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Abstract

The production of dextransucrase, dextran and fructose by sucrose fermentation usingLeuconostoc mesenteroidesNRRL-B512(F) was
studied in batch operation in a bioreactor with total working volume of 1.5 dm3. The effect of temperature (20 to 40◦C), pH (5.5 and 6.7)
and sucrose concentration (10 to 120 g/l) on process performance was studied. The optimum conditions for dextran and fructose production
wereT= 35◦C and pH= 5.5.

Cell growth is not inhibited by high sucrose concentrations; however, for sucrose concentration higher than 40 g/dm3 separation of
products from cells is difficult.

Biomass (X), enzyme (E), dextran (D), fructose (F) and sucrose (S) rate equations were considered in order to derive a simple fermentation
kinetic model from batch experimental data. The logistic equation provided a reasonable description for cell concentration,X. The Luedeking
and Piret equation was used to describe the enzyme production rate, by considering only the growth associated term. The concentrations
of products (dextran and fructose) were reasonably described by a first order kinetic law with respect to both substrate and enzyme
concentrations; the substrate, S was consumed for cell growth and for dextran and fructose production.

Model parametersµm andXo were calculated from cell growth as a function of time. The yieldYE/X were calculated fromXmax and
Emax andYX/S was estimated fromXmax and the sucrose consumed by the bacteria. The remaining parameterk′ was obtained by fitting the
experimental data of substrate, dextran and fructose concentrations versus time. ©2000 Elsevier Science S.A. All rights reserved.

Keywords: Leuconostoc mesenteroides; Dextransucrase; Dextran; Fructose; Batch fermentation; Kinetic; Modelling

1. Introduction

Dextran, (C6H10O5)n is a polysaccharide consisting of
glucose monomers linked mainly (95%) byα(1–6) bonds
[1]. It has many industrial applications due to its non-ionic
character and good stability under normal operating con-
ditions. It is widely used as a blood volume expander, in
pharmaceutical industry [2], in food industry and as a chro-
matographic media [3]. Fructose (C6H12O6) is a low caloric
sugar and it is also used in food industry.

When the strainLeuconostoc mesenteroidesNRRL-
B512(F) is grown on sucrose rich media the production
of an extracellular enzyme, dextransucrase, is induced.
Sucrose is the only known substrate able of inducing this
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enzyme production. Dextransucrase also uses sucrose as a
substrate to produce dextran and fructose as follows:

n C12H12O11
Sucrose

Enzyme→ (C6H10O5)n
Dextran

+ n C6H12O6
Fructose

The effect of sucrose concentration on the production of
dextransucrase was assessed by Tsuchiya et al. [4]. They
found that higher sucrose levels induced better enzyme pro-
duction but the cultures contained so much dextran that the
removal of cells was very difficult. They concluded that 2%
(w/v) sucrose was the optimum level for production of dex-
transucrase.

Dextransucrase can also be produced by other bacteria like
StreptococcusandLactobacillusbut the most used strain in
research isL. mesenteroides[5]. This strain ofLeuconostoc
grows between 5 and 30◦C but the optimum range is between
25 and 30◦C.

The pH of the fermentation broth, initially at 7.0, de-
creases during the process to 4.2 or 4.3 [4,6]. The optimum
pH range for cell growth is from 6.0 to 6.9; therefore, the
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highest level of enzyme production is expected in this range
[4]. Tsuchiya et al. [4] and Barker et al. [7] showed that
when pH drops to a value in the range of 5.0 to 5.5 the en-
zyme is more active and transforms sucrose to dextran and
fructose. Fermentations were carried out by Lazic et al. [8]
with controlled pH at pH= 6.7 and 5.5 with similar results.
They found that pH= 5.5 and 0.05 vvm of air, are favourable
conditions for dextran production and reducing fermentation
time.

The strainL. mesenteroidesNRRL B512(f) is known as
micro aerophilic [7,9] and several authors [10–12] consider
that oxygen affects positively the strain growth.

