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Abstract

A local composition model based on the lattice theory and two-fluid theory, considering the excess heat capacity,
which is a modified Wilson equation, is developed for the excess Gibbs energy of aqueous polymer solutions. The
model represents a synergistic combination of the excess entropy for mixing molecules of different sizes and the
temperature dependent residual contribution, which combines the attractive interactions between solvent molecules
and the segments with the contribution of the excess heat capacity. The results of the extrapolation with respect
to molecular weight of phase equilibrium in aqueous polymer solutions with this model are very satisfactory, with
only two adjustable parameters.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Water soluble polymers have a variety of industrial applications, and are especially used for the separa-
tion and purification of biomolecules in aqueous two-phase systems (ATPS). Mixtures of poly(ethylene
glycol)(PEG)+dextran(DX)+water form a two phase liquid–liquid system to separate biomolecules, cell
organelles and viruses[1–3]. Recently, ATPS are combined with temperature induced phase separation, of-
fering an effective solution to the problems of polymer removal and recycling. Recently, a random copoly-
mer of ethylene oxide and propylene oxide (EOPO) named UCON is widely used to separate proteins,
nucleic acids, enzymes, and other biomolecules[4–6] for being economic favorable. For the thermody-
namic modeling of these separation methods, water is a special and key component and closely related with
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other two phase forming components. Therefore, water activity has been chosen as the objective in this re-
search. Because experimental phase equilibrium data are often missing, the availability of fast and reliable
predictive methods is a practical necessity for the design and optimization of most industrial processes.

ManyGE models have been developed in the past several decades[7–10]. The thermodynamic properties
of aqueous polymer solutions cannot be correlated by simple lattice models such as the Flory–Huggins
(F–H) theory, for the strong orientation—dependent interaction forces, such as hydrogen bonds. Heil and
Prausnitz[11] first introduced an equation for the excess Gibbs energy based on a non random distribution
of molecules into polymer solutions, which considered as the forerunner of recent practical successful
relations forGE. The only weakness of the Heil–Prausnitz treatment is the use of the Wilson relation for the
entropic contribution, which is a poor substitute for the corresponding Flory–Huggins term. A correlative
GE model[12], which used a combination of the F–H type expression for entropic and NRTL theory for the
local composition contribution, suggests that the model parameters are independent of temperature, chain
length and polymer concentration. Since the NRTL equation is one of the preferred models for evaluating
the enthalpic departures from ideality, Vetere[13] developed a predictive method based on the NRTL
equation for the solvent activity prediction of low molecular weight compounds. The results appeared to be
reliable both for correlation and prediction of vapor–liquid equilibrium (VLE) of a wide class of polymeric
mixtures. For the description of systems with strong, local interactions, there are several successful models
[14,15]. Recently, Wu et al.[16], based on these ideas, introduced the two-fluid theory, proposing a
modified NRTL model for evaluating the thermodynamic properties of polymer solutions. This model
appears to be accurate both for correlation and prediction of the VLE of homologous polymer solutions.

In molecular modeling, it is very common to focus directly on the entropic and enthalpic contributions
to the Gibbs free energy and Helmholtz free energy, without specifically considering the excess heat
capacity. In this work, a newGE model considering the excess heat capacity is developed. The polymer
solution systems of interest are aqueous solutions of PEG and EOPO, because both PEG and EOPO are
popular components in ATPS.

2. Model development

The model development is shown to start with the excess Gibbs energyGE. ChoosingT, P and com-
position as natural independent variables, the following excess properties are used:

GE = HE − TSE (1)

cE
P =

(
∂HE

∂T

)
P,x

(2)

cE
P = T

(
∂SE

∂T

)
P,x

(3)

wherecE
P is known as a function of temperature and composition, which provides an important link

between the excess enthalpy and the excess entropy. CombiningEqs. (2) and (3), after integrating, an
expression forSE can be obtained:

SE = C +
∫

1

T

(
∂HE

∂T

)
P,x

dT (4)
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whereC is a temperature independent contribution, which can be intuitively understood as the size/shape
contribution to the excess entropy. If we supposeC = SE

c = lim
T→∞

SE, one gets:

SE = SE
c +

∫ T

∞

1

T

(
∂HE

∂T

)
P,x

dT (5)

Here,SE
c is the combinatorial excess entropy. Substitution ofEq. (5)into Eq. (1)gives the excess Gibbs

energy:

GE

RT
= −SE

c

R
+ HE

RT
− 1

R

∫ T

∞

1

T

(
∂HE

∂T

)
P,x

dT (6)

The first-term is called combinatorial contribution, independent of temperature, and accounts for the
size/shape contribution; the last two terms both depending on temperature are called the residual contri-
bution.

