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Abstract

Heavy metal recovery from biosorbents is of major importance in the assessment of competitiveness of biosorption processes. Several
desorption agents (H2SO4, HNO3, HCl, CH3COOH and EDTA) were tested for the selection of the optimal elution conditions for Cr(III)
recovery fromSaccharomyces cerevisiaecells.

Sorption time was optimised as it plays an important role in the sorption–desorption process, being shown that a 30 min sorption period is
the best option to ensure metal removal from solution and good recovery from biosorbent. The optimal contact time with desorption agents
was also studied, as long exposures to these ones may cause cell damage, affecting biosorbent metal uptake capacity in subsequent sorption
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Each eluant was analysed in terms of its desorption capacity and its effect on the biomass metal uptake capacity i

orption–desorption cycles. Considering the effectiveness of chromium desorption from loaded biomass, it was possible to co
2SO4 (pH≈ 1) was the most effective eluant tested, accomplishing the highest Cr(III) recovery fromS. cerevisiaein three consecutiv
orption/desorption cycles.
Regarding the damage caused by acid treatment onS. cerevisiaecells, assessed by the reduction on metal uptake capacity after e

t was possible to observe that sulphuric acid was the most harmful eluant causing long term negative effects in metal uptake. B
he experiments were interrupted (nearly 26 h of continuous cycles) biomass uptake capacity was reduced to about 77% of the va
efore acid treatment.
2004 Elsevier B.V. All rights reserved.
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. Introduction

Wastewater contaminated with heavy metals is a serious
nvironmental problem. Biosorption, using biosorbents from

ndustrial or natural sources, may provide an efficient and
ompetitive solution to treat this wastewater, particularly for
igh volumes of dilute solutions[1,2]. Saccharomyces cere-
isiae residual cells from brewing industries have the po-
ential for high metal uptake, selectivity and recovery[3].
urthermore, it is an available, low-price biosorbent.

The economical and ecological feasibility of biosorption
rocesses depend on the biosorbent metal uptake capacity

∗ Corresponding author. Tel.: +351 253 604 400; fax: +351 253 678 986.
E-mail address:aferraz@deb.uminho.pt (A.I. Ferraz).

to reach metal concentration legal limits for wastewater
charge and the ability of eluants to release sequestered
in subsequent recovery[4–6]. Recovery allows metal r
cycling, leading to energy savings and materials cons
tion [7]. Finally, biosorbent regeneration for use in multi
adsorption–desorption cycles[6], contributes to process co
effectiveness.

The efficiency of metal recovery depends on choice of
ant and elution conditions[8], as various eluants present
different desorption mechanisms may be used[4]. Lower-
ing pH (e.g. with mineral acids) causes metal desorption[9],
resulting from competition between protons and metal
for binding sites[4,5]. Mineral acids such as HCl, H2SO4
and HNO3 and the organic acid CH3COOH are efficient des
orption agents[1,5,6,10], although high concentrations m

385-8947/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
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damage biosorbents, limiting their use in subsequent adsorp-
tion cycles. Carbonates which form complexes with metal
ions are efficient eluants. However, biomass can be damaged
due to high equilibrium pH[11]. The strong chelating agent
EDTA is another eluant commonly used[4].

The eluants used for metal recovery should be: (a) non-
toxic, (b) cause no damage to biosorbent to allow reuse and (c)
achieve maximum recovery at lowest possible concentrations
[3]. This can be expressed by the solid-to-liquid ratio (S/L),
the mass of loaded biosorbent per eluant volume, an important
parameter to be optimised[4].

The purpose of this work is to study optimal conditions
for Cr(III) desorption from the flocculating yeastS. cerevisiae
from beer production such as eluant type and concentration,
sorption and desorption contact time. Cr(III) is an important
end product in the reduction by metabisulphite of the hex-
avalent chromium from electroplating and similar industries.
It is far more prevalent than its hexavalent counterpart and
causes a great deal of environmental stress.

