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ABSTRACT 

The work presented in this thesis was developed at both the Civil Engineering Department of 

Universidade do Minho and at the Structural Technology Laboratory of Universitat Politècnica 

de Catalunya, Spain. This study is composed of both an experimental part and a numerical part, 

aimed at contributing to a better knowledge of the behaviour of blocky masonry structures under 

cyclic loading. 

Uniaxial monotonic and cyclic deformation-controlled tests were performed on stone and brick 

specimens as well as prisms, aiming at a complete characterization of the cyclic behaviour of 

these materials. Complementary to these tests, seven dry stone masonry walls were constructed 

and tested under combined compressive and shear loading. The main objective of this 

experimental work was to provide adequate data concerning the mechanical behaviour of 

historical masonry components and structures, capable of being used for numerical purposes, 

both for calibration of constitutive models and for validation of numerical results. 

The micro-modelling strategy was adopted for the numerical analysis of the cyclic behaviour of 

masonry structures. Starting from an existing monotonic constitutive model developed for 

interface elements, fully based on the plasticity theory, a new constitutive model able to describe 

the cyclic loading of interface elements is proposed. This new model is also entirely founded on 

the incremental theory of plasticity. Elastic unloading is assumed only for the shear component. 

The normal component is described in a non- linear fashion. Thus, for unloading/reloading, two 

new auxiliary yield surfaces, termed unloading surfaces, similar to the monotonic ones, are 

introduced. The motion of the unloading surfaces is controlled by a mixed hardening law. The 

proposed constitutive model has been implemented in a pilot version of the DIANA finite 

element code. 

Afterwards, some experiments available in the literature are simulated using the developed 

model. A good agreement between numerical and experimental results has been found. 

 



RESUMO 

O trabalho apresentado nesta Tese foi desenvolvido no Departamento de Engenharia Civil da 

Universidade do Minho e no Laboratório de Tecnologia de Estruturas da Universidade 

Politécnica da Catalunha, Espanha. Este trabalho, composto por uma parte experimental e por 

uma parte numérica, pretende contribuir para uma melhor compreensão do comportamento das 

estruturas de alvenaria de blocos sob acções cíclicas. 

Foram realizados ensaios uniaxiais monotónicos e cíclicos, sob controlo de deslocamento, em 

provetes e prismas de pedra e tijolo, tendo em vista a caracterização do comportamento cíclico 

destes materiais. Complementarmente, foram ensaiados sete muros de alvenaria de pedra de 

junta seca, sob a acção combinada de forças normais e de corte. O principal objectivo deste 

trabalho experimental relaciona-se com a obtenção de um conjunto adequado de resultados sobre 

o comportamento mecânico de alvenaria histórica, susceptíveis de serem usados tanto na 

calibração de modelos constitutivos como na validação de resultados numéricos. 

Para a análise numérica do comportamento cíclico de estruturas de alvenaria, foi adoptada a 

estratégia da micro-modelação. Com base num modelo constitutivo de elemento de junta 

existente, baseado na teoria da plasticidade e desenvolvido para carregamento monotónico, 

propõe-se neste trabalho uma extensão desse modelo para a inclusão do comportamento cíclico 

de elementos de junta. Este novo modelo é também totalmente baseado na teoria da plasticidade. 

O comportamento elástico em descarga é considerado apenas para a componente de corte. Para a 

componente normal, a descarga é regida por leis não lineares. Assim, os casos de 

descarga/recarga são considerados através da introdução de duas novas superfícies de cedência 

auxiliares, ditas de descarga, para compressão e para tracção, semelhantes às superfícies de 

cedência monotónicas. O movimento das superfícies de descarga é controlado por leis de 

endurecimento misto. O modelo constitutivo proposto foi implementado numa versão piloto do 

código de elementos finitos DIANA. 

No final deste trabalho apresentam-se vários exemplos de aplicação do modelo numérico 

desenvolvido a ensaios experimentais de referência, evidenciando-se a capacidade do modelo em 

simular devidamente os resultados experimentais. 
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1. INTRODUCTION 

Masonry is the oldest building material that is still currently used in the building industry. The 

placing of stone or brick units on top of each other, laid dry or bonded with mortar has revealed 

itself as a successful technique during thousands of years, which is mainly justified by its 

simplicity and the durability of the constructions. In spite of the simplicity associated with 

building in masonry, the analysis of the mechanical behaviour of masonry constructions remains 

a true challenge. Masonry is a material that exhibits distinct directional properties due to the 

mortar joints, which act as planes of weakness. Consequently, masonry structures display a 

complex mechanical behaviour, essentially non-linear. 

Structures may be classified as historical when they become part of our built heritage. Naturally 

this status is not conflicting with a useful function other than simply monumental. Historical 

buildings carry their cultural significance attached not only to their formal architectural language 

but also to their specific structural features, applied materials and building techniques and, by 

being old, they have also been a part of Human life. Therefore, engineers have to put their 

knowledge at the service of culture, in order to respect the historical value of the architectural 

heritage and to guarantee appropriate safety levels, changing the original design as little as 

possible. 

The analysis of historical masonry structures presents an even bigger challenge, when compared 

to regular modern masonry structures. Simple aspects as geometry data or characterization of the 

mechanical properties of the materials used are, most of the times, inexistent. Associated to the 

characterization of the mechanical properties, a large variability is usually found, due to 

workmanship and use of natural materials, as well as to the existence of unknown damage in the 

structure. In addition, existing standard regulations and codes are non-applicable to the 

assessment of safety factors in historical masonry structures. 

Research in the area of historical masonry buildings is, therefore, essential to understand their 

specificities, how they behave and how to define reliable and consistent philosophies to assess 

their safety level and to design potential retrofitting measures. To achieve these purposes, 

researchers have been trying to convert the highly indeterminate and non- linear behaviour of 

historical masonry constructions into something that can be understood with an acceptable 
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degree of mathematical certainty. The fulfilment of this objective is quite complex and 

burdensome, demanding a considerable effort centered on integrated research programs, able to 

combine experimental research with the development of consistent constitutive models. 

1.1 Objectives 

This study is concerned with the experimental and numerical analysis of masonry structures 

submitted to cyclic loading, with emphasis on their non-linear behaviour. Both experimental and 

numerical studies have been carried out, focusing on the in-plane structural behaviour of masonry. 

From the previous paragraphs, the need for a consistent approach to the study of historical 

masonry structures became evident. Numerical studies should, whenever possible, be 

complemented with appropriate experimental programs, which provide appropriate material data 

necessary to calibrate advanced nonlinear numerical models. The objectives of this study are: 

− To obtain an adequate set of experimental data concerning historical masonry 

components and structures, capable of being used for numerical purposes. This material 

characterization should include a complete stress-strain behaviour description with 

emphasis on the cyclic behaviour, a characterization of the failure modes, stiffness 

degradation and energy dissipation; 

− To extend an existing constitutive monotonic multi-surface model in order to 

incorporate the main features that characterize cyclic behaviour of interfaces; 

− To verify the adequacy of the developed model by comparing the predicted numerical 

response with the behaviour measured in reliable experiments. In spite of the wide 

scatter that characterizes masonry tests, the developed model should be able to provide a 

good agreement in terms of ultimate load, global behaviour and failure mode with 

experimental results. 

These three objectives are directly related, since the performance of the numerical model 

depends on the existence of reliable and appropriate experimental data concerning inelastic and 

cyclic behaviour. On the other hand, the use of a numerical tool beforehand may allow 

enhancing the definition of experimental testing programs. 
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1.2 Outline of the thesis  

In Chapter 2, a general overview about the experimental and numerical analysis of masonry 

structures is given. The most important achievements concerning the evolution of the structural 

form of masonry constructions and its implications on architecture are revised together with a 

presentation of relevant masonry buildings. The need for the combined use of experimental, both 

laboratorial and in situ, and numerical techniques, when dealing with historical constructions, is 

highlighted. Thus, the necessary laboratory displacement-controlled tests for a comprehensive 

description of masonry are described. This data must be complemented with information derived 

from in situ tests (non-destructive, slightly destructive and destructive techniques), which are 

briefly described. Modelling issues concerning the idealization of material behaviour are 

presented and related to the different levels of accuracy attained. The different modelling 

strategies for the study of masonry are also discussed, enlightening the main advantages and 

disadvantages of each approach. 

In Chapter 3, the results from a comprehensive experimental program are presented. This 

experimental program aims at characterizing the non- linear behaviour of masonry components as 

well as masonry specimens, with an emphasis on the structural behaviour under cyclic loading. 

Tests concerning uniaxial compressive loading, as well as direct shear loading of stone 

specimens, are also presented. The adopted procedure for testing is described and the 

experimental results are discussed in detail. In addition, the results of four stone masonry prisms, 

tested under compression, are also presented and the comparison between the results obtained 

from specimen and prism tests is established. Afterwards, experimental uniaxial compressive 

tests on brick specimens are presented, with the results discussed in detail, followed by tests 

performed on brick masonry prisms and tests concerning cement mortar specimens from 

different mixes. Four stacked bonded prisms were constructed and tested under cyclic loading. 

Finally, the most important conclusions concerning the experimental research are summarized 

and the main difficulties are pointed out. 

In Chapter 4, experimental results concerning the structural behaviour of dry stone masonry 

walls are presented. Seven walls made of sandstone blocks, built without any interposition 

material, were tested under compressive and shear loading. The most relevant results concerning 

their structural behaviour are discussed, including ultimate loads and failure modes. 

Complementary, an existing constitutive model based on the plasticity theory is used to simulate 
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and better understand the structural response of the walls. The model is calibrated with data 

collected from the experimental tests as well as from uniaxial experiments. 

In Chapter 5, a brief reference to solution procedures used in non-linear finite element 

formulation is presented. The incremental plasticity theory is revised, and subsequent 

improvements of the classical theory are briefly described. Afterwards, an existing monotonic 

constitutive multi-surface model for interface elements is succinctly described. From this model, 

an extension to include cyclic loading is proposed. This new model is fully developed within the 

standard plasticity framework and formulated in modern plasticity concepts, including an 

implicit Euler backward algorithm and consistent tangent operators. Finally, selected uniaxial 

experiments available in the literature are simulated using the developed model. 