2.1. Combinatorial contribution

For the calculation ofGE
c , the Guggenheim’s athermal entropy of mixing[17] is used here. Due to the

athermal assumption and lattice model,HE = 0 andV E = 0, it givesGE
c = AE. Here, we defineXi = θi,

i.e. the effective mole fraction of segment is equal to the surface/area fraction. The resulting expression is:

GE
c
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= n1 ln
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+ n2 ln
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+ z

2
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(7)

whereNr = N1r1 + N2r2, Φ1 = N1r1/Nr, Φ2 = 1 − Φ1, Nq = N1q1 + N2q2, X1 = N1q1/Nq,
X2 = 1− X1, n1, n2 andN1, N2 are the mole numbers and molecule numbers of solvent and polymer,r1

andr2 the numbers of segments per molecule of solvent and polymer,Φ1 andΦ2 the volume fractions
of solvent and polymer.qi is the effective segment number and is expressed as usual:

qi = ri(z − 2) + 2

z
= ri

[
1 − 2(1 − 1/ri)

z

]
(8)

Whenz = ∞, q = r, θ = Φ (X = Φ), Eq. (7)reduces to the Flory–Huggins equation.

2.2. Residual contribution

For the calculation of the residual contributionGE
R, HE is the critical variable, which is in this work

assumed to be identical to the excess energy of mixing�E. The reference states for the equation of�E
are pure liquid for the solvent and a hypothetical segment aggregation state for the polymer segments, as
stated by Wu et al.[16]. After replacing the local mole fractions with the effective local mole fractions,
equations[18] derived from Guggenheim’s quasi-chemical theory can be written:

X21

X11
= X2

X1
exp

[−(ε21 − ε11)

RT

]
,

X12

X22
= X1

X2
exp

[−(ε12 − ε22)

RT

]
(9)
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Following the derivation of the local composition equations, the energy of mixing is given[16]:

HE = �E = z

2
nq [X1X21(ε21 − ε11) + X2X12(ε12 − ε22)] (10)

We define the structural factor of the solution 2/z as the non-random factorα (the typical choice of
non-random factor is 0.3[7]). Substituting (9) into (10),

HE

RT
= nqX1X2

(
τ21G21

X1 + X2G21
+ τ12G12

X2 + X1G12

)
(11)

whereG21 = exp(−ατ21),G12 = exp(−ατ12),τ21 = (1/α)((ε21−ε11)/RT),τ12 = (1/α)((ε12−ε22)/RT).
Then, the residual contribution is obtained after integration and rearrangement:

GE
R

RT
= −nq

α
[X1 ln(X1 + X2G21) + X2 ln(X2 + X1G12)] (12)

or

GE
R

kT
= −Nq

α
[X1 ln(X1 + X2G21) + X2 ln(X2 + X1G12)]

Combining the above two contribution terms, the expression for the activity of water is written:

ln a1 = ln X1 + X2

(
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+ q1
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(
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(
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− 1
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− G12
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(13)

It is very easy to extend to multicomponent mixtures (seeAppendix A). According to the definition ofα,
qi is rewritten as

qi = ri

[
1 − α

(
1 − 1

ri

)]
(8a)

For systems with oriented interactions, the following expressions, according to the suggestion of Wu
et al.[16], are used here

τji = a
(1)
ji

(
T0

T

)
+ a

(2)
ji

(
T0

T

)2

(14a)

τij = a
(1)
ij

(
T0

T

)
+ a

(2)
ij

(
T0

T

)2

(14b)

wherea(1) anda(2) are adjustable model parameters and assumed to be temperature and composition
independent. If the temperature range is not wide, we can fixa

(2)
ji = a

(2)
ij , as stated by Wu et al.[16].

3. Results and discussion

In order to evaluate the capabilities of the new model proposed in this work, we use the experimental
VLE data of PEG and EOPO solutions published in literature (listed inTable 1). M is set to be the number
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Table 1
Water activities of aqueous PEG solutions (α = 0.3)

Polymer Mn r2 Temperature (K) Polymer concentrationa Nb Model parametersc Deviation (%) Note References

a
(1)
21 a

(1)
12 a

(2)
21 = a

(2)
12 Eq. (13)c Wuc

PGE150 150 8 297.6, 332.6 0.28–0.90 34 3.5458
(3.2931)

−1.1236
(−2.0107)

−0.7213
(0.0)

1.1 (1.8) 2.2 (3.7) Extrapolation [19]

PGE200 200 10 293.1, 298.1, 313.1, 333.1 0.14–0.90 48 0.7 (1.8) 1.3 (3.2) Correlation[20,21]

