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Abstract Electrolytes based on a poly(!-caprolactone) (PCL)/siloxane organic/inorganic host 

framework doped with lithium triflate (LiCF3SO3) were synthesized through the sol-gel 

process. In this biohybrid matrix short PCL chains are covalently bonded via urethane 

linkages to the siliceous network. Samples with salt composition n (molar ratio of PCL repeat 

units per Li+ ion) ranging from " to 0.5 were investigated. All the ormolyte materials 

analyzed are amorphous. Xerogels with n > 0.5 are thermally stable up to about 300 ºC. The 

most conducting ormolyte of the series is that with n = 0.5 (1.6x10-7 and 3.2x10-5 #-1cm-1 at 

25 and 100 ºC, respectively).  
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Introduction 

Owing to their technological impact in the domain of solid state electrochemistry, in 

particular for the fabrication of advanced batteries, sensors and electrochromic and 

photoelectrochemical devices [1], polymer electrolytes [2] have attracted much interest in the 

past two decades.  

Conventional polymer electrolytes are obtained through the dissolution of an ionic salt in 

a poly(oxyethylene) (POE)-type host polymer. Recently, the sol-gel process [3] emerged as a 

standard method for preparing improved polymer/siloxane electrolytes, since the 

organic/inorganic hybrid concept [4] allows to combine in a single material the amorphous 

character, the good mechanical resistance and the excellent thermal/chemical stability 

provided by the silica backbone, with the flexibility and solvating ability imparted by the POE 

chains. In addition, these modified host polymer systems withstand the addition of 

significantly higher amounts of guest salt than those usually permitted in the classical 

systems. Another advantage of this strategy is that the materials may be readily processed 

under mild conditions into thin films. Numerous Li+-doped ormolyte systems were 

investigated in the last few years [5-13]. 

In the present work we introduce a new family of di-urethane cross-linked siloxane-based 

hybrid electrolytes incorporating poly(!-caprolactone) (PCL) segments (average molecular 

weight of 530 gmol-1) and lithium triflate (LiCF3SO3). The structure, morphology, thermal 

properties and ionic conductivity of a series of samples with a wide salt concentration range 

will be investigated. To our knowledge, this is the first time that PCL is used for the purpose 

of developing ion conducting materials.  

PCL is a linear, aliphatic thermoplastic, biocompatible, permeable, hydrophobic and 

biodegradable poly(ester), non-toxic for living organisms, that is resorbed after a certain 

period of implantation time. Because of this unique set of properties, this biopolymer and its 
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copolymers have found widespread application in the field of medicine, as biodegradable 

suture, artificial skin, resorbable prostheses and containers for sustained drug delivery [14-

16].  In this context, PCL-based hybrid structures have been also developed. For instance, 

Tian et al. [17] produced PCL/silica ceramers that may find use as degradable bioglasses, as 

coating materials for bone implants and prosthetic devices and as supports for enzyme 

immobilization. A bioactive and degradable PCL/silica hybrid, with application as bone 

substitute, was also proposed by S-H. Rhee et al. [18] In both cases the average molecular 

weight of the PCL molecule employed was 2000 gmol-1. 

 

Experimental 

 

Materials 

 

Lithium trifluoromethanesulfonate (LiCF3SO3, Aldrich) was dried under vacuum at 25 ºC for 

several days prior to being used. $,%-hydroxyl poly(!-caprolactone) (PCL(530), Fluka, 

average molecular weight 530 g/mol) and 3-isocyanatepropyltriethoxysilane (ICPTES, Fluka) 

were used as received. Ethanol (CH3CH2OH, Merck) and tetrahydrofuran (THF, Merck) were 

stored over molecular sieves. High purity distilled water (H2O) was used in all experiments.  

 

Synthesis of the d-PCL(530)/siloxane biohybrids 

 

The preliminary stage of the preparation of the LiCF3SO3-doped d-PCL(530)/siloxane hybrids 

(where d stands for di) involved the formation of a urethane cross-link between the hydroxyl 

(-OH) end groups of the PCL chains and the isocyanate (-N=C=O) group of ICPTES to yield 

the organic-inorganic hybrid precursor designated as di-PCL(530)/siloxane precursor.  
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In the second stage of the synthetic procedure, a mixture of CH3CH2OH and H2O was 

added to the d-PCL(530)/siloxane precursor to promote the hydrolysis and condensation 

reactions characteristic of the sol-gel process. In the case of the preparation of the doped 

biohybrids, LiCF3SO3was added to the CH3CH2OH/H2O solution.  

