genotypes (N=4, P< 0.05). 
B,� 3KDUPDFRORJLFDO� LQKLELWLRQ� RI�1)�ț%�DFWLYLW\� UHGXFHV� WKH� H[SUHVVLRQ� RI�3'*)%��6')��DQG�7LH�� LQ�
3+'�� KDSORGH¿FLHQW�PDFURSKDJHV� �1 ����� 3��������$VWHULVNV� GHQRWH� VWDWLVWLFDO� VLJQL¿FDQFH� �3�������

FRPSDUHG�WR�:7�YHKLFOH� WUHDWHG�PDFURSKDJHV��+DVK�VLJQV�GHQRWH�VWDWLVWLFDO�VLJQL¿FDQFH�FRPSDUHG�WR�

FRQWURO�LQ�$�RU�WR�:7�YHKLFOH�LQ�%��
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SUPPLEMENTARY FIGURE 9: SCHEME OF COLLATERAL ARTERIAL GROWTH IN WT AND PHD2+/- MICE 

Collateral vessels are preexisting small conduits (shown in panel a) that undergo growth and maturation in case of occlusion of the 
major arterial flow, a process named arteriogenesis. PHD2+/- mice are preadapted to ischemia and display enhanced 
collateralization at baseline (panel b). The absence of one PHD2 allele in monocytes unleashes NF-κB signals that expand the 
reservoir of Tie2-expressing monocytes (TEMs) in the blood. Once extravasated into the pericollateral region, they differentiate into 
Tie2-expressing macrophages and promote collateral vessel maturation and homeostasis. SDF1 and PDGFB production by TEMs 
induces smooth muscle cell/progenitor recruitment and proliferation, ultimately leading to more abundant, larger, thicker, mature, 
and functional collateral arteries. In ischemia, shear stress-induced cytokines recruit circulating TEMs in WT mice (panel c). Tissue 
infiltrating TEMs foster arteriogenesis in a NF-κB dependent fashion and newly formed collateral arteries will partly reestablish 
blood flow. In PHD2+/- mice, femoral artery occlusion also induces extravasation and recruitment of TEMs, but to a lower extent 
(panel d), likely because of their collateral vessel preconditioning at baseline. 
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