In Chapter 6, applications of the developed numerical model are presented. The modelling and 

analysis of three different groups of masonry structures, under monotonic and cyclic loading, are 

discussed in detail. The first group concerns the analysis of two stacked bond prisms, whose 

experimental results are presented in Chapter 3. The second group is related with the analysis of 

a masonry shear wall tested at Eindhoven University of Technology. Finally, the last example 

concerns the analysis of two masonry shear walls, tested at the Joint Research Centre, under an 

international research program. The most relevant results concerning monotonic and cyclic 

analyses are presented and interpreted and the principal conclusions derived from the numerical 

study are pointed out. 

Finally, in Chapter 7, an extended summary and final conclusions, which can be drawn out from 

this research, are given. Moreover, suggestions for future work are also pointed out. 



2. HISTORICAL MASONRY STRUCTURES: AN OVERVIEW 

Historical masonry constructions inevitably suffer damage with time. Earthquakes, soil 

settlements, material degradation and lack of maintenance are the main reasons for structural 

damage to these constructions (Macchi, 1998). Therefore, careful periodic inspections are 

necessary in order to evaluate their actual structural safety levels. However, performing the 

structural analysis of a historical masonry construction is, in general, a very complex and 

difficult task, since structural engineering is only one of the disciplines of a multidisciplinary 

group that should be constituted when a consistent plan of intervention for a given historical 

construction is intended to be drawn. Indeed, all the components of a historical construction must 

be taken into account when dealing with the design of an intervention. A given historical 

construction can be seen as a complex entity, where the structural skeleton together with the 

visual image and the architectural style are significant parts of it. Another important part that 

also carries important cultural significance is its age, which means that historically, these 

constructions have been a part of human lives. Therefore, besides the expected structural 

strengthening, it is required that both image and substance of historical constructions be 

preserved after any structural intervention (Langenbach, 1994). 

Research in the area of unreinforced masonry is, thus, definitely necessary. This research should 

include appropriate laboratorial experiments, the development of reliable constitutive models, in 

situ testing and continuous monitoring. A historical analysis is also of great importance in 

obtaining the construction’s historical information. 

An outline of the remaining content of this Chapter can be summarized as follows. Initially, a 

brief review of the development of masonry structures from earliest times, in Europe and Middle 

East, is given, comprising both the use and evolution of masonry materials and structural forms. 

Afterwards, specific experimental tests capable of providing a comprehensive description of 

masonry, both in uniaxial and biaxial behaviour, are introduced. A brief review of the most 

common in situ tests is given, the importance of both laboratorial and in situ tests for successful 

experimental characterisation of ancient constructions being stressed. Finally, the different 

idealizations of the structural behaviour employed to study masonry structures are described. 

According to the level of accuracy and simplicity desired, the different modelling strategies for 
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the study of masonry are presented and their respective advantages and drawbacks are 

elucidated. The most relevant constitutive models derived for the analysis of masonry are also 

referred to. 

2.1 Masonry structures through time 

There are two fundamental structural problems when building with masonry: how to achieve 

height and how to span an opening, i.e. how to span vertical and horizontal spaces (Drysdale et 

al., 1999). Spanning vertically is done by using columns, walls and towers, and spanning 

horizontally is done by using lintels, beams and arches. In addition, some structural elements 

such as vaults and domes can simultaneously span vertically and horizontally. 

Along with timber, masonry is the oldest building material that is still commonly used 

nowadays. The placing of stone or brick units on top of each other, laid dry or bonded with 

mortar has revealed itself to be a very successful technique, which is mainly justified by its 

simplicity and the durability of the constructions. Most likely, the first masonry was a simple 

stack of selected natural stones and mortar, if any, was earth packed between the stones. As tools 

became available and skills developed, stone units were shaped in regular forms. The first bricks 

were made of mud or clay, shaped to form bricks and dried by the sun. The bricks were then laid 

with mud mortar into walls. This simple process has been widely used for millennia to construct 

dwellings, particularly in the valleys of the Nile and Mesopotamia (Croci, 1998). The practice of 

burning brick represented a natural evolution and the first prefabricated component. This process 

increased the strength and the durability of the bricks but at the same time demanded a supply of 

fuel, which was not always available. 

Being the strongest and most durable material, stone was more difficult to shape and, due to its 

weight, it was difficult to transport. This limited its use to the most valuable constructions. On 

the other hand, brick was easy to produce and to mould, which when associated with its 

durability, made brick masonry the main building material until the 19th century. 

Archaeological excavations have revealed masonry houses near Lake Hullen, Israel (9000-8000 

B.C.), where dry-stone huts, circular and semi-subterranean were found, as one of the oldest 

building constructions (Lourenço, 1996). Another earliest example of building construction are 

the Walls of Jericho (8000 B.C.). These structures were built as a military defence and were 
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made from roughly worked limestone, whose joints were simply filled with earth (Croci, 1998). 

In the same area, archaeological surveys have found more recent walls (3000 B.C.) made from 

sun-dried bricks and mortar. 

Due to environmental degradation, religious structures, built with better materials and skill than 

dwellings, supplied the oldest preserved constructions. In this way, the structural form of the 

pyramids, which represents one of the most stable structural shapes, was the logical development 

of the initial stone piles. Apart from possible settlements, their structural behaviour does not 

present any particular problem, as the inner space is limited and the stresses are low and 

perfectly compatible with the material strength. The most famous pyramids are undoubtedly the 

Egyptian pyramids at Giza, see Figure 2.1, which are the only survivors of the Seven Wonders of 

the World and remained the tallest structure (≈140 m) in the world until the 20th century. 

 
Figure 2.1 – Egyptian pyramids (2800-2000 B.C.). 

With time, the structural behaviour started to play a more important role in the construction of 

temples. The use of stone lintels to support the masonry above openings in walls, as the one used 

to build the Lion Gate at Mycenae, Greece (13th century B.C.), which spanned about 3 m and 

weighed between 25 and 30 tons, shows the beginning of the arched behaviour that would 

dominate the following millennium, see Figure 2.2. 

During the classical period, columns and the corresponding capitals rose as their most distinctive 

elements. The reduced distance between the columns was mostly a structural need. Spanning 

large distances could not be achieved because it was difficult to transport large stone blocks and 

at the same time stone has a rather low tensile strength. 



8 Chapter 2 

 
Figure 2.2 – Lion Gate at Mycenae (Drysdale et al., 1999). 

Greek architecture in general, and temples in particular, were aesthetically perfect and based on 

strict rules of proportion and symmetry between the different elements, which represented an 

important milestone in the history of buildings. Limestone was usually the stone used to build 

structural elements as walls, columns and beams. The Parthenon (5th century B.C.) represents the 

most famous construction of the Greek architecture, see Figure 2.3. 

 

Figure 2.3 – The Parthenon at Athens. 

The Romans, with a strong and centralized empire, provided one of the most important steps in 

the construction of buildings. Contrasting with the Greeks, their architecture was not only 

concerned with temples and amphitheatres, but also with roads, bridges, aqueducts and harbours. 

They introduced many innovations directly related to materials, structural concepts and 

construction processes. 
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Together with an improvement of the quality of bricks, the brick size became more standardized 

and different shapes were produced for special purposes. Apart from that, the production of 

concrete, made of rubble, lime and special volcanic sand (pozzolana) revolutionized building 

construction. During the Roman period, innovative techniques were introduced in the 

construction of walls, using bricks or stones as facing, finely finished, and filling the inner space 

with concrete, as shown in Figure 2.4. 

   
(a) (b) (c) 

Figure 2.4 – Roman masonry walls: (a) bonded brick wall; (b) brick faced wall with header 

courses; (c) brick faced wall (Drysdale et al., 1999). 

The technique of dry stone block was also greatly improved and remarkable structures were built, 

such as the Colosseum (1st century A.D.) and Segovia’s aqueduct (1st century A.D.), represented in 

Figure 2.5. 

  
(a) (b) 

Figure 2.5 – Dry stone constructions: (a) the Colosseum; (b) the Segovia’s aqueduct. 
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Another significant structural advance was the change from linear to arched or curved structures, 

i.e. arches and vaults. The development of the arch allowed the replacement of cumbersome stone 

and vulnerable timber lintels in walls, with stone or brick masonry, spanning wider openings. In 

curved elements, it is common to find only compressive stresses in a given section, therefore no 

tensile resistant materials are needed. Structures made from units which simply touch each other 

could be built safely. Additionally, its cross-sectional area is large enough to avoid buckling 

instability or change of form, which can be improved when the arch is inserted in a wall. The 

resistive and adaptive capacity of arches against deformation or movement is enormous, as shown 

in Figure 2.6, and only a dramatic loss of the thrust at the springers leads to collapse. 

  
(a) (b) 

Figure 2.6 – The remarkable capacities of arches: (a) (Drysdale et al., 1999); (b) (Croci, 1998). 

Exploiting the structural form of the arch, the Romans constructed magnificent bridges and 

aqueducts all over their empire. One of the most outstanding examples is the Pont du Gard, see 

Figure 2.7, an enormous aqueduct formed of three tiers of arches and, except the top tier, made 

from dry stone masonry. 

 

Figure 2.7 – The long aqueduct Pont du Gard, Nîmes, France. 
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Vaults can be seen as the three-dimensional extension of the arch in space. In the same way, 

domes can be regarded as the shape formed by rotation of an arch about it s vertical axis. Barrel 

vaults and domes allowed the construction of large-span, durable, fire-resistant roofs. Great 

ingenuity was often shown and intricate and daring arrangements of vaults and domes were 

attempted. An excellent example is Hagia Sophia in Istanbul (6th century A.D.), see Figure 2.8. 

All these buildings generated from vaults and domes, though elegant in geometry, were massive 

in construction. They were essentially plate structures, with large thickness necessary to 

accommodate the thrust lines within the plates (Drysdale et al., 1999). 

 
Figure 2.8 – Hagia Sophia in Istanbul. 

The fall of the Roman Empire caused an anonymous period in western architecture and it is only 

from the 11th century on that structural advances were made with the use of semicircular arches 

and barrel vaults. Churches and other buildings were marked by the presence of masonry towers. 

Another interesting structural form was represented by castles, which rapidly spread from 

Europe to the Middle East. 