L. mesenteroidesNRRL B512(f) constituent dextransu-
crase mutants and hyper-producing dextransucrase mutants
have now been produced and optimized conditions have been
established for the elaboration of the enzyme on a large scale
which can allow the production of dextran and fructose in a
cell free bioreactor [13,14].

Kinetic studies are a vital part of the overall investiga-
tion of product formation in fermentations. A mathematical
model allows easy data analysis and provides a strategy for
solving problems encountered at the design stage. A fermen-
tation kinetic model can be obtained from published exper-
imental data. The kinetics of some extracellular microbial
polysaccharides has been reported [15–17]. These authors
developed models for simple reactions where the polysac-
charide is produced inside the cell and thereafter expelled to
the medium. In our fermentation withL. mesenteroides, be-
fore dextran production an extracellular enzyme is produced
resulting in a more complicated model.

Landon et al. [18] proposed a model of dextransucrase
synthesis byL. mesenteroides. He considered that cell
growth was a linear function of time starting at the end of
lag phase. For sucrose consumption only cell metabolism
was considered at pH= 6.7 (optimum pH for cell growth).
Other authors [1,19] followed dextransucrase production
by L. mesenteroidesand found that this enzyme is a typical
growth associated product. Combining all these factors with
experimental data it is possible to develop a mathematical
model forL. mesenteroidesfermentation kinetics.

The objectives of this work are:
1. to determine the optimum fermentation conditions for

the production of dextran and fructose; temperature, pH,
initial sucrose concentration and aeration will be tested.

2. to develop a kinetic model for this fermentation.

2. Materials and methods

2.1. Strain, inoculum and culture media

The strain used in this work wasL. mesenteroidesNRRL
B512(f) obtained from DSM (Deutsche Sammlung von
Mikroorganismen und Zellkulturen GmbH) in freeze-dried
vials. The strain was stored at 4◦C in MRS agar slants [20]
until needed for preparing fermentation inocula. The fer-

mentation inocula were prepared so that the final medium
going into the fermenter was 5% (v/v) of the initial fer-
mentation medium. The organism was transferred from the
stock culture to a similar medium but without agar (MRS
broth). The inoculum was grown for 16 to 17 h at 30◦C in
agitated flasks.

The fermentation medium contains yeast extract
(20 g/dm3), K2HPO4 (8 g/dm3) and sucrose with variable
concentrations. Some authors [2,20] add to the fermenta-
tion medium a small quantity of a solution rich in inorganic
salts but Landon and Webb [9] found that they were not
necessary.

The pH of the medium was adjusted to the value required
prior to autoclaving (15 min at 121◦C).

2.2. Analytical measurements

Bacterial growth was followed by UV spectrophotometry
(660 nm) using a Pye Unicam SP6 spectrophotometer. A
calibration graph with dry weight versus O.D. (660 nm) gave
us biomass concentration in g cells/dm3.

Sucrose, fructose and dextran: Substrate consumption and
product formation were followed using HPLC equipment.
It consists of a Gilson manometric module (model 802 C),
a pump (model 302), a refractive index detector and an ion
exchange column (Interaction, model 300); connected to a
PC.

Dextransucrase activity was assayed by measuring the
amount of sucrose consumed. One dextransucrase unit
(1DSU) was defined [4] as the amount of enzyme that con-
verts 1 mg of sucrose in 1 h under ideal reaction conditions
(T= 30◦C; pH= 5.0); in fact 1 DSU= 1/21 U acording
to the international definition of enzyme activity. Samples
were centrifuged to remove cells before analysis. The liq-
uid supernatant (1 ml) was mixed with 1 ml of a 20% (w/v)
sucrose solution with pre-fixed pH= 5.0 and then incubated
for 1 h at 30◦C.

ATP measurements: In a few fermentations ATP (Adeno-
sine triphosphate) was determined using a Microbial Bio-
counter 2500 (LUMAC, Landgraaf, The Netherlands).

