Graphical Abstract

Optically active aziridine esters by nucleophilic addition of nitrogen heterocycles to a chiral 2*H*-azirine-2-carboxylic ester

M. José Alves*, A. Gil Fortes, Luis F. Gonçalves Departamento de Química, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal

Chirally enriched ethyl 3-methyl-2*H*-azirine-2-carboxylate acts as an efficient alkylating agent for a variety of five membered aromatic nitrogen heterocycles.

Optically active aziridine esters by nucleophilic addition of nitrogen heterocycles to a chiral 2*H*-azirine-2-carboxylic ester

M. José Alves*, A. Gil Fortes, Luis F. Gonçalves

Departamento de Química , Universidade do Minho, Campus de Gualtar 4710-057 Braga, Portugal

Abstract— Chiral enriched ethyl 3-methyl-2*H*-azirine-2-carboxylate acts as an efficient alkylating agent for a variety of five membered aromatic nitrogen heterocycles.

Keywords: chiral 2*H*-azirines; nucleophilic additions; diastereoselectivity; aziridines.

We have previously found that 2H-azirine-3-carboxylic esters 1 and 2 are useful precursors for functionalized aziridines 3 that are formed by simple nucleophilic addition to the respective 2H-azirine. Reactions are stereoselective, the addition being on the less hindered face of the azirine to form the trans products 3 (scheme 1). 1 The main drawback to this methodology as a route to α-amino esters 3 is that there is currently no method of obtaining the 2H-azirine-3-carboxylic ester 1 in an enantiopure form. As a first approach to a chiral aziridine, the azirine 2 bearing the (N,N-diethylsulfamoyl) isobornyl unit as the chiral auxiliary in the ester moiety, was obtained ² and reacted with nucleophiles. The expected addition reactions took place, but diastereodifferentiation of the two faces of the azirine was generally not good. ² So, we concluded that it would be difficult to generate chiral adducts if the chirality of the compound is outside the ring. On the other hand, 2Hazirine-2-carboxylic esters of type 4 can be accessed in optically active form from ester aziridines 5 by Swern oxidation 3 (scheme 2) or from β -ketoester oxime p-toluenesulfonates 6, by a modified Neber elimination, using (+)-dihydroquinidine as a chiral tertiary base (scheme 3). ⁴ To our surprise we find that 2-alkoxycarbonylazirine compounds are electrophilic enough to react with nitrogen heterocycles at room temperature within some hours, showing a close relationship with the electrophilicity of 2H-azirine-3-carboxylic esters, despite their lower degree of activation. The reason why this behaviour was not expected is associated with lack of conjugation of the C=N bond with the carbonyl group in compounds 4.

_

^{*} Corresponding author. Tel.: +00-351-253604376; fax: +00-351-253-678983; e-mail: mja@quimica.uminho.pt.

The chirally enriched 2H-azirine-2-carboxylic esters firstly reported by Zwanenburg and coworkers 4 were used as electrophiles in addition reactions to five and five fused aromatic nitrogen heterocycles. The azirine was obtained by stirring a solution of $\mathbf{6}$ ($\mathbf{R}^1 = \mathbf{Me}$, $\mathbf{R}^2 = \mathbf{Et}$) in dry toluene in presence of (+)-dihydroquinidine (1 equiv.), which was removed in the end of the reaction by extraction with aq. citric acid (10%); the crude product was used without further purification. The ¹H NMR spectrum of the reaction mixture in the presence of ytterbium chiral shift reagent (Yb(tfc)) (ee 70%) is in good agreement with the enantiomeric excess reported.⁴ Aziridines 8 are formed by stirring a solution of the azirine 7 with the nucleophile in acetonitrile at room temperature and in presence of Na₂CO₃. Adducts are generally stable enough to be isolated after flash chromatography. The only exceptions are the adducts 8d and 8i. The indole adduct 8d, proved to be a single compound in the crude mixture by ¹H NMR analysis, although it reacts on silica during dry-flash chromatography, reverting back to azirine 7 and indole that were recovered in 80 % and 50% yields respectively. 7-Azaindole adduct 8i, also reacts on silica, giving back the azaindole (78%) and a dimer of the azirine, compound 10 obtained in 65% yield. The nitrogen heteroaromatic eliminations of the aziridine adducts have been described before from aziridine adducts 9. Also the pyrazine of type 10 was observed before by decomposition of aziridine adducts 9 in the presence of acid (silica) or base. Reaction of the azirine 7 with purine, gave a mixture of N-7 (8g) and N-9 (8f) alkyl isomers in 1:2 ratio respectively, in agreement with the higher nucleophilicity of N-7 and N-9 compared with N-1 and N-3 in purine.⁵ The adducts were fully separated by dry flash chromatography. Addition products were isolated as oils (8b, 8c, 8g, 8h) or solids (8a, 8e, 8f) in 60-80 % yield. ¹HNMR, ¹³C NMR and high resolution mass spectra of these compounds fit the proposed structures. The main features of the NMR spectra of the addition products are the NH doublet in a narrow region δ_H 1.82-2.12 ppm that couples with the neighbouring CH at δ_H 2.85-3.05. The coupling constant between them is of the order of 8.7 to 9 Hz (see table 1). A very similar interaction was described in other aziridines of type 8, 1,2 e.g. aziridine 9 for the NH-CH moiety. 13C spectra are also indicative, in all cases consistently showing two sp³ carbons at δ_C 42-43 ppm and 62 ppm, assigned to