PGE300 300 14 303.1, 323.1, 338.1 0.29–0.90 15 1.46 (2.0) 1.4 (3.5) Extrapolation[22]
296 14 308.1, 318.1, 328.1, 338.1 0.10–0.39 16 0.08 (0.24) 0.4 (0.6)d Extrapolation [23]

PGE400 430 21 308.1, 318.1, 328.1, 338.1 0.01–0.32 32 0.03 (0.08) 0.17 (0.24)d Extrapolation [23]
PGE600 600 27 293.1, 313.1, 333.1 0.23–0.90 30 1.4 (2.3) 2.9 (3.4) Extrapolation[21]
PGE1000 1000 45 298.1 0.15–0.38 16 0.06 (0.09) 0.07 (0.16) Extrapolation[24,25]

PGE1500 1500 67 293.1, 313.1, 333.1 0.34–0.99 20 4.8313
(4.6259)

−2.0605
(−2.2849)

−0.2461
(0.0)

1.6 (2.1) 1.3 (4.10 Extrapolation [21]

PGE3000 3000 131 328.1, 338.1 0.49–0.99 14 1.5 (1.5) 1.8 (2.5) Correlation[22]

PGE4000 3750 171 298.1 0.15–0.38 5 0.26 (0.26) 0.1 (0.25) Extrapolation[25]
4237 194 308.1, 318.1, 328.1, 338.1 0.04–0.39 16 1.7 (1.7) 1.4 (1.5)d Extrapolation [23]

PGE5000 5000 227 333.1, 338.1 0.49–0.99 16 1.8 (1.9) 1.8 (2.3) Correlation[22]

PGE6000 5989 273 308.1, 318.1, 328.1, 338.1 0.03–0.36 25 0.11 (0.11) 0.24 (0.25)d Extrapolation [23]
6230 283 293.1, 333.1 0.11–0.67 35 0.36 (0.4) 0.6 (0.7)d Extrapolation [9]
6750 307 313.1, 333.1 0.32–0.99 18 5.5 (5.5) 5.8 (5.5)d Extrapolation [21]

PGE8000 6400 291 298.1 0.18–0.37 12 0.11 (0.17) 0.13 (0.21) Extrapolation[24]
PGE5000 39005 1771 293.1, 333.1 0.11–0.68 25 0.32 (0.38) 0.53 (0.58)d Extrapolation [9]

a Weight fraction.
b N is the number of experimental data points; deviation(%) = (1/N)

∑
[|aexp. − acal.|/aexp.] × 100%.

c The values in brackets are results without oriented interactions.
d The modified NRTL model using parameters given in literature[16].
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Fig. 1. Water activity in PEG 1500—water solutions without oriented interactions. The experimental data are from Herskowitz
[21].

average molecular weight (Mn) for polymer. Since the van der waals volume of a repeated unit in PEG
molecule is very close to the double of a water molecule,V2 is approximated as(2np + 1)V1, wherenp

is the polymerization degree of a PEG molecule and can be calculated fromMn. Similarly, for EOPO,V2

is approximated as(5np + 1)V1. Then for polymer,r2 = V2/V1 and for waterr1 = 1. Therefore, there
are only two or three adjustable parameters (without oriented interactions,a

(2)
ji = a

(2)
ij = 0; otherwise,

a
(2)
ji = a

(2)
ij 
= 0). Parameters are calculated by minimizing the sum of squares:

SSQ=
N∑

j=1

(a
exp.
1 − acalc.

1 )2
j (15)

The extrapolation results of VLE data (activities) for PEG and EOPO with different molecular weights
are given inTables 1 and 2, and for some systems, the results are also shown inFigs. 1–4. In order to
compare the results with those from the modified NRTL model, the same procedure that Wu et al.[16]
used is followed for PEG aqueous solutions. We first correlated the parameters for PEG 200, and the
extrapolation for PEG with molecular weights less than 1000 is very good. Then, the parameters were
readjusted to the experimental data of both PEG 3000 and PEG 5000 solutions, to extrapolate those
for molecular weight higher than 1500. Agreement between the calculated and experimental values of
solvent activity is satisfactory, except for one set of PEG 6000 data. This is probably due to the fact that
no number average molecular weight is given andMn is simply set to be 6750, according to the molecular
weight range 6000–7500.