2.3. Experimental set-up

In this work, we used a 2 l Bioreactor ( Setric Genie SET
02, Incheltec, France) with control units for temperature, pH
and agitation. The total working volume was 1.5 l. The effect
of sucrose concentration, pH, temperature and aeration was
studied in batch operation. A peristaltic pump Minipuls 2
(Gilson) was used to collect samples.

3. Experimental results

In this work, strain growth and product formation for var-
ious operating conditions were studied. Batch fermentations
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Fig. 1. Batch fermentation run (#31): (a) sucrose consumption and cell growth, (b) enzyme activity and dextran and fructose production. Conditions:pH
kept at 5.5 throughout fermentation with 4 M NaOH; temperature= 35◦C; Agitation= 150 rpm; no aeration.

Table 1
Effect of temperature on batch fermentations of sucrose withL. mesenteroidesa

Run Temperature
(◦C)

Dextran
conc.,D′ (g/dm3)

Fructose
conc.,F′ (g/dm3)

Enzyme activity
(DSU/cm3)

Cell conc.,X
(g/dm3)

Time of
fermentation (h)

10 20 6.91 8.16 71.7 5.21 12.0
1 25 6.46 8.09 67.0 5.46 11.5
3 27.5 5.47 7.76 63.2 5.03 11.0
2 30 5.99 7.01 57.2 5.70 10.0

12 35 7.94 8.39 55.6 7.85 7.0
16 40 — — 11.9 — 15.0

a Initial sucrose concentration= 20 g/dm3. Without pH control; cell concentration in dry weight of cells/dm3.

were carried out for sucrose concentration in the range of
10 to 120 g/dm3, temperatures of 20, 25, 27.5, 30, 35 and
40◦C, controlled pH of 6.9 (optimum pH for strain growth)
and 5.5 (for minimising loss of enzyme activity) and aera-
tion of 0.05 vvm.

Fig. 1 shows an example of a batch fermentation run.
Operating temperature was 35◦C, pH= 5.5, agitation of
150 rpm, without aeration and sucrose concentration of
20 g/dm3. The fermentation took around 8 h and the final
concentration of dextran and fructose were respectively 8.17
and 8.15 g/dm3. Cellular dry weight reached 5.85 g/dm3and
enzyme activity reached 81.53 DSU/cm3.

3.1. Effect of temperature

Generally the temperature used in these fermentations
ranged from 23 to 26◦C. In this work other temperatures
were tested. Table 1 shows results of six fermentations car-
ried out without pH control and no aeration. The cell growth
is similar in the range 20 to 30◦C, but at 35◦C the cell growth
is significantly higher and therefore fermentation is faster
and takes 4 h less than at 20◦C. At 40◦C growth does not
occur.

The enzyme activity decreases with temperature but dex-
tran and fructose production were not affected; as a matter
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Fig. 2. Effect of temperature (a) on sucrose consumption, (b) on cell growth Conditions: no pH control, Initial sucrose concentration= 20 g/l.

Table 2
Effect of pH on batch fermentation of sucrose withL. mesenteroidesa

Run pH Dextran conc.,
D′ (g/dm3)

Fructose conc.,
F′ (g/dm3)

Enzyme activity
(DSU/cm3)

Cell conc.,
X (g/dm3)

Time of
fermentation (h)

1 No control 6.46 8.09 67.0 5.46 11.5
4 6.7 6.71 7.01 57.0 7.76 11.0
5 5.5 7.74 8.1 85.0 5.11 8.0

13 5.0 8.51 8.54 51.1 5.11 10.0
11 4.0 — — — 0 —

a Initial sucrose concentration= 20 g/dm3. Temperature= 25◦C; X expressed in dry weight of cells/litre.

of fact higher concentrations of either dextran or fructose
are observed at 35◦C.

In Fig. 2a and b we compare sucrose consumption and
cell growth at different temperatures (no pH control, initial
sucrose concentration= 20 g/l).