A typical synthetic procedure follows: 

Step 1 - Synthesis of the d-PCL(530)/siloxane precursor (Scheme 1): A mass of 2.000 g 

(3.774 mmol) of PCL(530) was dissolved in 10 ml of THF by stirring. A volume of 1.863 ml 

(7.548 mmol) of ICPTES was added to this solution under stirring in a fume cupboard. The 

flask was then sealed and the solution was stirred for approximately 24 h at 60-70 ºC. The 

grafting process was infrared monitored. During the formation of the urethane groups, the 

intensity of the strong and sharp band characteristic of the stretching vibration of the -N=C=O 

group of ICPTES, typically located at 2273 cm-1, was progressively reduced, until it 

disappeared upon completion of the reaction. In parallel, a series of new bands, associated 

with the vibrations of the urethane group, appeared in the 1800-1500 cm-1 spectral region. The 

d-PCL(530)/siloxane precursor was obtained as a yellowish transparent oil. Its structure, 

represented in Scheme 2, was confirmed by 13C NMR (CDCl3, 100.62 MHz) (Table 1). 

Step 2 - Synthesis of the PCL(530)/siloxane biohybrid (Scheme 1): A volume of 1.761 ml 

(30.192 mmol) of CH3CH2OH, 204 &l (11.32 mmol) of H2O and an appropriate mass of 

LiCF3SO3 were added to the THF solution of the d-PCL(530)/siloxane precursor obtained in 

the previous step. The mixture were stirred in a sealed flask for 30 min and then cast in a 

Teflon mould, which was covered with Parafilm and left in a fume cupboard for 24 h. The 

mould was transferred to an oven at 50 ºC and the sample was aged for a period of 4 weeks. 

The materials were obtained as transparent, flexible monoliths with a yellowish hue. The 

ormolytes were identified using the notation d-PCL(530)nLiCF3SO3, where n (salt 

composition) indicates the number of (C(=O)(CH2)5O) PCL repeat units per Li+ ion. Samples 
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with n = ", 200, 93, 19, 2.3, 1 and 0.5 were produced. Some relevant details of the synthetic 

procedure are given in Table 2. 

 

Characterisation 

 

13C NMR spectra were recorded on a Brüker ARX400 NMR spectrometer (100.62 MHz) in 

CDCl3 at CACTI - Universidade de Vigo (Spain). Chemical shifts, '() are quoted in ppm from 

tetramethylsilane (TMS). 29Si magic-angle spinning (MAS) and 13C cross-polarization (CP) 

MAS NMR spectra were performed using a Brüker Avance 400 (9.4 T) spectrometer at 79.49 

and 100.62 MHz, respectively. 29Si MAS NMR spectra were recorded with 2 &s (equivalent 

to 30 º) rf pulses, a recycle delay of 60 s and at a 5.0 kHz spinning rate. 13C CP/MAS NMR 

spectra were recorded with 4 &s 1H 90º pulse, 2 ms contact time, a recycle delay of 4 s and at 

a spinning rate of 8 kHz. Chemical shifts (') are quoted in ppm from TMS. 

The X-ray diffraction (XRD) measurements were carriout out at room temperature (RT) 

with a Rigaku Geigerflex D/max-c diffractometer system using monochromated CuK$ 

radiation (* = 1.54 Å) over the 2+ range of between 4 and 80 º at a resolution of 0.05 º. The 

xerogel samples, analyzed as solids, were not submitted to any thermal pre-treatment. 

A DSC131 Setaram Differential Scanning Calorimeter was used to determine the thermal 

characteristics of the ormolytes. Disk sections with masses of approximately 30 mg were 

removed from the di-ureasil film, placed in 40 µl aluminium cans and stored in a dessicator 

over phosphorous pentoxide (P2O5) for one week at RT under vacuum. After this drying 

treatment the cans were hermetically sealed and the thermograms were recorded. Each sample 

was heated from 25 to 300 ºC at 10 ºC min-1. The purge gas used in both experiments was 

high purity nitrogen supplied at a constant 35 cm3 min-1 flow rate.  
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Samples for thermogravimetric studies were transferred to open platinum crucibles and 

analysed using a Mettler TGA/SDTA 851 thermobalance at a heating rate of 10º min-1 using 

dried nitrogen as purging gas (20 ml/min). Prior to measurement, the xerogels were vacuum-

dried at 80 ºC for about 48 h and kept in an argon-filled glove box.  