2. Materials and methods

2.1. Microorganism
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separated by centrifugation (3 min, 3000 rpm) and mixed with
eluant. The eluant volume used was half the volume of treated
metal solution, corresponding to an S/L ratio of 8 g/L. Af-
ter 30 min of elution, 10 mL samples were centrifuged to
evaluate chromium recovery. Chromium (III) uptake and
recovery were calculated according to Eqs.(1) and (2),
respectively:

q = (Ci − Cf )V

m
(mg Cr(III)/g) (1)

Cr(III) recovery= CfelVel/m

q
× 100 (%) (2)

whereq is the metal uptake (mg/g);Ci the Cr(III) initial con-
centration (mg/L);Cf the Cr(III) final concentration (mg/L);
V the solution volume (L);m the biosorbent dry weight (g);
Cfel the Cr(III) final concentration in eluant (mg/L);Vel the
eluant volume (L).

2.5. Eluant-biomass contact time selection

Hundred milliliter of metal solutions were prepared in
250 mL flasks with initial concentrations of 10, 25 and
50 mg Cr(III)/L. Chromium solutions were mixed with 10 mL
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S. cerevisiaewas obtained from the Portuguese brew
ompany – UNICER. Biomass was washed three time
istilled water followed by centrifugation (3 min, 3000 rpm
pproximately 50 g of wet yeast previously washed w
uspended in 100 mL of distilled water. This final yeast
ension was mixed with metal solutions in the following p
ortion: 10 mL yeast suspention/100 mL metal solution
rder to achieve a biomass concentration around 4 g/L
eight).

.2. Metal solutions

Solutions were prepared by dissolving CrCl3·6H2O in dis-
illed water. Cr(III) solution was adjusted to pH 5.0 w
aOH 0.1 M, prior to mixing with the yeast suspension.

.3. Eluants

HNO3, H2SO4, HCl and CH3COOH solutions were use
t concentrations of 0.1, 0.5 and 1.0 M; EDTA solutions w
sed at 0.01, 0.05 and 0.1 M, due to the low solubility of
ompound.

.4. Sorption time

Two hundred and fifty milliliter of Cr(III) solutions wer
repared in 500 mL flasks, with initial concentration of 10
nd 50 mg Cr(III)/L. Metal solutions were mixed with 25 m
f yeast suspension and incubated at 30◦C with orbital shak

ng (150 rpm). After 0.25, 0.5, 2 and 24 h exposure, 50
amples were collected and biomass, loaded with meta
eparated by centrifugation (3 min, 3000 rpm) and mixed
he eluant (S/L ratio of 8 g/L). Samples were collected a
, 15, 30 min and 1 h contact with the eluant to evaluate m
ecovery.

.6. Sorption–desorption cycles

Cr(III) solutions (Ci = 25 mg Cr(III)/L) were prepared
00 mL flasks. Solutions were inoculated with yeast sus
ion and incubated at 30◦C with orbital shaking (150 rpm
fter 30 min, part of this solution was centrifuged (3 m
000 rpm) and the metal loaded yeast collected mixed
luant (HCl, H2SO4, HNO3 or CH3COOH 0.1 M) in a
:1 volume proportion. The remaining solution was

her incubated in order to follow Cr(III) uptake for the f
owing 24 h. At the end of the exposure period to elu
30 min), the solution was centrifuged (3 min, 3000 rp
nd biomass regenerated by washing successively wit

er and NaOH 0.1 M, until initial pH of approximate
.5 was obtained[1]. Regenerated yeast was used to i
te another cycle. The described procedures were rep

wice.

.7. Biomass dry weight

Gelman membranes (pore size 0.45 mm) were wa
ith 20 mL of distilled water, dried at 105◦C and weighted
or each assay, 10 mL of metal solution with biomass
ension was filtered and dried at 105◦C until constant weigh
as reached.
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2.8. Analytical methods

Chromium concentration in samples was determined by
atomic absorption spectroscopy after biomass removal by fil-
tration. Samples were preserved by acidification at pH = 2
with concentrated HNO3 and kept at 4◦C.