3.2. Effect of pH

The pH 6.7 was taken as the optimum pH for this fer-
mentation by other researchers when they intend to maxi-
mize cell growth. Our results are reported in Table 2. It can
be seen that indeed pH 6.7 is good for strain growth but at

pH 5.5 the enzyme activity is much higher even with less
cell dry weight (Fig. 3a and b). The fermentation time at
pH 5.5 is 3 h smaller than for pH 6.7. The results of a stan-
dard fermentation (no pH control) are included in Table 2
for comparison. At pH 4.0 growth did not occur and at pH
5.0 growth was similar to that obtained at pH 5.5 but the
enzyme activity decreased by 30%.

3.3. Effect of aeration

Barker and Ajongwhen [5] demonstrated previously that
yeast extract type rather than aeration was much more
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Fig. 3. Influence of pH (a) on sucrose consumption and cell growth, (b) on enzyme production Conditions:T= 25◦C, Initial sucrose concentration= 20 g/l.

Table 3
Effect of aeration on fermentation of sucrose withL. mesenteroideswith 0.05 vvm of air at different pH valuesa

Run Aeration(vvm) pH Dextran
conc. (g/dm3)

Fructose
conc. (g/dm3)

Enzyme activity
(DSU/cm3)

Cell conc.
(g/dm3)

Time of
fermentation (h)

5 No aeration 5.5 7.74 8.10 85.04 5.11 8
4 No aeration 6.7 6.71 7.01 57.02 7.76 11
9 0.05 5.5 8.21 8.27 83.42 5.58 9
8 0.05 6.7 7.47 7.60 56.37 7.75 11

a Initial sucrose concentration= 20 g/dm3. Temperature= 25◦C.

important to the results of dextransucrase fermentations
but as it was focused in introduction, several other authors
[10–12] consider that oxygen affects positively the strain
growth.

The average results obtained using the same sucrose con-
centration, the same yeast extract type and the same agita-
tion and temperature conditions are shown in Table 3. Two
pH values were tested: 6.7 and 5.5. It can be seen that aer-
ation does not have an important effect in the fermentation
results. It affects positively the strain growth but the enzyme
activity decreased with aeration.

3.4. Effect of sucrose concentration

Enzyme production only occurs when sucrose is in cul-
ture medium. Higher sucrose levels induced better enzyme
production but the cultures contained so much dextran that
the removal of cells was very difficult. Several runs were
carried out with sucrose ranging from 10 to 120 g/dm3 at pH
6.7 and 5.5. For some runs two temperatures were tested:
25 and 35◦C.

Table 4 shows that higher concentrations of sucrose lead
to higher dextran, fructose and cell concentration at the end
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Table 4
Effect of sucrose concentration on the production of dextransucrase byL. mesenteroides

Run Sucrose
conc.(g/dm3)

T (◦C) pH Dextran
conc. (g/dm3)

Fructose
conc. (g/dm3)

Enzyme activity
(DSU/cm3)

Cell conc.
(g/dm3)

Time of
fermentation (h)

15 10 25 5.5 3.04 2.82 54.01 2.94 7
34 10 35 5.5 3.24 3.28 51.30 3.52 6.5
14 10 25 6.7 2.74 2.69 14.36 4.02 8
5 20 25 5.5 7.74 8.1 85.04 5.11 8

31 20 35 5.5 8.17 8.15 81.53 5.85 7
4 20 25 6.7 6.71 7.01 57.02 7.76 11

32 20 35 6.7 6.89 7.09 50.34 8.02 10
7 40 25 5.5 13.53 15.78 107.29 6.51 9.5

33 40 35 5.5 16.24 18.94 101.92 7.86 9
6 40 25 6.7 11.91 13.77 76.91 9.46 10

19 80 25 5.5 20.06 22.73 62.42 8.74 11
20 80 35 5.5 24.63 24.98 60.02 10.86 9
17 80 25 6.7 19.69 21.79 42.86 13.04 12
18 80 35 6.7 22.9 23.89 41.53 13.50 10.5
22 120 35 5.5 34.56 36.19 89.23 12.42 10
21 120 35 6.7 44.21 46.95 42.94 15.52 11

of fermentation. The enzyme activity increases with sucrose
concentration up to 40 g/dm3 of sucrose. For sucrose con-
centrations of 80 and 120 g/dm3, the enzyme activity mea-
surements are difficult because some enzyme and even some
dextran and fructose are centrifuged together with cells. A
test was made to the centrifuged material by washing it with
pure water and centrifuging again. Traces of dextran and
fructose were found as well as some enzyme activity. This
is difficult to quantify because during the washing process
the enzyme looses activity.