For bulk conductivity measurements, an ormolyte disk was placed between two 10 mm 

diameter ion-blocking gold electrodes (Goodfellow, > 99.9%). The 

electrode/ormolyte/electrode assembly was secured in a suitable constant volume support. The 

cell support was installed in a Buchi TO51 tube oven and a type K thermocouple placed close 

to the electrolyte disk measured the sample temperature. Bulk conductivities of the samples 

were obtained during heating cycles using the complex plane impedance technique 

(Schlumberger Solartron 1250 frequency response analyser and 1286 electrochemical 

interface) over a temperature range of between 25 and 100 ºC and at approximately 7  ºC 

intervals. Prior to characterization, the di-ureasil ormolytes were vacuum-dried at 80 ºC for 

about 48 h and kept in an argon-filled glove box. 

 

Results and Discussion 

 

Structure and Morphology 

 
The 13C CP/MAS and 29Si MAS NMR spectra of selected d-PCL(530)nLiCF3SO3/siloxane 

hybrids are reproduced in Figs. 1 and 2, respectively. The position and attribution of the 

resonance peaks [19-25] are listed in Tables 1 and 3, respectively.  

The 13C CP/MAS NMR spectra of the urethane cross-linked d-PCL(530)/siloxane 

xerogels with n = !, 93 and 2.3 is dominated by a series of peaks attributed to the resonance 

of the methylene carbon atoms of the PCL repeat units (see carbon atoms C6 to C10 in Table 1 

and Fig. 1). The peaks associated with the carbonyl carbon atoms of the ester (C(=O)OCH2) 
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and urethane (NHC(=O)O) groups are ill-defined and weak (see carbons C14 and C13 in Table 

1, respectively, and Fig.1). The characteristics peaks of the propyl carbon atoms of the -Si-

(CH2)3-N moieties are present in the 13C CP/MAS NMR spectra of all the three samples (see 

carbons C1, C2 and C3 in Table 1 and Fig. 1), a proof that the grafting reaction was not 

accompanied by the rupture of bonds in the Si-propyl segments. The absence in the 13C 

CP/MAS NMR spectrum of the hybrid material with n=93 of the peaks due to the ethoxy 

carbon atoms (see carbons C4 and C5 in Table 1 and Fig.1) provides solid evidence that the 

hydrolysis reaction went to completion.  

It may be inferred from Fig. 2 that the 29Si MAS NMR spectra of the d-PCL(530)-based 

xerogels with n = !, 93 and 2.3 display peaks at approximately -50, -58 and -66 ppm (Table 

3). These signals are assigned to T1 (CH2-Si(OR)2(OSi)), T2 (CH2-Si(OR)(OSi)2) and T3 (CH2-

Si(OSi)3) sites, respectively (Note: according to the conventional Tm silicon (Si) notation, m* 

= 1, 2 and 3 is the number of Si atoms bonded to O-Si units). The polycondensation rates c 

(where c = 1/3 (%T1 + 2%T2 + 3%T3)) calculated for the d-PCL(530)/siloxane doped 

materials are significantly higher than that of the non-doped framework and suffer an increase 

with the increase of salt concentration. The empirical formula deduced for the three samples 

examined is given in Table 3. Based on the conclusions retrieved from the analysis of the 13C 

CP/MAS NMR spectrum of the xerogel d-PCL(530)93LiCF3SO3, we associate the residual OR 

groups in the T1, T2 and T3 site formula indicated above to non-reacted -OH groups (Table 3), 

a clear indication that the final material contains residual silanol groups (-Si-OH). 

The XRD patterns and the DSC thermograms of the d-PCL(530)nLiCF3SO3 samples 

illustrated in Figs. 3 and 4, respectively, indicate that the materials investigated are entirely 

amorphous. The broad band, Gaussian in shape, centered at approximately 21.98º in the 

diffractograms all the biohybrids is associated with the coherent diffracting domains of the 

                                                            
* The classical notation Tn has been changed to Tm, to avoid any confusion with the notation n used for salt 
composition throughout the text. 
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siliceous backbone [26]. The weak band distinguished at approximately 44º in the 

diffractogram of the samples with n , 1 is tentatively associated with the second-order of the 

peak centred near 21.98º.  