3. Results and discussion

3.1. Sorption time selection

The optimisation of Cr(III) desorption from loadedS.cere-
visiaebegan with the characterization of the effect of contact
time between biomass and the metal solution on recovery ef-
ficiency. Sorption times under study were: 15 and 30 min, 2
and 24 h. Metal initial concentrations were:Ci = 10, 25 and
50 mg Cr(III)/L.

Fig. 1presents chromium uptake byS. cerevisiaefor a 24 h
period. Typical biosorption kinetics[12] with an initial rapid
metal uptake (attributed to adsorption) followed by slow up-
take (associated to metabolic dependent mechanisms) were
observed. This kinetic model has been accepted for various
biosorbents such as bacteria and fungi (including yeasts) un-
der similar operation conditions to the ones described in the
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metal solution (Fig. 2). Nevertheless, for short contact periods
between biomass and metal solution, Cr(III) uptake is low
(Fig. 1). Increasing contact time, though bringing benefits to
metal uptake, can reduce recovery levels. Recovery drops to
values below 10% after 24 h of elution except with sulphuric
acid 0.5 and 1.0 M, and nitric acid 1.0 M.

This trend emphasizes that sorption times have important
effects on recovery efficiency, which decreases significantly
with increasing biosorbent contact time with the metal so-
lution. This is a consequence of intracellular Cr(III) uptake,
as mentioned previously. Metal accumulation inside the cell
may result from bioaccumulation, a slow metabolic depen-
dent removal mechanism, or by simple metal diffusion[14].
Intracellular uptake limits metal recovery when long sorp-
tion periods are permitted, thus they should be avoided when
metal recovery is designed.

The above results indicated that a compromise situation
was desirable, making it possible to remove most of the metal
from solution while keeping recovery at acceptable values.
The data shown inFigs. 1 and 2indicate that the selected
sorption time for all the subsequent assays was 30 min. After
this sorption period, metal uptake nearly reached 80% of total
uptake possible for a 24 h sorption period. It was still possible
to recover more than 40% of bound Cr(III) with most eluants
tested.
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resent study[13]. The explanation based on metabolic
ivity for the second kinetic period with the slow uptake
etal is a plausible one considering that Cr, when in a

oncentrations range, and even in its most noxious val
ay readily participate in cell metabolism[13]. In fact this
articipation is enhanced by certain starvation condition

he biomass, acting as a driving force for Cr penetration
he cells[12].

A similar trend was observed for the three initial chrom
oncentrations with respect to the sorption time on m
ecovery.

Higher chromium recovery was achieved when biom
ubmitted to elution was laden previously for 15 min with

Fig. 1. Chromium uptake at d
Comparing data from the three graphs ofFig. 2, data ob
ained for three different initial metal concentrations, i
ossible to observe that for the shortest sorption perio
tudy, initial Cr(III) concentration seems to affect metal
overy, specially when more diluted eluants are used.
ffect is clearly noticeable for H2SO4, HCl (0.5 and 0.1 M
nd CH3COOH (0.1 M), where an increase in chromium
overy with increasing initial metal concentration was
erved. A relation between metal initial concentration
etal recovery was not observed with EDTA.
This initial metal concentration effect may be explai

y multilayer sorption onto the biomass surface, ma
t easier to desorb external metal layers and to rec

t initial chromium concentrations.
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Cr(III) at higher metal concentrations[5], or by differ-
ences in binding sites affinities. Kratochvil et al.[15] dis-
cussing a similar trend with Cr(VI) desorption fromSar-
gassumseaweed, suggested that for low metal concentra-
tions metal binds preferentially to sites with higher affin-
ity, following binding to lower affinity sites, when ini-
tial metal concentration is increased. Therefore, chromium
bound to lower affinity sites is easier to recover by
elution.

However, increasing eluant concentration and using a
strong chelating agent diminishes the effect of initial metal
concentration, as presented in this report.