Gothic architecture, which originated in the 13th century, followed Roman architecture and 

represented a step forward where both architectural and structural functions were extraordinarily 

integrated together. Three major developments take place in order to convert the heaviness of 

Roman constructions to the lightness and openness of the later Gothic buildings. First, arch ribs 

were incorporated into roof structures, allowing the reduction of the thickness of the masonry 

spanning between the ribs. Second, the substitution of the semicircular arch by a pointed arch 

allowed a further reduction in weight, because the structure could follow the thrust lines more 

closely. The pointed arch provided architectural flexibility, since its shape helped solve the 
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complicated geometrical problems of lines formed by the intersection of different vaults of the 

same height but of different spans. Third, heavy supporting walls running across the thrust lines 

were substituted by flying buttresses and towers more aligned with the thrusts. These three major 

developments led to masonry-framed structures based on linear elements working in 

compression. The framing elements (rectilinear and curvilinear) were the columns, the arch ribs, 

the flying but tresses and the buttress wall or tower. Two of the most famous examples of Gothic 

architecture are illustrated in Figure 2.9, the Cathedrals of Amiens (13th century) and Beauvais 

(13th century). 

  
(a) (b) 

Figure 2.9 – Famous Gothic structures: (a) Amiens Cathedral; (b) Beauvais Cathedral. 

Based on innovative concepts and exceptional structural performance, the history of Gothic 

architecture is also marked by failures, cracks and permanent deformations, which represent the 

price to pay for abandoning traditional construction techniques. 

Following Gothic architecture, Renaissance architecture, which born in Florence, brought new 

concepts of form and proportions, where buildings were characterized by regular forms and 

geometrical symmetry in plan and elevation. Churches, and in particular domes, are of great 

structural interest. Among them, two of the most interesting are undoubtedly the church of St. 

Maria del Fiore in Florence (15th century) and the church of St. Peter in Rome (16th century), see 

Figure 2.10. Their domes are characterized by the use of main ribs and by the construction of 

two shells, connected between them by these ribs. This arrangement reduces the weight during 

construction and allows a better solution for changing the inner and outer shape of the dome. 
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(a) (b) 

Figure 2.10 – Famous Renaissance church domes: (a) St. Maria del Fiore in Florence; 

(b) St. Peter in Rome (Drysdale et al., 1999). 

During the Baroque period, no relevant or innovative solutions concerning the structural 

conception were developed. In fact, structural concepts were influenced more by the search of 

new forms of expression than by the refinement of the structural function (Croci, 1998). 

Important examples in Europe are St. Paul’s Cathedral in London (17th century) and the 

Panthéon in Paris (18th century).  

The English industrial revolution of the 18th and 19th centuries represents another important 

milestone in the history of the building industry. It was the advent of new building materials such 

as steel and reinforced concrete and led to a radical evolution in building techniques. The most 

characteristic structures of this period are probably the large steel bridges, such as the Firth of 

Forth Bridge in Scotland. 

Nowadays, in Portugal, the use of masonry has become less important due to the progressive 

adoption of other structural materials, particularly concrete and steel. Its use has been reduced 

mainly to non-structural elements, such as cladding systems or infill panels. However, in several 

developed countries, especially in the USA, Canada, England, Germany and the Netherlands, the 

significant improvements in masonry materials and manufacturing, design methods and 

construction techniques have decisively contributed to the growth of masonry as a competitive 

building material (Drysdale et al., 1999). 
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2.2 Experimental research on masonry structures 

In spite of the need for reliable numerical analysis of historical masonry structures, only recently 

have researchers shown interest in developing and applying advanced constitutive models. Two 

main reasons may be referred to justify this situation: the higher complexity of masonry 

behaviour, when compared to other materials such as concrete or steel, and the absence of a 

comprehensive experimental description of the material, necessary to calibrate the numerical 

models. However, it has been shown that a complete set of displacement-controlled tests can be 

realistically carried out, with the purpose of properly describing the structural response of 

masonry and its components and thus obtaining the necessary properties for the use of advanced 

numerical models, see CUR (1997) and Lourenço (1998). 

Masonry is a heterogeneous material composed of units of natural or artificial origin jointed by 

dry or mortar joints. Irregular stones, ashlars, adobes, bricks and blocks have been used as units. 

The units can be joined together using mortar (commonly clay, lime or cement based mortar) or 

just by simple superposition. With these two components, a large number of arrangements can be 

accomplished, generated from the different combinations of units and joints. A possible 

classification of stone masonry is shown in Figure 2.11. For brick masonry, the most used 

combinations are illustrated in Figure 2.12. 

   
(a) (b) (c) 

Figure 2.11 – Different kinds of stone masonry: (a) rubble masonry; (b) ashlar masonry; 

(c) coursed ashlar masonry (Lourenço, 1998).  

However, the mechanical behaviour of the different types of masonry generally exhibits a 

common feature: a very low tensile strength. This property is so important that it has determined 

the structural form of historical constructions. 
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(a) (b) (c) 

  
(d) (e) 

Figure 2.12 – Different arrangements for brick masonry: (a) American (or common) bond; (b) English 

(or cross) bond; (c) Flemish bond; (d) stack bond; (e) stretcher bond (Lourenço, 1998).  

Achieving good characterization of ancient structures and materials, detailed enough in order to be 

used by advanced numerical models, is, most of the times, a very demanding task, both in time and 

cost. On the one hand, the possibility of performing non-destructive and minor destructive tests is very 

interesting since it allows one to obtain valuable data. Unfortunately it does not provide enough 

information about the characterization of the structural material required by advanced modelling. On 

the other hand, the feasibility of performing destructive tests on ancient constructions, either in-situ or 

by removing samples large enough to be representative, may be seen almost as an idealistic 

hypothesis since it is most of the times not possible. So, usually, the option is to carry out laboratory 

tests on masonry specimens representative of real constructions. However, this possibility turns out to 

be very complicated due to the enormous variations of masonry and to the impossibility of 

reproducing all its features in a specimen. Consequently, most of the effort devoted to experimental 

research in masonry has been directed towards brick and block masonry and its relevance for design. 

Nevertheless, most of what will be described henceforth in this Chapter can be applied to any type of 

masonry, in which bonding, cohesion and friction between units form the basic mechanical actions. 

2.2.1 Uniaxial behaviour 

The uniaxial behaviour, obtained under displacement-controlled tests, is usually characterized by 

the establishment of a stress-displacement diagram, in which the most important features that 
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characterize the behaviour of the material should be included, namely the complete pre-peak 

branch, the peak load and significant part of the post peak branch. In the case of cyclic 

experiments, features such as strength and stiffness degradation as well as energy dissipation 

should be also adequately characterized. An important feature, common to all frictional 

materials, is the occurrence of softening after peak, which is defined as a progressive decrease of 

the mechanical strength under continuous imposed displacement. Softening behaviour is 

experimentally observed in uniaxial compressive, tensile and shear failure. 

Compressive testing 

Compressive strength experiments on masonry prisms are rather easy to carry out. Until a few 

years ago, importance was only given to the evaluation of the ultimate load and, due to that, 

post-peak behaviour of the masonry is practically non-existent. This gap in knowledge was an 

encouragement to the execution of uniaxial cyclic compressive tests in both masonry prisms and 

unit specimens, including the characterization of the post-peak behaviour, which are described in 

detail in Chapter 3. 

Stacked bond prisms or wallets, such as the RILEM test specimen (RILEM, 1994b), are 

frequently used to assess the uniaxial compressive strength of masonry. In a stacked bond prism 

loaded in uniaxial compression, the mortar tends to expand laterally more than the brick, due to 

their different elastic properties (softer mortar behaviour). The continuity between bricks and 

mortar, assured by cohesion and friction, creates a lateral confinement to the mortar. As a result, 

shear stresses develop at the mortar-brick interface, producing a triaxial compressive stress state 

in the mortar and bilateral tension coupled with uniaxial compression in the brick. Consequently, 

failure generally occurs by the development of cracks in the bricks, parallel to the loading 

direction. 

Following the pioneer study of Hilsdorf (1969), many researchers (e.g. Hendry et al., 1981; 

CEN, 1995) have tried to derive a relation between the compressive strength of masonry and the 

compressive strength of its single components, units and mortar. However, regarding advanced 

numerical modelling, these procedures are not very interesting since they do not provide any 

other information besides the initial stiffness and compressive strength of masonry. Therefore, 

masonry prisms have to be tested under displacement-controlled experiments. 
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It has been shown that the behaviour of masonry prisms under uniaxial compressive loading is 

clearly influenced by both the size of the specimen and the boundary conditions (Vermeltfoort, 

1997). Both strength and cracking behaviour are influenced by the boundary conditions. Top and 

bottom bricks remain undamaged when typical steel plates are used, due to the confinement effect 

produced. On the other hand, when teflon is placed as an interposition material, the end bricks 

crack. This effect was already demonstrated for concrete specimens, e.g. Vonk (1992), who 

showed that under compressive loading due to cracking localization, the softening behaviour is 

dependent on the specimen’s size and on the boundary conditions. Nevertheless, in spite of the 

boundary conditions, if an appropriate slenderness ratio is adopted (Neville, 1995), it is at least 

possible to ensure a uniaxial behaviour in the center of the specimen. 

With respect to the mechanical behaviour of dry joint masonry under compression, almost 

nothing is known. Roca et al. (2001) performed a series of uniaxial compressive tests on dry 

joint stone masonry and mortar joint stone masonry, where it was observed that dry joint 

specimens show a lower compressive strength than those built with mortar joints. This can be 

explained by the lack of interlayer material, which promoted stress concentrations in a few 

discrete contact points, leading to the formation of vertical cracks in the stones. In addition, 

significant scale effects were identified, which strongly affected the compressive strength of the 

specimens. However, more research is clearly needed in order to fully understand the behaviour 

of dry joint masonry. 

The most relevant material properties concerning modelling are the compressive strength and the 

fracture energy (mode III), which, by definition, is equal to the area under the compressive stress-

displacement diagram. When dealing with cyclic loading, aspects such as strength degradation 

between cycles, stiffness degradation and energy dissipation must also be properly characterized. 

Tensile testing 

The tensile bond strength of the unit-mortar interface is a very important mechanical property of 

masonry constructions, in both historical and new structures, since most of the times non- linear 

behaviour is originated by cracking in the mortar joints. It should be noted that the non- linear 

behaviour of the joints is controlled by the unit-mortar interface. 

Different types of tests have been used to evaluate the tensile strength, but no clear consensus 

has been obtained about the best test set-up to be used. Basically, tensile bond strength tests can 
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be divided into two main categories (Jukes and Riddinton, 1998): direct tensile bond strength 

tests and flexural bond strength tests, see Figure 2.13 for a schematic representation. 