The TGA curves of representative urethane cross-linked d-PCL(530)nLiCF3SO3 

composites are depicted in Fig. 5. These data demonstrate that the thermal decomposition of 

the doped materials with n > 0.5 is initiated at temperatures higher than 300 ºC. The presence 

of the guest salt appears to destabilise the hybrid host structure in a non-oxidising atmosphere. 

In the case of the less concentrated d-PCL(530)nLiCF3SO3 samples with n = 200 and 93, a 

unique mass loss (gradual) is detected in the curves (onset at approximately 300 ºC). In 

contrast, in the hybrids with n = 19, 2.3 and 0.5 we observe a three mass loss degradation 

process.  

 

Ionic conductivity  

 

The examination of the Arrhenius conductivity plots of the doped d-PCL(530)nLiCF3SO3 

xerogels illustrated in Fig. 6(a) reveals that the most conducting ormolyte over the 

temperature range of temperatures considered is PCL(530)0.5LiCF3SO3 ( 4.0x10-6, 1.0x10-5 

and 6.74x10-5 #-1cm-1 at 35, 50 and 104 ºC, respectively).  

The conductivity isotherms included in Fig. 6(b) distinctly show the presence of a 

conductivity maximum at n = 2.3. Further studies involving the measurement of the ionic 

conductivity of more concentrated ormolytes are needed to determine the location of other 

conductivity maxima, as it is not clear at the present stage if composition n = 0.5, which leads 

to higher conductivity than n = 2.3, corresponds to a second conductivity maximum. 
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Conclusions 

 

LiCF3SO3-doped d-PCL(530)/siloxane biohybrid ormolytes were synthesized by the sol-gel 

process. Samples with " > n , 0.5 were produced as amorphous, flexible, thin monoliths. The 

materials with n > 0.5 are thermally stable up to 300 ºC. The d-PCL(530)0.5LiCF3SO3 

compound displays the highest ionic conductivity over the range of temperatures analyzed 

(approximately 4.0x10-6 and 6.7x10-5 #-1cm-1 at 35 and 104 ºC, respectively). The 

encouraging results obtained suggest that further research on this type of system is worth 

pursuing. 
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List of figure captions 

 

Gig. 1  13C CP/MAS NMR spectra of selected d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Gig. 2  29Si MAS NMR spectra of selected d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Gig. 3  XRD patterns of selected d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Gig. 4  DSC curves of the d-PCL(530)nLiCF3SO3/siloxane hybrids. 

 

Gig. 5  TGA curves of selected d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Gig. 6 Arrhenius conductivity plot (a) and isotherms of the ionic conductivity versus 

composition (b) of the d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Tables 

 
Table 1  13C CP/MAS data of selected d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Table 2 Details of the synthetic procedure of the d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Table 3  29Si MAS/NMR data of selected d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 

Scheme 
 

Scheme 1  Synthetic procedure of the d-PCL(530)nLiCF3SO3 /siloxane hybrids. 

 
Scheme 2 Structure of the d-PCL(530)nLiCF3SO3/siloxane hybrid precursor.



Journal of Solid State Electrochemistry 13 S. C. Nunes et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gig. 1, S. C. Nunes et al., Journal of Solid State Electrochemistry

 

200 180 160 140 120 100 80 60 40 20 0

 

 

'((ppm)

 

 

 

"

n

2.3

93

 

 



Journal of Solid State Electrochemistry 14 S. C. Nunes et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gig. 2, S. C. Nunes et al., Journal of Solid State Electrochemistry

-30 -40 -50 -60 -70 -80 -90

n

2.3

93

 

T1

' (ppm)

 

-

T3T2

 

 



Journal of Solid State Electrochemistry 15 S. C. Nunes et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gig. 3, S. C. Nunes et al., Journal of Solid State Electrochemistry 

10 20 30 40 50 60 70

 
 

 

 

 

 

 

 

 

 

 

2+ (º)

0.5

n

 In
te

ns
ity

 (a
rb

. u
ni

ts
)

0

1

40

200

"

 

 



Journal of Solid State Electrochemistry 16 S. C. Nunes et al. 