Considering longer exposure periods to metal solution, the
effect of initial chromium concentration on recovery tends
to be less evident, inverting, in some particular cases, the
previous tendency, e.g. with H2SO4 1.0 M the recovery val-
ues after 24 h were 40.9, 14.9 and 16.8% forCi = 10, 25
and 50 mg Cr(III)/L, respectively. Eventually, higher con-
centration gradients cause higher intracellular metal accu-
mulation making recovery more difficult after long sorption
periods.

An increase in recovery efficiency with increasing acid
concentration was also observed, which suggests an ion ex-
change process[16]. The change observed is highest between

F
C

ig. 2. Dependence of Cr recovery on sorption period, for different elua

i = 10 mg Cr(III)/L.

nts and concentrations. (a)Ci = 50 mg Cr(III)/L; (b) Ci = 25 mg Cr(III)/L; (c)
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Fig. 2. (Continued).

0.1 and 0.5 M, but not significant for most eluants tested. This
suggests saturation for proton exchange, indicating that in-
creasing proton concentration does not increase metal recov-
ery. Acid concentration of 0.5 M is sufficient to reach almost
maximum recovery.

Considering that acids can damage biosorbents, making
unviable their reuse in multiple sorption/desorption cycles
and that, according to Wilde and Benemann[17], the ideal
pH for elution corresponds to a value below which there is no
biosorption – this pH threshold was found to be 2 in a previous
study[18], the acid concentrations used in following assays
were 0.1 M.

3.2. Biomass-eluant contact time selection

Chromium recovery from biomass increases with in-
creasing exposure time to eluants,Fig. 3. This increase
is as evident using EDTA as using CH3COOH. The in-
crease is not so pronounced for the strong mineral acids
tested: HNO3, H2SO4 and HCl. This last one demonstrates
a maximum recovery capacity just after 5 min of con-
tact and further elution time did not improve the recovery
efficiency.

The experimental data also indicate that Cr(III) recovery
obtained with increasing contact time follows an identical
t d ini-
t

ov-
e are
s t is
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i with
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contact time required for this eluant to reach equilibrium de-
notes a low affinity for EDTA-Cr(III) complex formation.

Although EDTA solutions were prepared at more dilute
concentrations than the other acids in the study, therefore
the reported results concerning the eluants efficiency being
justifiable, it is important to remind that EDTA solutions are
harder to prepare as EDTA is a high molecular weight reagent
with a low solubility in water. Furthermore, according to
Swalaha (1993) referred by[5], the use of EDTA, when com-
pared to other eluants, is not economical. Therefore EDTA
was not used in the later assays (sorption/desorption cycles).

The use of strong acids to recover Cr(III) bound toS.
cerevisiaeallows shorter elution periods due to easier proton
release and promptly reached equilibrium. To ensure high re-
coveries and as little damage to biomass as possible, the con-
tact time with eluants used in subsequent assays was 30 min.
This period accomplished a reasonable compromise between
those factors.

3.3. Sorption–desorption cycles

It is possible to notice inFig. 4 that H2SO4 0.1 M is the
solution that accomplishes the higher metal recovery in the
three sorption/desorption cycles (52, 43 and 35%), followed
by HNO3 (40, 42 and 30%). HCl and CH3COOH resulted in
l pec-
t

Cl
w ids.
H alent
h hree
m igher
p ange
(

rend independently of the eluant concentration used an
ial metal concentration (Fig. 3).

The HCl and EDTA solutions gave the lowest metal rec
ry of all the assays preformed, although the data at 0.1 M
imilar. Regarding the chemical properties of EDTA, tha
ts capacity to form metal complexes, this behaviour seem
ndicate a moderate tendency of chromium to complex
DTA when compared to cell binding. This property is re

orced by the slower desorption kinetics observed. The lo
ower recoveries (34, 29 and 22%; 28, 39 and 24%, res
ively).