UNIT

UNIT

 

UNITUNIT UNIT UNIT

 

(a) (b) 

Figure 2.13 – Possible bond strength tests: (a) direct tensile bond strength test; (b) flexural bond 

strength test. 

In the direct tensile test, it is required that the testing apparatus should be able to apply a uniform 

stress distribution at the unit-mortar interface, which is not easy to ensure. Flexural tests can also 

be used to obtain tensile bond strength data. The principle of this approach is to impose bend ing 

onto a masonry wallet until failure is achieved. In this way, flexural tests measure the bond 

strength at the edge of the mortar joint, but the strength at that point may not be representative of 

the strength of the all joint. Therefore, in the study of in-plane behaviour, direct tests should be 

preferred. Also, for the purpose of numerical modelling, the direct tensile bond strength test is 

the most interesting as it allows one to obtain the complete tensile stress-displacement diagram 

as well as the correct tensile strength. Tensile strength values derived from flexural tests need to 

be adjusted by a correction factor. 

Van der Pluijm (1997) carried out monotonic direct tensile tests on masonry specimens of solid 

clay and calcium-silicate units under displacement control, whose results are illustrated in 

Figure 2.14(a), in terms of an envelope diagram. It was observed that the cracked specimens 

exhibited a bond area smaller than the cross sectional area of the specimen, see Figure 2.14(b). 

This net bond area seems to be concentrated in the inner part of the specimen, which can be 

attributed to a combined effect of setting of the mortar in its plastic phase and of shrinkage. 

The most important material parameters concerning modelling are the tensile strength and the 

fracture energy (mode I), defined as the energy necessary to create a unitary area of a crack along 

the unit-mortar interface (area under the tensile stress-displacement diagram). 
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(a) (b) 

Figure 2.14 – Direct tensile tests: (a) typical experimental tensile stress-crack displacement 

diagrams represented in the form of an envelope curve; (b) typical tensile net 

bond areas (van der Pluijm, 1997). 

Due to its great difficulty, cyclic, direct tensile tests on masonry specimens are practically absent 

from literature. In order to provide experimental data for the calibration of a numerical model, 

Jefferson and Mills (1998) carried out some cyclic flexural tests on notched concrete cylinders 

with mortar joints. However, more research concerning cyclic tensile tests has to be done, since 

knowledge on the cyclic tensile behaviour of masonry joints is absolutely fundamental, when 

dealing with cyclic numerical analyses, in order to fully characterise the opening-closing of the 

joints. 

Shear testing 

Shear has been identified as the governing mode of failure in masonry constructions subjected to 

lateral loads like wind and earthquakes, see e.g. Mann and Müller (1982). A certain degree of 

confinement present in the masonry walls is associ0061ted to these shear actions. Thus, pure 

shear mode is altered to shear-compression mode. This issue must be considered in testing, 

where direct shear loading applied to the joint has to be accompanied by normal loading. Direct 

shear tests are very demanding experiments because the test set-up, to be used idealistically, 

should generate a uniform state of stress on the joint. Moreover, this stress state should be kept 

constant during testing. These requisites are very difficult to attain since most of the time the 

shear load cannot be applied in line with the joint, originating, in consequence, an undesirable 

overturning moment for the joint, which creates a non-uniform normal stress state. 

Crack displacement 

σ 
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Different test methods have been proposed, see Jukes and Riddinton (1997) for a detailed 

description, but none has revealed to promote uniform stress distributions. The most common 

test configurations are the direct shear test, or couplet test (two units and one joint), and the 

triplet test (three units and two joints), see Figure 2.15. 

UNIT

UNIT

 

U
N

IT

U
N

IT

U
N

IT

 
(a) (b) 

Figure 2.15 – Test set-ups for shear-compression loading: (a) couplet test; (b) triplet test. 

Different arrangements have been developed in order to minimize the overturning moment 

applied to the joint. Van der Pluijm (1993) developed the couplet testing arrangement illustrated 

in Figure 2.16, which permits a constant compressive stress upon shearing. For this purpose, it is 

required that the specimen be rigidly attached to the steel loading elements. 
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Figure 2.16 – Test set-up developed by van der Pluijm (1993). 

Using the couplet testing arrangement shown above, van der Pluijm (1993) carried out the most 

complete characterization of masonry shear behaviour, for solid clay and calcium-silicate units, 

under monotonic loading, see Figure 2.17 for a schematic representation of the results. Besides 

the strength of mortar, the influence of joint thickness was experimentally detected on the shear 

strength and failure mechanisms at the unit-mortar interface. Binda et al. (1996b) demonstrated 

that the shear strength of the specimens decreases with the increase of the joint thickness. 
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Figure 2.17 – Typical experimental shear stress-displacement diagrams (van der Pluijm, 1993). 

For lower compressive stresses normal to the joint σ, typically lower than 2 N/mm2  (Jukes and 

Riddinton, 1997), the shear strength of the joint τ is derived from a combination of bond shear 

strength (or cohesion) c and friction between the unit and the mortar, being expressed by the 

Coulomb friction law: 

tancτ σ φ= −  (2.1) 

where φ is the friction angle of the joint. Naturally, for dry joint masonry, the cohesion is equal 

to zero. Another important parameter concerning the structural behaviour of joints, especially 

when dealing with numerical modelling, is the dilatancy angle ψ. The ratio between the relative 

normal displacement and the relative tangential displacement along the joint is given by tanψ. 

From displacement-controlled tests on ordinary masonry joints, it was observed that φ and ψ are 

not equal and, additionally, ψ decreases when the normal compressive stress increases (van der 

Pluijm, 1993). For practical applications, zero dilatancy is recommended (Lourenço, 1996). 

Experimental results concerning shear testing under cyclic loading are relatively scarce. The tests 

carried out by Atkinson et al. (1989) and Binda et al. (1996b), which used brick masonry 

specimens and a shear box testing apparatus, are the most relevant. This scarceness of 

experimental data becomes even more evident when dealing with dry joint masonry. In fact, 

cyclic shear tests performed on dry joint masonry are practically absent from literature. As such, 

the importance of such results to the calibration of advanced numerical models, has led 

Universidade do Minho to include cyclic shear testing on dry stone masonry into a wider 

research program concerning the mechanical behaviour of historical masonry structures. The 

novel results regarding cyclic shear experiments are presented in Chapter 3. 

Shear displacement 

τ 

|σ1| = 0 

|σ2| > |σ1| 

|σ3| > |σ2| 
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The most relevant properties for the modelling of shear behaviour are cohesion, friction angle, 

dilatancy angle and fracture energy (mode II), which is numerically equal to the area defined by 

the shear stress-displacement diagram and the residual dry friction shear level. When dealing with 

cyclic loading, an additional parameter to be evaluated is stiffness degradation. However, previous 

tests (Atkinson et al., 1989; Binda et al., 1996b) and tests to be described in Chapter 3 have shown 

that no relevant stiffness degradation takes place under cyclic shear loading. 

2.2.2 Biaxial behaviour 

Masonry can be regarded as a discontinuous material. Bed and head joints are responsible for its 

discontinuous nature. This feature becomes evident when considering dry joint masonry. By 

acting as planes of weakness, the joints induce an anisotropic behaviour in both elastic and 

plastic domains. Therefore, the strength of masonry is highly dependent on the orientation of the 

principal stresses with respect to the material axes (bed and head joints). Moreover, this 

anisotropic behaviour is further marked if the units exhibit anisotropic strength properties. 

Therefore, constitutive behaviour of masonry under biaxial stress states cannot be completely 

described from the constitutive behaviour under uniaxial loading conditions (Lourenço, 1996). 

Due to its anisotropic nature, the biaxial strength envelope of masonry is described by a three-

dimensional surface, either in terms of the full stress vector in a fixed set of material axes or in 

terms of the two principal stresses and the rotation angle between the principal stresses and the 

material axes. 

Only few attempts were performed to obtain the complete experimental in-plane strength 

envelope for masonry. The most complete experimental research concerning the characterization 

of biaxial behaviour of masonry was done by Page (1981, 1983), see Figure 2.18. The tests were 

performed on half scale brickwork panels, made of solid clay units, submitted to proportional 

biaxial loading. Both the orientation of the principal stresses relative to the material axes and the 

principal stress ratio had a great influence in the strength and failure modes. The different failure 

modes are shown in Figure 2.19. In all uniaxial loading cases, failure was brittle and occurred in 

planes normal to the panel, by cracking either the mortar joints alone or in a combined 

mechanism involving both brick and joints. In biaxial compression, failure occurred by splitting 

of the specimen at mid-thickness, in a plane parallel to its free surface, independent of the 
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orientation of the principal stresses. Due to testing complexities, experimental results in the 

biaxial tension range were not performed. 

   
Figure 2.18 – Biaxial strength of solid clay brickwork panels (Page, 1981, 1983). 

 

Figure 2.19 – Different modes of failure of solid clay brickwork panels under biaxial loading 

(Dhanasekar et al., 1985). 
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In addition, it is noted that the biaxia l strength envelope obtained by Page (1981, 1983) is of 

limited applicability for other types of masonry. Most likely, different biaxial strength envelopes 

and different failure modes may be obtained for different materials, shapes and geometry. Biaxial 

strength envelopes are rather useful to understand the biaxial behaviour of masonry, but for the 

development of advanced numerical models, a characterization based on the definition of the 

complete load-displacement diagrams is fundamental, necessarily including the softening behaviour. 

2.2.3 In situ testing and monitoring 

In addition to the laboratory tests described above, in situ testing can provide important information 

concerning the characterization of historical structures. In fact, issues such as the existing damage 

level in the structure or the composition of inner cores, can only be assessed by resorting to in situ 

tests. This means that, for most existing historical masonry constructions, the complete knowledge of 

the mechanical characteristics of their components, when available, does not necessarily assure a 

suitable understanding about the structural strength capacity. For such structures, complementary in 

situ tests are then required. Experimental data provided by in situ tests is, therefore, of great interest 

when used together with laboratory data for correct calibration of numerical models and evaluation 

of the analysis results. Therefore, for a given structure, once the constitutive model is properly 

calibrated against experimental results, numerical simulations of actions, such as earthquake loading, 

can be reliably carried out, which generally are impossible to perform on the existing structure. 