Fig. 4a and b show sucrose consumption and cell growth
for different initial sucrose concentrations (pH= 5.5 and
T= 25◦C).

4. Kinetic model

4.1. Bioreactions and stoichiometry

Sucrose is consumed byL. mesenteroidesNRRL B512(f)
allowing bacteria to grow and to produce the extracellular
enzyme dextransucrase. The enzyme uses sucrose in the me-
dia to produce dextran and fructose. During the fermentation
process the following reactions occur:

Sucrose
Cells→ more Cells

Cells→ Enzyme (1)

n Sucrose
Enzyme→ Dextran+ n Fructose

Dextran is a polymer of glucose units, so we can write
the equation of sucrose consumption by the enzyme in the
following way:

nSucrose
Enzyme→ z[(Glucose− water)n/z] + n Fructose (2)

wheren is the number of moles of sucrose available in the
reaction andz is the number of moles of dextran produced
containingn/z moles of glucose.

Mass balances should be written for each species.
For cells we have:

Cells : rX = dX

dt
= µX (3)

whererX is cell growth rate (g/l/h),X is cell mass concen-
tration (g/l),t is time (h) andµ is specific growth rate (h−1).

For the enzyme production the following balance holds:

Enzyme : rE = dE

dt
= YE/X

dX

dt
(4)

where rE is enzyme production rate (DSU/ml/h),E is en-
zyme produced (DSU/ml), andYE/X is the yield coefficient
of enzyme production based on the mass of cells produced
(DSU/mg cell).

For fructose and dextran molar balances were considered
and a first order law both in substrate and enzyme concen-
trations was assumed, leading to:

Fructose : rF = dF

dt
= nkE(t)S(t) (5)

Dextran : rD = dD

dt
= zkE(t)S(t) (6)

whererF and rD are fructose and dextran production rates
(mol/l/h), F andD are fructose and dextran molar concen-
trations (mol/l),S is the sucrose concentration (mol/l),k is
the kinetic constant (ml/DSU h) andn and z are the stoi-
chiometric coefficients for fructose and dextran, respectively
(see Eq. (2)). By using mass concentrations (g/l) for fruc-
tose dextran and sucrose,F′, D′ and S′, respectively, Eqs.
(5) and (6) become:

rF = 1

MF

dF ′

dt
= nkE(t)

S′(t)
MS

(7)
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Fig. 4. Effect of initial sucrose concentration (a) on sucrose consumption, (b) on cell growth Conditions: pH= 5.5, temperature= 25◦C.

rD = 1

MD

dD′

dt
= zkE(t)

S′(t)
MS

(8)

whereMF, MD and MS are fructose, dextran and sucrose
molar masses (g/mol). From Eq. (2) we are able to relate
dextran molar massMD with glucose (MG) and water (MW)
molar masses:

MD = n

z
(MG − MW) (9)

The fructose and dextran production rates expressed in g/l/h
are then:

r ′
F = dF ′

dt
= k′ MF

MS
E(t)S′(t) (10)

r ′
D = dD′

dt
= k′ (MG − MW)

MS
E(t)S′(t) (11)

wherek′ = nk.
Landon et al. [18] proposed a model of dextransucrase

synthesis byL. mesenteroidesand considered only sucrose
consumption by cell metabolism. In the model proposed in
this work we consider sucrose consumption by biomass and

also by the extracellular enzyme produced through the cell
metabolism, i.e.,

1S = 1SAssimilated into biomass

+1SUsed by extracellular enzyme produce dextran and fructose

For sucrose we have then the following mass balance:

Sucrose : −r ′
S = dS′

dt
= 1

YX/S

dX

dt
+ nkE(t)S′(t) (12)

wherer′
S is sucrose consumption rate (g/l/h), andYX/S is

the growth yield in the fermentation (g cells/g sucrose).