It may be expected that chromium recovery with H
ould be similar to that obtained with the other strong ac
owever, the eluant-biomass solution pH denotes equiv
ydrogen ion concentration for proton exchange for the t
ineral acids. On the other hand, acetic acid exhibited h
H and consequently less accessibility to protons exch
Table 1).
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Table 1
Eluant-biomass solution pH (average value for three cycles, measured in the
beginning of desorption) and biomass loss (average value)

H2SO4 HNO3 HCl CH3COOH

pH 1.09 1.02 1.06 3.31
Biomass loss (% dry weight)

Second cycle 17 18 16 27
Third cycle 17 16 17 11

The higher chromium recovery for CH3COOH in the
second cycle can be explained by the elution of part
of the metal that was not desorbed during the first
cycle.

Since elution does not completely remove chromium
bounded toS. cerevisiae, and this biomass, when placed
in contact with fresh metal solutions, continues to remove
metal to residual concentrations equivalent to the achieved in
the first cycle, it is possible to assume that biomass did not
reached its full saturation during the cycles performed.

Biomass acid treatment has a negative effect in the first
period of chromium uptake (Figs. 5–8). The lower metal up-
take may have occurred due to changes in cell structure and
modification of binding sites chemistry. The first period of
chromium uptake, characterized in regular assays by rapid
sorption rates, attributed to metal uptake by metabolic inde-

F
C

ig. 3. Dependence of Cr recovery on elution periods, for different elua

i = 10 mg Cr(III)/L.

nts and concentrations. (a)Ci = 50 mg Cr(III)/L; (b) Ci = 25 mg Cr(III)/L; (c)
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Fig. 3. (Continued).

pendent mechanisms, may be affected by the inefficient acid
elution, reducing the availability of binding sites in subse-
quent cycles.

However, when following biosorption through a longer
period, it is possible to reach uptake values equivalent to
those reached in the first cycle, with the exception of the
system treated with H2SO4 (after 26 h, second and third cy-

cle reached 77% of the metal uptake achieved in the first
cycle).

On the other hand, after desorption with CH3COOH
and HCl, metal uptake increases 7 and 4% when compared
to the first cycle. This observation, despite occurring after
approximately 22 h, is very important when considering
biosorbent reuse in several sorption/desorption cycles. Nev-
Fig. 4. Cr(III) uptake and recovery in three successi
ve sorption/desorption cycles using different eluants.
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Fig. 5. Cr(III) uptake evolution in three sorption cycles after 30 min elution with H2SO4. Elution took place after 30 min of sorption.

Fig. 6. Cr(III) uptake evolution in three sorption cycles after 30 min elution with CH3COOH. Elution took place after 30 min of sorption.

ertheless, this situation can make biomass reuse impossible
for more than two consecutive cycles, considering previously
discussed data that indicate very low metal recovery after
24 h of biosorption. In these assays biomass collection for
elution, followed by the initiation of another cycle, occurred

after 30 min of contact with metal solution; it was decided
to follow Cr(III) uptake during a minimum of 24 h to better
evaluate long term effects of elution on biomass.

Regarding the possibility of biomass losing its viability
after acid treatment, consequently diminishing intracellular

Fig. 7. Cr(III) uptake evolution in three sorption cycles after 30 min elution with HCl. Elution took place after 30 min of sorption.
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Fig. 8. Cr(III) uptake evolution in three sorption cycles after 30 min elution with HNO3. Elution took place after 30 min of sorption.

uptake, it is likely that in the second sorption/desorption cy-
cle, when evaluating chromium recovery after 24 h of sorp-
tion, the values obtained would be higher than that reported
in Section3.1. This possibility may be tested in subsequent
work.

It is well documented that medium pH largely determines
biosorption, affecting ion speciation in solution and bind-
ing sites chemistry[8,17]. The system in the study has an
optimum sorption pH of 5.0[18]. The treatment performed
after acid washing, consisting of three fold biomass wash-
ing with water and pH adjustment with NaOH 0.1 M, until
biomass suspension reached its initial pH[1], largely con-
tributed to the good biomass performance in the second and
third cycle, allowing an optimum pH at the beginning of each
cycle.