Prior to any in situ testing, a preliminary investigation is needed in order to provide a wide 

knowledge of the structure under analysis (Rossi, 1997). In first place, an accurate geometrical 

survey must be carried out, in order to characterize the geometry of the structure as well as to 

identify possible geometrical irregularities. Afterwards, a crack pattern investigation should be 

performed. A detailed survey of the existing cracks as well as that of their width allows an early 

assessment of equilibrium and the establishment of possible instability causes. In addition, an 

analysis of the construction history is necessary to identify the structural building phases, the 

construction techniques used and possible strengthening interventions performed in the past. 

Non-destructive and minor destructive tests 

Non-destructive and minor destructive tests are used to evaluate the mechanical characteristics of 

ancient masonry structures. Non-destructive tests can be distinguished from minor destructive 
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tests because they do not exert a direct action on the masonry. Many times, diagnostic 

investigations on a given structure are performed using non-destructive testing techniques, such 

as sonic methods or radar techniques. Sonic methods consist in the generation of sonic or 

ultrasonic impulses at a point on the structure. The time the impulse takes to cover the section of 

material between the generator and the receiver is then qualitatively correlated with some 

masonry characteristics, such as its homogeneity. The radar technique uses high frequency 

waves and can be used to determine the location of the internal defects in masonry. Non-

destructive testing equipment is, in general, not very expensive and testing is relatively simple to 

perform (Rossi, 1997). However, the results concerning non-destructive tests have a qualitative 

nature and only give a preliminary evaluation of the mechanical characteristics of masonry. 

For some materials, as masonry, it is possible to obtain experimental data about their mechanical 

properties by using techniques that only slightly and damage temporarily the structure, which is 

easily repaired after testing. Usually, these techniques are denoted as minor destructive tests 

(Rossi, 1997). This class of tests allows a quantitative determination of the parameters that 

influence the mechanical behaviour of masonry, e.g. Young’s modulus. Due to the minor 

damage induced onto the structures, slightly destructive testing techniques are especially 

convenient when testing valuable historical buildings. From the several testing methods included 

in this class, only the most well known will be briefly mentioned. For a comprehensive 

introduction the reader is referred to Bøving (1989) and Suprenant and Shuller (1994). In the 

case of masonry composed of multi- layers, the coring technique is often used. This method 

consists in the coring of small diameter boreholes and taking samples in the most representative 

sections, which can be mechanically tested. The boreholes can be used later for video survey, 

which can provide valuable information about the existence of internal cavities and cracks. 

Another common minor destructive technique is the flat-jack test. First used in the field of rock 

mechanics, flat-jack testing was later adapted by Rossi (1982) to be used on masonry structures. 

Nowadays, the flat-jack technique is used in the following tests: 

− Evaluation of the compressive stress state of masonry; 

− Evaluation of the compressive deformability properties of masonry; 

− Evaluation of the shear strength along the mortar joints. 

The compressive stress state is evaluated using a single flat-jack placed inside a cut mortar bed 

joint. To evaluate the deformability characteristics of masonry, a cut parallel to the first one is 
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made and a second flat-jack is inserted in this second cut. Therefore, the uniaxial compressive 

deformability properties of the masonry sample between the two parallel horizontal cuts can be 

assessed, including loading-unloading behaviour. The flat-jack method also allows the 

measurement of the shear strength along a mortar joint, although this technique is seldom used. 

This test implies the removal of a brick from the center of the masonry sample delimited by the 

two flat-jacks. A hydraulic jack is then put in the place of the removed brick and shear load is 

applied. This test allows one to obtain the peak and residual shear strength of the mortar joints. 

By performing this test on other places on the structure with different compressive stress states, 

it is possible to compute the friction angle and the cohesion of the mortar joints. All these 

evaluations can be done with minimum disruption to the masonry, since flat-jack testing requires 

only the removal of a portion of mortar joints and some individual bricks, which can be easily 

repaired to its original condition. 

An important and promising technique of the non-destructive kind is dynamic identification 

(Fanelli and Pavese, 1993; Doebling et al., 1996). This method is based on the measurement of 

the vibration response, in terms of amplitude and frequency content, of the structure to a given 

excitation and can be used to monitor the structure both locally (identification of properties of a 

single part) and globally (characterization of its overall properties). This method is based on the 

fact that the dynamic response of the structure to natural excitations of the environment (e.g. 

wind) or to artificial excitations (e.g. railroad traffic, vibrodyne), characterized by its dynamic 

parameters (natural frequencies, modal shapes and damping ratios), is a function of the stiffness, 

the mass, the damping and the boundary conditions. The knowledge of these parameters allows 

the numerical computation of the structural response to any known dynamic action as well as the 

localization of possible damaged zones in the structure. On the other hand, dynamic identification 

tests repeated over a length of time  allow the assessment of damage evolution, since changes in 

the physical properties of the structure will cause detectable changes in the modal parameters. 

Destructive tests 

The analysis of a historical masonry construction can rarely be based on destructive tests on the 

original material. In cases of reconstructions or demolitions and when representative samples of 

masonry can be removed to be tested in laboratory, valuable data concerning the strength and 

deformability properties of masonry can then be obtained. This experimental data may further be 

extended to similar masonry structures, which had been built with similar materials and the same 
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building techniques. As an example, extensive series of destructive tests were performed on 

masonry samples of the Civic Tower of Pavia, which collapsed in 1989 (Machi, 1992). 

Monitoring 

Diagnostic investigations of historical buildings are often accompanied by the installation of 

instrumentation for the monitoring of deformational behaviour of the structure with time. Monitoring 

systems have been widely used to observe and control the movements of cracks (opening and 

sliding), vibrations and other deformations (Bartoli et al., 1996), in order to follow the structural 

behaviour in time. After defining the purpose of the measurement system, the details regarding the 

specific type of instruments to be employed, the nature of data acquisition system and the method of 

data interpretation can then be reasonably identified (Rossi and Rossi, 1998). 

If the sensors measuring the effects (e.g. settlements, displacements, tiltings, opening of cracks) 

are complemented by sensors measuring the possible causes (e.g. temperature, wind), then 

numerical models can be calibrated through the simulation of the measured causes and effects. In 

this way, the acquisition of data via monitoring systems contributes to a better understanding of 

the structural behaviour of ancient constructions and constitutes a reliable method to the 

assessment of the static condition of the structures (Rossi, 1997). Large monitoring systems are 

currently being used on the Florence Cathedral, the Pavia Cathedral, the Pisa Tower and the 

Mexico City Cathedral (Macchi, 1997). 

2.3 Numerical modelling of masonry structures 

Due to the high complexity of masonry behaviour, the approach towards the numerical simulation 

of its structural behaviour has led researchers to develop several constitutive models characterized 

by different levels of complexity. From the solutions based on the classical plastic methods 

(Heyman, 1995) to the most advanced computational formulations, a wide series of numerical 

methods is available nowadays. The definition of the most suitable method depends on, among 

other factors, the structure under analysis, the available input data and the analyst’s experience 

and qualifications (Lourenço, 2002). It is possible that different methods lead to different results, 

depending on the adequacy of the numerical tool to the sought information. The best method 

might be defined as the method that provides the sought information in a reliable manner, i.e. 

within an acceptable error, with the least cost. 
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2.3.1 Idealization of structural behaviour 

In order to solve a given structural problem, several idealizations of material behaviour can be 

established, each of them being necessarily associated with different degrees of complexity. 

Naturally, different types of constitutive models (i.e. different descriptions of the material 

behaviour, associated with different idealizations of the geometry, such as two- or three-

dimensional description), originate a sequence, or hierarchy, of models, which allow the analysis 

to include more complex response effects as well as more costly solutions. 

When dealing with masonry structures, the most common idealizations of material behaviour are 

elastic behaviour, plastic behaviour and non- linear behaviour. These different idealizations are 

schematically represented in Figure 2.20, where each idealization is represented by a typical 

general load-displacement diagram. 
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Figure 2.20 – General load-displacement diagrams of a structural analysis. 

By adopting a non- linear analysis instead of a linear analysis, a more comprehensive insight into 

the structural response can be obtained, with a higher cost, both in terms of necessary input data 

and required knowledge of the analyst. In the following, a brief description concerning the three 

idealizations referred to above is given and the most relevant issues are discussed. Emphasis is 

given to non- linear behaviour, since the development of a non-linear constitutive material model 

able to perform cyclic analyses is one of the objectives of this study. 
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Linear elastic behaviour 

The linear elastic analysis is the procedure usually followed in structural analysis, where the 

material is considered to exhibit an infinite linear elastic behaviour, both in compression and 

tension. In the case of masonry structures, where joints possess relatively low tensile strength, or 

even no-tensile strength in the case of dry joints, cracks arise at low stress levels and, therefore, 

the assumption of elastic behaviour is quite debatable. 

In general, linear elastic analyses are not appropriate for ancient constructions (Macchi, 1997). 

However, in a first stage of analysis, the hypothesis of linear elastic behaviour can be of great 

help to the analyst. Linear analysis requires little input data, being less demanding, in terms of 

computer resources and engineering time used, when compared with non-linear methods. 

Moreover, for materials with tensile strength, linear analysis can provide a reasonable 

description of the process leading to the crack pattern. 

Plastic behaviour 

Plastic analysis, or limit analysis, is concerned with the evaluation of the maximum load that a 

structure can sustain (limit load). The assumption of plastic behaviour implies that, on one hand, 

the maximum load is obtained at failure and, on the other hand, the material should possess a 

ductile behaviour. Apparently, this last requirement seems to be unrealizable since the plastic 

deformations may exceed the ductility of the masonry. However, the limited ductility in 

compression does not play a relevant role as collapses, except in the case of columns, are 

generally related to the low tensile strength (Croci, 1998). Thus, the assumption of a zero tensile 

strength renders the method of plastic analysis as adequate for the analysis of masonry structures. 

The plastic analysis is either based on the lower bound (static) method or on the upper bound 

(kinematic ) method. The objective of both methods is to determine the multiplier of a pre-

established load distribution on the structure that leads to failure. The static method uses the 

equations of equilibrium, and the multiplier (calculated by equilibrium conditions) forms a lower 

bound for the limit load. In the kinematic method, the structure is transformed into a mechanism 

by introducing plastic hinges or yield lines. Then, by applying the principle of virtual 

displacements, each mechanism is associated with a load multiplier. This multiplier forms an 

upper bound for the limit load. These two methods are often used in the analysis of masonry 

structures. Thrust line analysis is an example of the static method whereas the yield hinges 
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method for arches, where a collapse mechanism can be reliably identified, is an example of the 

kinematic method, see Figure 2.21. 