From Table 1and Figs. 1 and 2, it can be observed that the activity deviation obtained with the
proposed model is smaller than that with the modified NRTL model[16], no matter with or without
oriented interactions. For PEG with molecular weight higher than 3000, the water activity deviation is
almost the same with two and three parameters, which means that the oriented interaction plays a very
small role for high molecular weight, and just two parameters are enough for the pure correlations of
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Table 2
Results of the correlation and extrapolation of water activity at 298.15 K for EOPO solutions

Polymer Mn r2 Polymer
concentrationa

Nb Model parametersc Deviation (%) Note Reference

a
(1)

21 a
(1)

12 a
(2)

21 = a
(2)

12

EOPO800 780 39 04–0.54 13 3.4086
(1.4683)

−1.3062
(−0.9554)

−0.3617
(0.0)

0.04 (0.1) Correlation [26]

EOPO2000 2340 116 0.07–0.61 9 0.2 (0.3) Extrapolation [26]
EOPO4000 3640 179 0.09–0.66 13 0.3 (0.4) Extrapolation [26]

a Weight fraction.
b N is the number of experimental data points; deviation(%) = (1/N)

∑
[|aexp. − acal.|/aexp.] × 100%.

c The values in brackets are results without oriented interactions.
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Fig. 2. Water acitivity in PEG600—water solutions with oriented interactions. The experimental data are from Herskowitz[21].

the phase behavior of PEG aqueous systems as shown inFig. 3. The correlative and extrapolative results
for PEG systems using only two parameters are reliable with the deviation values not larger than 2.3
except that of PEG 6750, including PEG systems with molecular weight smaller than 1000 with strong
end groups, as shown inTable 1. The most important reason is that, in this new model, considered the
excess heat capacity, the expression of the residual contribution for the excess Gibbs energy consists of
two temperature-dependent terms, which are combined together and represented with a modified Wilson

Fig. 3. Water activity in PEG—water solutions with two parameters. The data for PEG 1000 are from Ochs et al.[24] and Lin
et al.[25], those for PEG 6000 and PEG 35000 are from Großmann[9].
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Fig. 4. Water activity in EOPO—water solutions. The experimental data are from Li et al.[26].

equation. No reports are available considering the heat capacity in the residual contribution for polymer
systems in the literature. Therefore, the heat capacity must play an important role for lower molecular
weight PEG aqueous systems with strong oriented interactions.

In general, the model developed in this work provides an accurate way of correlating and extrapolating
the water activity of polymer solutions with its own advantages. As shown inTable 2andFig. 4, the
extrapolation results for EOPO 2000 and EOPO 4000 aqueous solutions using the adjustable parameters
correlated from EOPO 800 solution are very satisfactory. It is known that EOPO is the new polymer of
great interest for ATPS in recent years.

4. Conclusions

A new modified Wilson equation based on the local composition model and the two-fluid theory is
developed for the representation of thermodynamic properties for aqueous PEG and EOPO solutions.
It is reliable both for correlating and extrapolating the VLE behavior of homologous aqueous polymer
solutions. After considering the heat capacity, the oriented interaction seems not so strong for polymers
with high molecular weight. Only two adjustable parameters are enough to extrapolate the activity of
water in aqueous polymer systems including those with strong oriented interaction.

List of symbols
a interaction parameter defined inEq. (14), or activity
AE excess Helmholtz energy of a mixture
cE

P excess heat capacity/heat capacity change of mixing
Corr. correlation
Extr. extrapolation
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G, GE(GE′
) binary parameter, excess (partial) Gibbs free energy

HE excess enthalpy
M, Mn molecular weight, number-average molecular weight
n mole number of segment–segment pairs
N number of molecules (segment–segment pairs), or experimental data points
P pressure
q effective segment number of polymer
r number of segments per molecule
SE excess entropy
SSQ sum of squares
T absolute temperature
T0 reference temperature, 298.15 K
VE excess volume
x mole fraction of polymer solutions
X effective mole fraction of segments
z coordination number in the lattice theory

Greek letters
α non-random factor in the Wilson model
∂ partial derivative
ε interaction energy between segment–segment pairs
Φ volume fraction
θ surface/area fraction
τ binary interaction parameter
∞ infinity

Subscripts
c combinatorial factor
i, j any species or segments
ii, ij, jj segment-segment pairs
R residual contribution
1, 2 solvent and polymer, respectively

Superscripts
E notation of excess quality
(1), (2) notation for distinguishment
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Appendix A

For multicomponent aqueous solutions, the activity coefficient of speciei is expressed according to
Eq. (A.1) equation. Since it has a very similar form to describe the residual contribution, that is why
it is regarded as a modified Wilson model. In addition, like NRTL models, it can also go back to the
Flory–Huggins equation when 1/α = 0.

ln ai = ln Xi +
m∑

k=1

Xk

(
1 − qi

qk

)
+ qi

α
ln

Xi

Φi

+ qi

α

m∑
k=1

(
qkri

qirk

− 1

)
Φk

+ qi

α


−ln

(
m∑

k=1

XkGki

)
+ 1 −

m∑
k=1

XkGik
m∑

j=1

XjGjk


 (A.1)
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