After washing with water, collected supernatant was anal-
ysed by AAS and no chromium was detected, leaving out the
possibility of losing metal in this intermediate treatment.

The repeated use of biosorbent in sorption/desorption cy-
cles leads to biomass losses with an average value for the
second and third cycle of 17.5% (Table 1). The observed
agreement between those values suggests that biomass losses
are due to the experimental handling, inherent to all assays,
and to biomass destruction as a result of acid treatment. This
situation can be minimised by immobilisation[19], an aspect
b

not
a ering

medium pH (using higher acid concentrations) and/or aug-
menting desorption time as previous results indicate. This
improvement may be particularly important considering HCl
and CH3COOH as these acids did not cause biomass to lose
uptake capacity after 24 h sorption period.

3.4. Comparison to other systems

Many authors refer to complete or almost complete re-
covery of metals from biosorbents using mostly mineral acid
treatments: Cu2+ total recovery from immobilisedChlorella
vulgariswith HCl 0.1 M[9]; Cu2+ recovery fromS. cerevisiae
– 85% with H2SO4 1 M, 80% with HCl 1 M and 80.5% with
HNO3 1 M [3]; Cd2+ total recovery fromSargassum fluitans
with H2SO4, HCl and HNO3 0.1 M [4]; Ag+ total recovery
from Aspergillus nigerwith HNO3 0.1 N [10]; Cd2+ recov-
ery fromSargassum baccularia– 80% with HCl (pH = 2) and
almost complete with EDTA 3.24 mM[20].

However, bibliographic data for chromium desorption in
similar conditions indicate much lower recoveries as can be
seen inTable 2.

The above values indicate that chromium is, in general,
more difficult to recover than other metals, eventually be-
cause it follows a different biosorption mechanism[21,22].
Comparing the results obtained in the present study with the
presented inTable 2, it is possible to observe that the latest set
a stem
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eyond the scope of the present work.
It is important to focus that attained recoveries are

s good as expected but they can be improved by low
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ucor meihi Cr3+ H2SO4 (study in function
aste activated
sludge

Cr3+ (among others) CH3COOH 2.5%, HCl 0

. cerevisiae Cu2+, Zn2+, Co2+, Cd2+,
Ni2+, Cr2+

HCl 0.1 M; HCl 1.0 M

a Ci = 30 and 60 mg/L.
re more discouraging: recoveries obtained with the sy
n study are higher using more dilute acid solutions.

Recovery (%) Authors

) pH = 1.0; 10%, pH≈ 0; 30% Tobin and Roux[23]
10–50%a, 45–70a Bux et al.[5]

>90% for all metals except Cr2+; 34% for
Cr2+ in first cycle; 0% in second cycle

Wilhelmi and Duncan[1]
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4. Conclusions

The present work clearly shows that sorption time has a
great influence in chromium recovery from metal loadedS.
cerevisiaeresidual from a brewing industry. Considering this
aspect it is important to clearly establish the main purposes
of system operation, given that the operation until biomass
saturation is reached may turn unviable metal recovery and
biosorbent reuse in multiple sorption/desorption cycles.

The optimisation of operational conditions for metal re-
covery such as eluant concentration and laden biomass con-
tact time with eluant, was focused on maximisation of Cr(III)
desorption fromS. cerevisiaeminimising biomass damages,
so dilute acid solutions were used (0.1 M) and the chosen
contact time with these solutions was 30 min.

The best desorption results – 52, 43 and 35% in three
consecutive cycles – were obtained with sulphuric acid 0.1 M,
yet causing a considerable drop inS. cerevisiaemetal uptake
capacity. Using hydrochloric acid as desorption agent, metal
recovery was reduced to 34, 29 and 22% in the three cycles
performed but in longer exposures to metal solutions it was
possible to reach initial Cr(III) uptake levels.

Comparing the results accomplished in the present study
with other published data it is possible to conclude that
chromium desorption has low efficiency values when com-
p r(III)
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