  
(a) (b) 

Figure 2.21 – Plastic analysis of masonry structures: (a) alternative thrust lines in an arch - static 

method (Heyman, 1998); (b) four-hinge failure mechanism in an arch - kinematic 

method (Melbourne and Gilbert, 2001). 

Non-linear behaviour 

Non-linear analysis is the most powerful method of analysis, the only one able to trace the 

complete structural response of a structure from the elastic range, through cracking and crushing, 

up to failure. On the other hand, the existence of mortar or dry joints, generally the weakest link 

in a masonry assemblage and characterized by a marked non- linear behaviour, induces a non-

linear response on masonry structures, even for moderate loads, e.g. serviceability loads. 

Therefore, non- linear behaviour, being the most complete method of numerical analysis, appears 

as the most adequate approach to be used in numerical simulations of masonry structures. But, as 

stated before, its use depends on which objectives are required from the analysis. If the sought 

information can be attained using a simpler method, which turns out to be less expensive or more 

in agreement with the expertise of the analyst, then its use is advised. 

Several non-linear constitutive models have been developed for the analysis of masonry 

structures. The most popular theories used to formulate consistent constitutive models are 

plasticity and continuum damage mechanics, generally based on a phenomenological approach, 

i.e. the constitutive model is directly based on the observed features from experimental tests. 

The first approach addressed here is the theory of plasticity. The first scientific work concerning 

plasticity goes back to Tresca’s memoir in 1864 on the maximum shear stress criterion, see 

Lemaitre and Caboche (1985). Basically, the plasticity theory attempts to replicate the 
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dislocations of the material, being the plastic material behaviour characterized by the occurrence 

of permanent deformations. Initially developed for ductile materials, nowadays plasticity is 

extensively used for other materials such as soils, concrete and masonry. A number of non- linear 

models based on the plasticity theory aiming at the study of masonry structures have been 

developed in recent years, both for continuum and discontinuum approaches (Dhanasekar et al., 

1985; Stankowski et al., 1993; Lofti and Shing, 1994; Pegon and Pinto, 1996; Lourenço and 

Rots, 1997; Lourenço et al., 1998). The clarification of continuum and discontinuum approaches 

is given below. However, most of these constitutive models are unable to deal properly with 

cyclic loading since the plasticity theory, in its classical form, is only suitable for the modelling 

of monotonic loading conditions. To surpass this drawback, some enhancements have been 

introduced in the classical theory of plasticity, in order to incorporate, in a proper form, the most 

important features that characterize cyclic loading, such as stiffness degradation and hysteretic 

energy dissipation, see Chapter 5 for details. As an example, the model proposed by Pegon and 

Pinto (1996) is based on the plasticity theory and incorporates cyclic degradation in compression 

for continuum elements.  

The plasticity framework is adopted in this study for the development of a phenomenological 

constitutive model for interface elements, according to the objectives presented in Chapter 1. 

Starting from a monotonic constitutive model formulated within the framework of the plasticity 

theory (Lourenço and Rots, 1997), an extension is proposed for the development of a constitutive 

model for interface elements, able to properly handle cyclic loading. For a comprehensive 

discussion, the reader is referred to Chapter 5. 

The second approach to be considered is damage mechanics. A central issue in damage 

mechanics is the concept of damage itself. Damage is seen as the decrease in elasticity property 

as a consequence of a decrease of the area that transmits internal forces, through the appearance 

and subsequent propagation and coalescence of microcracks. As a result, in a damage process, 

the elasticity modulus is decreased (Maugin, 1992). Firstly introduced by Kachanov (1958) for 

creep-related problems, cont inuum damage mechanics has been further elaborated by several 

researchers (Lemaitre and Caboche, 1985; Kachanov, 1986; Mazars and Pijauduer-Cabot, 1989). 

In recent years, some damage models towards the analysis of masonry structures have been 

proposed, aga in both for continuum and discontinuum approaches (Papa, 1996; Gambarotta and 

Lagomarsino, 1997a, 1997b; Berto et al., 2002). 
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In an engineering analysis, it is good practice that a non- linear analysis of a problem should 

always be preceded by a linear analysis. Based on the linear solution, the analyst is able to 

predict which parts of the structure will be more affected by non- linearities (e.g. low tensile 

strength) and, therefore, that should be studied more accurately, taking into account non- linear 

material models. When a non- linear analysis is preceded by a linear analysis, the effects of non-

linearity are easily interpreted by comparison with linear results, and more confidence in the 

results can be established. In addition, physical non- linearity can be combined with geometrical 

non- linearity (the point of application of loads changes with the increase of actions) or with 

contact non- linearity (addition or removal of supports, or changes of contact between bodies 

with the increase of actions). 

2.3.2 Modelling techniques for masonry structures 

In the analysis of masonry structures, the existence of (mortar) joints is the major source of 

weakness and material non- linearities. Different levels of refinement have been used for the 

structural analysis. Depending on the degree of accuracy and the simplicity desired, the 

following modelling strategies can be used (Lourenço, 1996), see also Figure 2.22: 

− Detailed micro-modelling: both units and mortar are discretized and modeled with 

continuum elements whereas the unit-mortar interface is represented by discontinuum 

elements; 

− Simplified micro-modelling: expanded units are modeled with continuum elements, 

while the behaviour of the mortar joints and unit-mortar interface is lumped in 

discontinuum line interface elements; 

− Macro-modelling: units, mortar joints and unit-mortar interface are smeared out in a 

homogeneous anisotropic continuum. 

In the first approach, Young’s modulus, Poisson’s ratio and constitutive laws for both units and 

mortar are considered (Rots, 1991). Any analysis with this level of refinement is computationally 

very burdensome and only suitable for the detailed analysis of small specimens. In the second 

approach, masonry is considered as a set of elastic units bonded together by potential 

fracture/slip lines at the joints. Accuracy is lost since Poisson’s effect on the mortar cannot be 

included (Lofti and Shing, 1994; Gambarotta and Lagomarsino, 1997a; Lourenço and 

Rots, 1997). Again, the large computational effort required even by simplified micro-modelling 
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strategies limits their applicability to the analysis of small structures. Additionally, micro-

modelling can be accurately used for the calibration of the mechanical parameters of macro-

models. In the third approach, masonry is considered a homogeneous anisotropic composite, 

where the behaviour of the composite is described in terms of average stresses and strains, 

assuming different elastic and inelastic properties along the material axes (Lourenço et al., 1998; 

Berto et al., 2002). Although this approach is very attractive for the analysis of large-scale 

masonry structures, it is not adequate for detailed studies and for capturing failure mechanisms in 

small masonry structures. 
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(a) (b) (c) 

Figure 2.22 – Modelling strategies for masonry structures: (a) detailed micro-modelling; 

(b) simplified micro-modelling; (c) macro-modelling (Lourenço, 1996). 

Following the description given above, it is clear that micro- and macro-modelling have different 

fields of application and one modelling strategy cannot be preferred over the other. The choice of 

the modelling strategy to be used, as well as the degree of refinement and accuracy,  depends 

basically on the objectives of the study and the sought information. Moreover, this choice is 

constrained by the existing experimental data, required by numerical modelling. 

In the following, the most important numerical modelling techniques concerning the analysis of 

masonry structures are presented. Particular emphasis is devoted to discontinuum finite element 

modeling since this approach will be amply used in the analysis of masonry structures in 

Chapter 4 and Chapter 5. 

Structural elements and macro-elements 

The simplest approach to the modelling of historical masonry constructions is based on the use 

of the standard techniques of structural analysis, where a structure is discretized in terms of a 

combination of structural elements, such as truss, beam, plate or shell elements. Generally, linear 
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elastic behaviour  is assumed, but accurate non-linear analysis can also be carried out using 

structural elements. Molins and Roca (1997), based on the use of curved three-dimensional 

members of variable cross-section, analyzed skeletal structures considering elasto-plastic 

behaviour in compression and elastic-brittle response in tension, see Figure 2.23. The 

dependency of shear strength upon the applied compression was considered by means of the 

Coulomb failure criterion. 

  
(a) (b) 

Figure 2.23 – Beam models elaborated for the analysis of the Barcelona Cathedral: (a) plane model 

and (b) three-dimensional model with typical bay of the nave (Roca et al., 1998). 

For the study of buildings, important research efforts have been devoted to the development of 

(panel) macro-elements. Rigid and deformable macro-elements have been used for modelling 

walls and wall panels, resulting in a global model with a modest number of degrees of freedom. 

Diverse formulations have been proposed, e.g. either using rectangular damageable rigid macro-

elements for incremental in-plane loading (Brencich and Lagomarsino, 1997), or using rigid 

blocks of variable form adopted for kinematic analysis (Giuffrè, 1993). 

Continuum finite element models 

The difficulty of achieving a suitable representation of historical construction components (e.g. 

piers and buttresses) through a discretization in terms of structural elements has led to the use of 

two- and three-dimensional continuum finite elements. In this approach, masonry is simulated as 

a homogeneous continuum. This higher level of refinement, involving a considerable number of 

degrees of freedom, implies an increase in computational effort that advises the use of the 
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continuum finite element approach for the analysis of partial or detailed models. However, quite 

large continuum finite element meshes are practicable with the actual computational resources. 

Figure 2.24 illustrates two well-known examples: the St. Mark’s Basilica in Venice (Mola and 

Vitaliani, 1997) and the entire façade of S. Peter’s Basilica in Rome (Macchi, 2001). 

  
(a) (b) 

Figure 2.24 – Finite element models: (a) St. Mark’s Basilica in Venice (Mola and Vitaliani, 1997); 

(b) entire façade of S. Peter’s Basilica in Rome (Macchi, 2001). 

In such large finite element meshes, the most costly task is the generation of the mesh itself, 

which might represent several months of work. Considering the actual computational resources, 

structural analysis using simple non- linear models (as no-tension or ideal plastic models), that do 

not require much experimental data, are feasible. Assuming that a linear analysis can be carried 

out in one day and that a non- linear analysis can be performed in a week, the difference of cost 

between linear and non- linear analysis is not significant. The really costly task is the construction 

of the finite element model. Therefore, even a non- linear analysis based in a simple non- linear 

model should be preferable to a linear analysis. 