4.2. Cell growth modelling

A sigmoidal shape is observed in the cell growth curve.
The approximation used for cell growth is the logistic equa-
tion that characterises cell growth in terms of the maximum
value obtained. An approximation usually done [15–17] re-
lates the specific growing rateµ with X as follows:

µ = µm

(
1 − X

Xmax

)
(13)
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whereµm andXmax are the maximum specific growth rate
and maximum attainable biomass concentration, respec-
tively. The cell growth raterX is then:

rX = dX

dt
= µX = µm

(
1 − X

Xmax

)
X (14)

Integrating Eq. (14) with the initial conditionX(0)= X0 (ini-
tial cell concentration) we have the logistic equation:

X (t) = X0exp(µmt)

1 − (X0/Xmax)(1 − exp(µmt))
(15)

or

ln

(
X̄

1 − X̄

)
= µmt − ln

(
Xmax

X0
− 1

)
with X̄ = X(t)

Xmax

(16)

As an example: from experimental data (fermentation
#31 with T= 35◦C and pH= 5.5) Xmax= 5.85 g cells/l,
and a plot of ln[̄X/(1 − X̄)] versus time we get a
straight line with a slopeµm = 1.423 h−1 and an in-
tercept X0/(Xmax–X0) = 0.894× 10−3 corresponding to
X0 = 0.00523 g/l.

Fig. 5a shows the experimental cell concentrationX(t) as
a function of time and comparison with model results from
Eq. (15).

The parametersµmeX0 were also calculated for other ex-
periments and reported in Table 5. ParametersµmeX0 change
with initial sucrose concentration, with pH and with op-
erating temperature in each experiment. From Table 5 we
can observe thatµm presents higher values for 35◦C and
pH= 5.5. It also tends to decrease as initial sucrose con-
centration increases. With respect toX0 values they are not
affected by changes in temperature, pH or initial sucrose
concentration. However, the problem is that two inocula are

Table 5
Model equations, input data, calculated parameters for batch fermentation
of sucrose to produce dextran and fructose

dX

dt
= µm

(
1 − X

Xmax

)
X

dE

dt
= YE/X

dX

dt

dS′

dt
= − 1

YX/S

dX

dt
− k′ES′

dF ′

dt
= k′ MF

MS
ES′

dD′

dt
= k′ MG − MW

MS
ES′

Initial conditions:
t = 0; S= S0; X = X0

Input data:Xmax; Emax; S0

Calculated parameters from input data:
X0; µmax; YE/X; YX/S

The parameterk′ is optimized.

never the same. They are prepared exactly in the same way
but the number of viable cells present on the agar slants pre-
viously prepared and conserved at 4◦C are never the same.
This aspect has a very strong influence on the inoculum final
cell concentration originating differences on the calculated
X0 values in the beginning of each fermentation.

4.3. Dextransucrase production modelling

The enzyme concentration as a function of time can be
obtained by replacing dX/dt in Eq. (4); after integration we
get:

E (t) = YE/XX0

(
exp(µmt)

1 − (X0/Xmax)(1 − exp(µmt))
− 1

)

(17)

The yield YE/X was calculated using experimental results
from fermentation #31:

YE/X = Emax − E0

Xmax − X0
= 81.53− 0

5.85− 0
= 13.95

DSU

mg cells
(18)

Fig. 5b compares the model results for the enzyme activity
E(t) with experimental data.