 

0 50 100 150 200 250 300

ex
o

 

"

en
do

T (ºC)

200

 

19

2.3

1.0

 

 

 

 

 

 
 

 

0

0.5

 

200

93

40

H
ea

t f
lu

x 
(m

W
 g

-1
)

n

 

 

 

 

Gig. 4, S. C. Nunes et al., Journal of Solid State Electrochemistry



Journal of Solid State Electrochemistry 17 S. C. Nunes et al. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gig. 5, S. C. Nunes et al., Journal of Solid State Electrochemistry 

 

0 100 200 300 400 500 600 700

0

20

40

60

80

100

            n
    "
 200
  93
  19
  2.3
  0.5

 

 

T (ºC)

w
ei

gh
t (

%
)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) (b) 

Gig. 6, S. C. Nunes et al., Journal of Solid State Electrochemistry 

 

2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5

              n
  200
   93
   19
   2.3
    1
   0.5

  . 
(#

-1
%m

-1
)

1000)T(+-1)

110 100 90 80 70 60 50 40 30 20

10-5

10-6

10-7

10-8

10-9

T(ºC) 

 

800 600 400 200 3 2 1 0"

 

 

10-3

10-4

10-5

10-7

10-8

10-6

10-9

          T(ºC)
  25
  30
  40
  50
  60
  70
  80
  90
 100

. 
(#

-1
 c

m
-1
)

n
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 1H NMR Attribution       13C NMR       13C CP/MAS NMR             Attribution  
 d-PCL(530)/siloxane                                    d-PCL(530)/siloxane         d-PCL(530)nLiCF3SO3         [19-25] 

        precursor         precursor            "              93       2.3    

     5.20-5.10 s, b      2H            Hm              173.11-172.91          173.39             173.38           175.20                   C14 

      4.20-4.00 m      4H  Hk               156.40          157.30             157.32              158.00   C13 

      4.00-3.80 m         / 7.4H  Hf    68.65-68.61                            69.00               68.93           69.00   C12 

     3.67-3.61  q      12H  Hd     63.94-63.67            64.06               64.03           64.91    C6 

     3.53-3.43 m      4H  Hl     62.95-62.87                            61.51               62.32           62.00   C11 

     3.05-2.97 m      4H  Hc         57.98           55.90                   -           57.76    C4 

     2.19-2.11 m  / 7.4H  Hj     43.06-42.99            43.03               44.20                44.60    C3 

     1.53-1.42 m        /19.4H     Hb,Hi,Hg           33.71-33.57                            33.92               33.86           34.00   C10 

     1.25-1.20 m        / 7.4H   Hh          28.3                                   28.47                28.44                28.04    C7 

     1.06-1.03  t           18 H            He           25.12-25.08           25.40                25.46           25.15    C9 
      0.47-0.43  t     4H  Ha      24.23-24.07           24.81               24.71           23.80     C8 

              22.89            20.38  20.96           20.30    C2 

                          17.93-17.86            18.17                     -                  17.83    C5 

                   7.23            14.85  14.63           14.30    C1 

                                                                  9.99               10.83   

 
s - singlet, t - triplet, q - quartet, m - multiplet, b - broad 
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n = [C(=O)(CH2)5O]/Li+        m(LiCF3SO3)          Si/Li+      Si/Li+ 

    /molmol-1         /g           /molmol-1               /gg-1 

       "          -           -                - 

    200          0.0109      107.527             170.491 

      93          0.0235      50.0000             79.2781 

      40          0.0547      21.5054             34.0981 

      19          0.1153      10.2150             16.1966 

     2.3          0.9523        1.2365               1.9606 

     1.0          2.1903        0.5376               0.8524 

     0.5          4.3805        0.2688               0.4262 
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29Si MAS NMR 
 

 n  T1 (CH2-Si(OSi)(OR)2)  (%)   T2 (CH2-Si(OSi)2(OR))  (%)           T3 (CH2-Si(OSi)3)  (%)                  c (%)                        Empirical formula  
            

 !                -49.1    (33.5)                              -58.1     (52.9)                                -66.6     (13.6)                            60               R’0.5Si (OR)0.9(O)1.2 

93               -48.9    (20.0)                      -58.0     (56.1)                                -66.0     (23.0)                             67                   R’0.5Si (OH)1.0(O)1.0 

2.3              -51.2    (11.9)                              -57.4     (35.6)                                 -66.9    (52.5)                             80               R’0.5Si (OR)0.6(O)1.2 

 

Note: R|= -(CH2)3-NH-C(=O)-[O(CH2)5C(=O)n}-(OCH2CH2OCH2CH2O)-(C(=O)(CH2)5O)n}-C(=O)-NH-(CH2)3-   

R = CH2CH3 or H 

 

 

 

 

 



 

 

Scheme 1: S. Nunes et al, Journal of Solid State Electrochemistry 
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Scheme 2, S. Nunes et al., Journal of Solid State Electrochemistry 
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