However, the complexity associated with both the conception and implementation of consistent 

constitutive models and the analysis and interpretation of the results, have led, in many 

situations, to the adoption of linear elastic models. Many researchers have conducted linear 

analysis on historical constructions. Using an elastic finite element model, Mola and Vitaliani (1997) 

studied the St. Mark’s Basilica in Venice, shown in Figure 2.24(a). The geometrical discretization of 

the structure was performed following the results derived from a photogrammetrical analysis and the 

model was calibrated using data obtained from previous monitoring and experimental tests. The 
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existing cracks were simulated using two distinct approaches: either by adopting a lower Young’s 

modulus in the regions where diffuse micro-cracking were located or by introducing explicitly a 

physical separation between adjacent finite elements. The model was employed for the evaluation of 

the stress state in the various structural members and the related displacements produced by dead 

load, temperature and imposed displacements to the foundation. Adopting a global elastic finite 

element model, Croci (1997) analyzed the behaviour of the Colosseum in Rome under the effect of 

seismic actions, taking into account the different characteristics of the soil. This procedure allowed 

the identification of critical situations. Based on a critical analysis of the numerical data, preliminary 

criteria of intervention were indicated. 

Several numerical studies on historical masonry structures have been performed at Universidade 

do Minho, using continuum finite element models and considering non-linear constitutive models. 

As an example, in Figure 2.25 is represented a three-dimensional finite element model adopted for 

a non- linear static analysis of a historical building complex located in Lisbon (Ramos, 2002). 

  
(a) (b) 

Figure 2.25 – Finite element model of a block compound in Lisbon: (a) finite element mesh 

with 200.000 degrees-of-freedom; (b) results for seismic analysis using equivalent 

static loading, shading indicates damage levels (Ramos, 2002). 

Modelling the behaviour of regular masonry assemblages may be addressed also by 

homogenization techniques. Basically, three different approaches might be considered (Zucchini 

and Lourenço, 2002). The first, very powerful, approach is to handle the brickwork structure of 

masonry by considering the salient features of the discontinuum within the framework of a 

generalized/Cosserat continuum theory (Mühlhaus, 1993). The second approach is related with 
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the rigorously application of the homogenization theory for periodic media to the basic cell, i.e. 

to perform a single step homogenization, with adequate boundary conditions and exact geometry 

(Anthoine, 1997). The third, and most used, approach aims at substituting the complex geometry 

of the basic cell by a simplified geometry so that a close-form solution of the homogenization 

problem is possible (Pande et al., 1989; Zucchini and Lourenço, 2002). However, the regularity 

of masonry, required by homogenization techniques is rarely found in historical constructions, thus 

the phenomenological approach, based on experimental tests, has been followed towards the 

development of continuum constitutive models, able to describe masonry as an homogeneous 

material. Based on the phenomenological approach, various constitutive models have been 

proposed, as addressed in Section 2.3.1. 

Discontinuum finite element models 

By adopting a simplified micro-modelling strategy, the explicit representation of the joints 

introduces a discontinuity in the displacement field. Due to the higher computational effort 

required, discontinuum finite element models are especially adequate for the analysis of small 

masonry structures submitted to heterogeneous states of stress and strain. Discontinuities are 

generally introduced using interface elements, for which the constitutive model establishes a 

direct relation between the stress vector and the relative displacement vector along the interface, 

see Chapter 5 for further details. 

Interface elements were initially used in the area of concrete by Ngo and Scordelis (1967), in the 

domain of rock mechanics by Goodman et al. (1968) and in the area of masonry by Page (1978), 

being used since then in a great variety of problems. Within the micro-modelling strategy, 

generally the units are assumed to behave elastically, whereas the overall non- linear behaviour is 

concentrated in the interface elements. Thus, for an accurate simulation of the masonry 

behaviour, it is essential to develop a constitutive model for the interface elements able to 

capture all the failure mechanisms of masonry, as cracking of the joints, cracking of the units, 

sliding over the joints and crushing of masonry. 

Various constitutive models for interface elements have been developed. Lourenço (1996) 

developed a constitutive model for the monotonic analysis of interface elements (micro-

modeling strategy) within the incremental theory of plasticity. The model has been checked 
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against experimental data, in which has shown great accuracy in reproducing experimental 

results, see Figure 2.26. 

   
(a) (b) (c) 

Figure 2.26 – Analysis of a masonry shear wall: (a) load-displacement diagrams; (b) deformed 

mesh at peak load; (c) deformed mesh at ultimate load (Lourenço, 1996). 

Pegon and Pinto (1996) used a discontinuum finite element model to study the pillar-arch stone 

structure of the S. Vicente de Fora Monastery in Lisbon, tested under pseudo dynamic loading, 

see Figure 2.27. Both the stone block and the masonry wall were considered as being isotropic 

linear elastic, whereas joints were modelled by means of interface elements ruled by an elasto-

plastic Coulomb friction law with small dilatancy. Unloading from the monotonic envelope was 

considered in a non- linear fashion for the normal stress component. 

  
(a) (b) 

Figure 2.27 – Monastery of S. Vicente de Fora, in Lisbon: (a) full-scale model of the façade; 

(b) deformed mesh and stress patterns using interface elements (Pegon and Pinto, 1996). 

Gambarotta and Lagomarsino (1997a) developed a constitutive model for mortar joints within 

the damage framework. The damage of the joints is measured by an internal damage variable 

Experimental 

Numerical 
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associated with the strain energy release rate, to which the inelastic strain components, normal 

and shear strain, are related. The proposed model assumes that masonry consists of continuum 

elements that behave elastically until an appropriate failure criterion is activated, bonded 

together by interface elements that represent the mortar joints. 

Almeida (2000) carried out a study on a historical masonry structure using interface elements. 

Initially, a linear elastic analysis under seismic loading was performed in order to characterize 

the overall dynamic response of the structure. Afterwards, the sub-structuring technique was 

used to analyze the structural elements where non- linear behaviour was most likely to occur. For 

those elements, a static analysis was performed, adopting the non- linear constitutive law 

proposed by Pegon and Pinto (1996) for the interface elements. 

Discrete element models 

The discrete, or distinct, element method was proposed by Cundall (1971) for the study of jointed 

rock, modeled as an assemblage of rigid blocks. Later, this approach was extended to others fields 

of engineering, where the detailed study of joints is required, e.g. soils and other granular materials 

(Ghaboussi and Barbosa, 1990). This numerical technique has also been used to the modeling of 

masonry structures, where good quality results have been achieved (Pagnoni, 1994; Lemos, 1998a; 

Sincraian, 2001), see also Figure 2.28. 

  
(a) (b) 

Figure 2.28 – Analysis of masonry structures using the discrete element method: (a) masonry 

arch bridge (Lemos, 1995); (b) dry stone masonry pedestal sustaining a statue 

(Sincraian, 2001). 
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Within the discrete element method, blocks can be considered both rigid and deformable. For 

structures where relatively low stresses and deformations occur in the blocks, the hypothesis of 

undeformable blocks is rather realistic. On the other hand, the consideration of block deformability 

approaches discrete element method and discontinuous finite element method. Apart from solution 

techniques, the main difference between these two methods lies in the modelling of contact: 

discontinuous finite element models use interface elements and discrete element models are based 

on a point contact approach (Lemos, 1998b), i.e. at the interfaces the blocks are connected by 

means of contact points, since discrete element models are intended to simulate the large 

displacement range. 

Limit analysis models 

The applicability of limit analysis to masonry structures modeled as assemblages of rigid blocks 

connected through joints depends on some basic hypotheses (Orduña and Lourenço, 2002). The 

first hypothesis requires that the limit load occurs at small overall displacements, which is true 

for most cases. The second hypothesis is that masonry has zero tensile strength, which can be 

justified by the relatively low tensile strength. The third hypothesis requires that shear failure at 

the joints is perfectly plastic. This assumption is fully supported by experimental results. To end 

with, the fourth hypothesis is that the hinging failure mode at a joint occurs for a compressive 

load independent from the rotation. In the case of masonry crushing, this hypothesis might be 

questionable, but crushing behaviour (except for columns) seems to have minor importance in 

the response of masonry structures. 

In many cases, the objective of the analysis is to estimate the maximum load that a structure can 

sustain prior to failure. In the analysis, the load distribution is known but the load magnitude that 

the structure can carry is unknown. Using limit analysis models, this load multiplier can be 

computed using either the static method or the kinematic method. Livesley (1978) was the first 

researcher to apply the limit analysis to rigid block arches, using the static method. Later, Gilbert 

and Melbourne (1994) applied the kinematic method to the same problem.  

The limit analysis can be regarded as a practical computational tool, since it only requires a 

reduced number of material parameters and it can provide a good insight into the failure pattern 

and limit load. Current efforts have been done at Universidade do Minho aim at developing a 

design tool based on limit analysis, see Giuffrè (1993). 
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2.4 Summary 

Our architectural heritage is mostly based on masonry constructions, from all of the historical 

periods that endured along the centuries. Due to damage accumulated with time, these structures 

require periodic inspections in order to assess their actual safety. To perform the structural 

assessment of a given structure, several idealizations of the material’s behaviour can be 

established, each one of them necessarily associated to different degrees of complexity. Non-

linear analysis is the most powerful method of analysis, and the only one able to trace the 

complete structural response of a masonry structure from the elastic range, through cracking and 

crushing, up to failure. Simpler constitutive models are easier to use and require fewer 

experimental data, but give less insight on the structural behaviour. On the other hand, advanced 

constitutive models demand a comprehensive description of material behaviour, are rather time 

consuming and require adequate knowledge of non-linear constitutive models by the analyst, but 

are fully able to describe the structural response. The choice regarding the adequacy of a given 

numerical tool depends on, among other factors, which objectives are required from the analysis. 

If the sought information can be achieved employing a simpler method, which turns out to be less 

expensive or more in agreement with the expertise of the analyst, then the usage of such a simpler 

method is  advised. However, the lack of appropriate experimental data can restrain the use of 

advanced methods. This implies that, in parallel with the development of advanced numerical 

models, it is necessary to carry out comprehensive test programs, both at the micro- (specimens) 

and macro-level (structures) in order to supply data to the numerical models and also to validate 

numerical results against experimental results. 