4.4. Sucrose consumption , dextran and fructose modelling

4.4.1. The biomass yield YX/S
To solve –r′

S (Eq. (12)) we need to calculate the biomass
yield YX/S. This yield was calculated only with relation to
the amount of sucrose used for cell growth i.e, the initial su-
crose concentration (19.02 g/l) minus the sucrose consumed
to produce fructose and dextran minus the residual sucrose.
This sucrose quantity can be calculated using the following
mass balance:

−dS′
used by the enzyme

dt
= MS

MF

dF ′

dt
= MS

(MG − MW)

dD′

dt
(19)

Integrating Eq. (19) we have:

S′
used by the enzyme= MS

MF
F ′

final = MS

(MG − MW)
D′

final (20)

The final concentration of fructose will be used to calcu-
late the amount of sucrose consumed by the enzyme because
these experimental results for fructose are more accurate
than those for dextran. The final fructose concentration was
8.15 g/l; from Eq. (20) it can be concluded that the sucrose
used by enzyme was 1.89× 8.15 g/l. Since the final concen-
tration of sucrose was 0.96 g/l, the yieldYX/S can now be
calculated:

YX/S = 5.85

19.02− (1.89)8.15− 0.96
= 3.57 g cell/g sucrose (21)

We are now able to solve Eqs. (10)-(12) in order to get
dextran, fructose and sucrose concentrations as a function of
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Fig. 5. Model results compared with experimental data from fermentation #31) for: (a) cell growth, (b) enzyme production, (c) sucrose consumption, (d)
dextran production and (e) fructose production. Conditions: Initial sucrose concentration= 20 g/l, T= 35◦C and pH= 5.5.
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Fig. 5. (Continued)

Table 6
Model parametersµm, X0, YE/X, YX/S, andk′ calculated for other experiments

Run T (◦C) pH S′ (g/l) µm(h−1) X0 (g/l) YE/X (DSU/mgcell) YX/S (g cell/g sucrose) k′ (ml/DSU h)

5 25 5.5 20 1.272 0.00654 16.64 3.41 0.015
31 35 5.5 20 1.423 0.00523 13.95 3.57 0.015
5 25 5.5 20 1.272 0.00654 16.64 3.41 0.015
4 25 6.7 20 0.748 0.09220 7.36 3.35 0.010
1 25 s. c. 20 0.808 0.00723 12.27 2.03 0.011
1 25 s. c. 20 0.808 0.00723 12.27 2.03 0.011
2 30 s. c. 20 1.037 0.00599 10.02 1.15 0.012
6 25 6.7 40 0.877 0.02860 8.13 1.10 0.010
7 25 5.5 40 0.947 0.01880 16.48 1.12 0.010

14 25 6.7 10 0.968 0.12290 3.57 2.65 0.017
4 25 6.7 20 0.748 0.09220 7.36 3.35 0.010
6 25 6.7 40 0.877 0.02860 8.13 1.10 0.010

17 25 6.7 80 0.822 0.02270 3.29 0.33 0.010
31 35 5.5 20 1.423 0.00523 13.95 3.57 0.015
20 35 5.5 80 1.306 0.00764 5.53 0.39 0.013
22 35 5.5 120 1.076 0.01432 7.18 0.27 0.014
15 25 5.5 10 1.181 0.00838 18.37 1.26 0.017
5 25 5.5 20 1.272 0.00654 16.64 3.41 0.015
7 25 5.5 40 0.947 0.01880 16.48 1.12 0.010

19 25 5.5 80 1.073 0.00962 7.14 0.28 0.010

time. The package MAPLE 5.0 and Runge–Kutta–Fehlberg
of 4th and 5th order numerical method were used to solve
those equations and results forS′, D′ andF′ as a function of
time are presented in Fig. 5c, d and e using the best value
of k′ = 0.015 ml/DSU h.

The assumption of first order kinetics with regard to en-
zyme and sucrose concentrations for the production of dex-
tran and fructose are further supported by rearranging Eqs.
(10) and (11) asE(t)/r′

F and E(t)/r′
D versus 1/S′(t). Both

plots are straight lines passing through the origin indicating
a first order kinetics relative to the substrate concentration.
From the slope we can also estimate 1/k′.

Table 5 provides a summary of the kinetic model equa-
tions and input data required for the model simulations.