According to NOe experiment on compound **8f** and **8g**, the stereochemistry of addition seems to be *anti* to the ethoxycarbonyl group of the azirine. Irradiating H-2 (d) of the aziridine moiety at 2.9 ppm showed an enhancement (3.72%) of the purine signal H-8 at 8.34 ppm. On the other hand, irradiation of H-2 (d) of the other isomer at 2.97 ppm gave an enhancement of

C-2 and C-3, respectively.⁶

H-8 at 8.48 ppm (2.72%) and H-6 at 9.15 ppm (2.86%). Free rotation around C-N bond between the aziridine and purine tied moieties would explain the NOe of the aziridine H-2 over the purine H-8 and H-6 in isomer **8g**, and H-2 of the aziridine over the purine H-8 in isomer **8f**. The *anti* azirine addition was observed before in 2*H*-azirine-2-carboxylates, ⁷ although in the case of Grignard ragents, *syn* addition has been reported instead. ^{3,6}

The ee of the products was established by further functionalisation of the NH in compound **8d** with a chiral acylating agent ((1S)-(+)-camphorsulfonyl chloride). A mixture of two major diastereomers was obtained in a ratio between 4:1 to 5:1, which is approximately the same enantiomeric ratio observed in the starting chiral azirine. Two other minor diastereomers were also detected in a ratio about 4:1, due to the *syn* addition of indole to the azirine. The two major diastereomers represent 85% of the crude mixture, which indicates a good diastereoselectivity for the addition reaction.

The obvious extension of this work to carbon and sulfur nucleophiles did not give promising results. Reaction of **7** with phenylmagnesium bromide produced a 3:1 mixture of diastereomers, indicating that the addition is not stereoselective in this case. Careful studies of the reaction over a temperature range of –78 °C to –20 °C always gave products in the same isomeric ratio. On the other hand, 4-chlorothiophenol reacted in an undefined way and it was not possible to reproduce a clear procedure for the reaction. This was ascribed by us to be the result of easy addition/elimination of the sulfur nucleophile.

In conclusion, we found the relative non-activated azirine 7 to be a good alkylating agent for nitrogen heterocycles, opening the possibility of forming chiral aziridines of type 8 with excellent diastereoselectivity.

Acknowledgements

We thank Dr Thomas L. Gilchrist for helpful discussions of the work and Fundação Ciência e Tecnologia for project funding (POCTI /32723/QUI/2000).