5. Discussion of results

The model proposed is a fair approximation of the exper-
imental results obtained for the typical run #31. At the end

of the fermentation (see Fig. 5e) model results for fructose
deviate from experimental data. This is due to the fact that
when there is almost no sucrose, fructose is consumed by
the bacteria as an alternative carbon source. Similar calcula-
tions were carried out for other experiments and results are
summarised in Table 6.

The enzyme production rate is higher for pH= 5.5 and
decreases as the initial sucrose concentration increases. At
pH= 6.7 it seems that the enzyme production has an opti-
mum value for sucrose initial concentration in the range 20
to 40 g/l. However, the enzyme production is always smaller
than for pH= 5.5.

The enzyme is more active for lower temperatures and
for pH= 5.5. At 25◦C and pH= 5.5 the yieldYE/X tends to
decrease for initial sucrose concentration above 40 g/l.

For both pH values of 5.5 and 6.7, the yieldYX/S has
an optimum value when the initial sucrose concentra-
tion is 20 g/l. This value is influenced by the temperature
and the optimum value for 20 g/l of initial sucrose is at
35◦C.
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The kinetic constantk′ has the highest value in fermenta-
tions #14 and #15, wherek’ = 0.017 ml/DSU h. These runs,
with initial sucrose concentration of 10 g/l (very low) is ex-
tremely fast and the cells are under stress since the begin-
ning of the fermentation due to the substrate low concentra-
tion and to the competition for substrate between cells and
produced extracellular enzyme.

For the initial sucrose concentration of 20 g/l and
pH= 5.5, the kinetic constantk′ is 0.015 ml/DSU h. When
the pH is not controlled or controlled at pH= 6.7 for the
same initial sucrose concentration,k′ is between 0.010
and 0.012 ml/DSU h. For pH= 5.5 andT= 35◦C, the ki-
netic parameterk′ has an optimum value for initial sucrose
concentration of 20 g/l.

The model prediction concerning enzyme activity shows
some time lag relative to the experimental data. This can
be explained by the fact that our simple model does not
account for mass transport from the cell where the enzyme
is produced to the external bulk liquid phase.

6. Conclusions

Experimental results on the batch fermentation ofL.
mesenteroideswith sucrose are presented in this work.
Batch fermentations carried out at 35◦C and pH control
at pH= 5.5 resulted in highest enzyme levels for sucrose
concentrations up to 40 g/dm3. Dextran and fructose con-
centrations reach 8.17 g/l and 8.15 g/l, respectively at the
end of the fermentation. For higher sucrose concentrations
(80 and 120 g/dm3) there were problems with cell cen-
trifugation. In this step of the process, enzyme and even
small quantities of fructose and dextran were centrifuged
with cell mass. Aeration did not improve the fermentation
process.

The model developed to simulate the conversion of su-
crose to dextran and fructose gives a good description of the
batch fermentation withL. mesenteroides. Optimum values
of the kinetic constantk′ were found for initial substrate
concentration of 20 g/l, confirming that this is the best ini-
tial concentration of sucrose for the strainL. mesenteroides
NRRL B512(f).

7. Notation

D dextran concentration(mol/l)
D′ dextran concentration (g/l)
E enzyme activity (DSU/ml)
F fructose concentration (g/l)
F′ fructose concentration (mol/l)
k kinetic parameter in Eqs. (5) and (6)
k′ kinetic parameter in Eqs. (11) and (12) (ml/DSU h)
MS molar mass of sucrose
MF molar mass of fructose
MW molar mass of water

n stoichiometric coefficient for sucrose
S sucrose concentration (mol/l)
S′ sucrose concentration (g/l)
rx cell growth rate (g cells/l/h)
(−r′

S) substrate consumption rate (g/l/h)
t time (h)
T temperature (◦C)
X Cell concentration (g/l)
z stoichiometric coefficient for dextran
YE/X yield enzyme/substrate
YX/S yield biomass/substrate

7.1. Greek symbols

µ specific cell growth rate (h−1)
µmax maximum specific growth rate (h−1)
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