References

- 1. Alves, M.J.; Ferreira, P.M.T.; Maia, H.L.S.; Monteiro, L.S.; Gilchrist, T.L., *Tetrahedron Lett.*, **2000**, 41, 4991-4995.
- 2.Álvares, Y.S.P.; Alves, M.J.; Azoia, N.G.; Bickley, J.F. Gilchrist, T.L., *J. Chem. Soc.*, *Perkin Trans 1*, **2002**, 1911-1919.
- 3.Davis, F.A.; Deng, J.; Zhang, Y.; Haltiwange, R.C., *Tetrahedron*, **2002**, 7135-7143.
- 4. Verstapen, M.M.H.; Ariaans, G.J.A.; Zwanenburg, B., J. Am. Chem. Soc., 1996, 118, 8491-8492.
- 5.Shaw, G.; In *Comprehensive Hetrocyclic Chemistry*; Katritzky, A. R., Rees, C. W. Eds.; Pergamon Press: New York, 1984; Vol. 5, Chap. 4, pp 499–605.

6.Davis, F.A.; Liang, C-H.; Lin, H.J., J. Org. Chem, 62, 1997, 3796. 7. Carlson, R.M.; Lee, S.Y., Tetrahedron. Lett., 1969, 4001.

Table 1. Some physical and spectroscopic characteristics for aziridines 8.

N°	Yield	m.p.	$[\alpha]_D^{20}$	¹ H NMR (CDCl ₃)	¹³ C NMR (CDCl ₃)	
	(%)	(°C)	(CHCl ₃)		C-2	C-3
8a	60	>70 (dec.) (EtOAc: Pet. ether 40-60)	-36	1.96 (bd, 1H, N-H, <i>J</i> 8.7Hz) 2.95 (d, 1H, C-H, <i>J</i> 8.7Hz)	42.62	62.44
8b	83	oil	-91	1.97 (bs, 1H, N-H) 2.86 (d, 1H, C-H, <i>J</i> 8.7Hz)	42.63	62.37
8c	59	oil	-83	1.86 (b, 1H, N-H) 2.79 (d, 1H, C-H, <i>J</i> 9.0Hz)	42.83	62.32
8d a)				1.85 (bd, 1H, N-H, <i>J</i> 9.0Hz)		
				3.04 (d, 1H, C-H, <i>J</i> 9.0Hz)		
8e	60	>65 (dec.) (Et ₂ O: Pet. ether 40-60)	-22	1.82 (bs, 1H, N-H) 2.85 (bs, 1H, C-H)	43.16	62.20
8f	41 (major)	90-92 (EtOAc)	-53	1.99 (d, 1H, N-H, <i>J</i> 9.0 Hz) 2.94 (d, 1H, C-H, <i>J</i> 9.0Hz)	41.93	62.69
8g	27 (minor)	oil	-47	2.12 (d, 1H, N-H, <i>J</i> 8.7Hz) 2.96 (d, 1H, C-H, <i>J</i> 8.7Hz)	42.72	62.63
8h	62	oil	-67	1.88 (d, 1H, N-H, <i>J</i> 9.0Hz) 2.89 (d, 1H, C-H, <i>J</i> 9.0Hz)	42.76	62.38
8i				1.85 (d, 1H, N-H, <i>J</i> 9.0Hz) 2.97 (d, 1H, C-H, <i>J</i> 9.0Hz)		

^a Crude material *ca* 100% yield. Decomposition after flash chromatography.

^b Further characterization was made through the camphor sulfamoyl chloride derivative; the crude material displayed four doublets due to one of the methylenic sulfamoyl protons at 5.29, 5.23, 5.11 and 5.02 in a ratio 1:0.26:0.16:0.06.

$$R^{1}$$
 $CO_{2}R^{2}$

$$R^{1}$$
 $CO_{2}R^{2}$

1- R^1 = 2,6-dichlorophenyl; R^2 = Me 2- R^1 = H; R^2 = (*N*,*N*-diethylsulfamoyl)isobornyl **3-** X = SAr, NR_2

Scheme 1

$$R^1$$
 CO_2R^2
 R^1
 CO_2R^2
 R^1
 CO_2R^2

 $R^1 = alkyl$, phenyl

 $R^2 = Me$

Scheme 2

$$R^{1}$$
 OR^{2} 4

 R^1 , $R^2 = alkyl$

Scheme 3

7

8d

8f

8i

8g

8h Scheme 4

$$R^{hm_{n}}$$
 H
 N

$$\begin{tabular}{lll} EtO_2C & N & Me \\ \hline & & N & CO_2Et \\ \end{tabular}$$

$$R^1 = H$$
; $R^2 = (N, N$ -diethylsulfamoyl)isobornyl