Concerning the modelling of in-plane behaviour of masonry structures, the material discontinuity 

introduced by the existence of the joints makes the use of interface elements within a finite 

element formulation a quite suitable option to model and understand such structures. This option 

has been followed in this study. 
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3. MECHANICAL TESTS ON STONE AND BRICK MASONRY 

The use of natural stones and bricks as structural building materials has been known since ancient 

times. Over the centuries, their use has been improved and they have been applied in different 

forms all over the world, varying with culture and time. In fact, it can be observed that most of our 

historical constructions utilize stone and brick, laid dry or bonded with mortar, as a key building 

material. Historical constructions are defined here as buildings cons tructed before the advent of 

Portland cement, at the end of the 19th century. Nowadays, the role of these materials has become 

less important due to the progressive adoption of other structural materials, particularly concrete 

and steel, and therefore, the ir use has been limited mainly to non-structural elements. 

In order to understand the mechanical behaviour of a given material or structure, it is 

fundamental to perform experimental tests. In this way, it is possible to characterize the material 

behaviour from the undamaged state through peak and also including the post-peak behaviour. 

But, if on one hand, it is almost impossible to carry out any kind of destructive test on elements 

belonging to historical constructions, on the other hand, the possibility of performing non-

destructive tests, such as flat jacks, dynamic identification tests, impact echo or ultrasonic tests, 

e.g. Suprenant et al. (1994), is very interesting but does not provide enough information if a 

“complete” material description is needed. The word complete is used here in the sense that the 

description of the material includes the data necessary for advanced numerical models 

(Lourenço, 1998), obtained from complex deformation-controlled tests. Therefore, advanced 

material characterization has a huge importance when the use of accurate numerical models is 

intended. Numerical tools can only give reliable results if adequate experimental data are 

available. Consequently, the acquirement of material data necessary for advanced nonlinear 

numerical models is inevitably a key issue. 

As referred in Chapter 1, the experimental research described in this study is a part of a 

comprehensive experimental program developed jointly by Universitat Politècnica de Catalunya 

(UPC), Barcelona, and Universidade do Minho (UM). With the exception of the direct shear 

tests, which have been carried out at UM, the remaining experiments described here were 

performed at UPC. Uniaxial monotonic and cyclic tests were performed in stone and brick 

specimens and prisms, aiming at a complete characterization of the cyclic behaviour of these 
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materials. Complementary to these tests, brick masonry walls and dry stone masonry walls were 

constructed and tested under combined compressive and shear loading. The experiments 

concerning dry stone masonry walls are fully described in Chapter 4 (where a numerical 

simulation is also included), while the tests concerning the brick masonry walls were performed 

outside the scope of this study. In both cases, if a numerical analysis of the structural behaviour  

of such structures is intended to be carried out, an appropriate experimental characterization of 

the constitutive materials is therefore required. Tests concerning this comprehensive material 

characterization were performed and are detailed described in this Chapter. 

This Chapter is organized in six Sections. First, comprehensive tests concerning uniaxial 

compressive and direct shear behaviour of stone specimens are presented. The adopted procedure 

for testing is described in detail and the results are discussed. Then, results of four stone masonry 

prisms tested under compression are exhibited. Additionally, a comparison between the results 

obtained from specimens and prisms tests is established. Afterwards, uniaxial compressive tests 

on brick specimens are shown, being the results discussed with detail. Even using advanced 

control techniques, the compressive tests on stone and brick specimens were difficult to control, 

due to the brittleness of the tested materials. Therefore, only the successful results are reported in 

this study. Next, tests performed on brick masonry prisms are presented. Complementing the 

tests related to the brick specimens, tests concerning cement mortar specimens from different 

mixes are also presented. Four stacked bonded prisms made of five bricks each, were constructed 

and tested under cyclic loading. Finally, the most important conclusions are summarized and the 

main difficulties are pointed out. 

3.1 Compressive tests on stone specimens 

In order to fulfill the purposes initially set up in Chapter 1, the material chosen for the tests 

should be, as much as possible, similar to stones used for centuries in the construction of the 

monuments spread all over Catalonia. For this reason, a sandstone has been selected for all the 

tests concerning stones. It is a common and locally available stone, known as “Montjuic stone”. 

Initially, the stones were mechanically cut and delivered to the laboratory in small prismatic 

pieces (20×20×10 cm3). Macroscopically, the stone presents a very homogeneous surface and a 

very small grain size. Also, it is impossible to define any kind of grain orientation or anisotropy, 

see Figure 3.1. 
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The complete load-displacement diagram for stones tested in uniaxial compression has been obtained 

for decades, e.g. Cook (1965), and provide valuable information about its structural behaviour. 

During the initial development of the testing techniques, it became clear that, for some stones, it was 

impossible to obtain the full diagram without appropriate control techniques. As a matter of fact, for 

stone specimens that display a very brittle behaviour, the use of axial displacement as the control 

variable is not enough to ensure that post-peak behaviour can be obtained. 

 

Figure 3.1 – Sandstone used for the tests (granulose texture with a very small grain size). 

Two types of diagrams in terms of the characteristics of the post-peak region were identified by 

Wawersik (1968), see Figure 3.2. Class I diagrams are characterized by a monotonical increase 

in strain, where fracture propagation is stable in the sense that work must be done on the 

specimen for each incremental decrease in load-carrying ability (stable softening behaviour ). In 

class II diagrams, fracture is unstable and the elastic strain energy absorbed in the material is 

sufficient to maintain fracture propagation until the specimen has lost all strength (unstable 

softening behaviour), as schematically illustrated in Figure 3.2. 
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Figure 3.2 – Two classes of stress-strain behaviour observed in uniaxial compression tests of 

natural stones. 



46 Chapter 3 

It is presently known that this response depends on the boundary conditions and on the size of the 

specimen, see Vonk (1992). In fact, compressive failure seems to exhibit local and non-local features. 

3.1.1 Specimen preparation 

The definition of specimen geometry depends on the type of test to be performed (e.g. 

compression, tension) and also on the control variable to be adopted. In order to ensure uniaxial 

loading, a height/diameter ratio (h/d) between two and three and a diameter preferably not less 

than 50 mm, are recommended if standard lateral deformations restraining steel plates are used, 

see Fairhurst et al. (1999), in order to secure a uniform stress distribution at least in the center of 

the specimen. The diameter of the specimen must be at least 20 times the largest grain in the 

stone microstructure. The h/d ratio highly influences the peak strength and the later decreases 

with the increase of the former, as showed by Neville (1995). The friction between the platen 

surface and the specimen, due to the higher platen stiffness value, creates a multiaxial stress state 

on the specimen extremities, which decreases with the distance from the platens. This 

confinement effect can be reduced if a low friction coefficient material is inserted between the 

specimen and the machine platens, like teflon, or by using steel brushes, see van Mier (1984) for 

a detailed approach. Here, it has chosen to adopt an h/d ratio such that a uniaxial stress state was 

ensured in the center of the specimen. 

After grinding the top and bottom surfaces, cylindrical specimens (∅5×12 cm3) were extracted 

from the prismatic stones by means of a drill, resulting in a h/d ratio equal to 2.4, see Figure 3.3. 

Using this ratio the confinement effect was expected to be absent and no additional provisions to 

eliminate this effect were taken. 
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Figure 3.3 – Cutting scheme adopted for the stone specimens: front view and vertical cross-

section. 
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The stone specimens (SS) will be denoted by the stone number and by the specimen number. 

Therefore, the reference SS2.3 represents the third specimen obtained from the prismatic stone 

nº2. In order to ensure correct sampling of the stones, the specimens were extracted randomly 

from different stone blocks. All the specimens were tested with their natural water content. 

3.1.2 Test procedure 

The closed- loop servo-controlled INSTRON testing machine used to test all the stone specimens 

has a 1000 kN load capacity and can work under several control techniques such as force, axial 

or circumferential displacement. The response time of the servo-valve was adjusted prior to the 

test, through the PID (Proportional-Integral-Derivative) feedback algorithm of the regulation 

system. For the stone specimens to be tested, a fast servo-system was needed, as for all materials 

exhibiting brittle response. 

A circumferential linear variable differential transformer (LVDT) placed at the specimen mid-

height and three axial LVDTs placed between the machine platens were used as displacement 

measurement transducers, see Figure 3.4. The applied force was measured by means of the machine 

load cell. Special attention was given to the transducers calibration and adopted testing procedures. 

  
(a) (b) 

Figure 3.4 – Testing set-up: (a) INSTRON machine; (b) measurement transducers arrangement. 
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Initially, the diameter and height of the specimen were measured and registered. Then, the 

specimen was put into the lower platen and carefully centered. Afterwards, a small preload was 

applied, in force control, in order to adjust the upper platen to the top surface of the specimen. 

This platen has a hinge to prevent any potential unfavourable effect due to non-parallelism 

between the specimen faces. 

The following control variables were used for testing: 

− Axial displacement control when the applied load was very small; 

− Force control during unloading; 

− Circumferential displacement control in general. 

The displacement rate was kept about 5 µm/s and 1.5 µm/s in axial and circumferential control, 

respectively, and about 2 kN/s in load control. In this way, the peak load was reached in about 3 

to 4 minutes and the complete test took from 70 to 90 minutes. 

The axial displacement of each specimen tested was defined by the average value obtained from 

the three LVDTs placed between the machine platens. The axial strain was calculated by 

dividing the change in average measured axial length by the initial axial length of the specimen. 

The axial compressive stress was computed as the load divided by the initial cross-sectional area. 

3.1.3 Monotonic tests 

Preliminary monotonic tests 

Just before starting with the procedure described above, a couple of specimens were tested under 

axial displacement control. The two specimens tested, SS1.1 and SS2.1 failed just after peak 

load, so post-peak behaviour could not be characterized, see Figure 3.5. 

The displacement rate applied was kept constant at 5 µm/s. The results obtained confirmed that 

another control technique had to be used in order to obtain the full stress-strain diagram. It must 

be noted that, even if stones from the same delivery were used, different Young’s modulus from 

the two specimens could be observed. In fact, this important feature will appear throughout the 

present experimental study for which appropriate comments will be made. 
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Figure 3.5 – Results from the monotonic compressive tests on stone specimens under axial 

displacement control. 

Preliminary monotonic tests using axial and transversal extensometers 

In order to compute the values of the Young’s modulus and Poisson’s ratio, two stone specimens 

(SS3.1 and SS4.1) were tested using three double electric resistance strain gauges rosettes, 

equally spaced around the perimeter and placed at mid-height of the specimen, see Figure 3.6.  

 

Figure 3.6 – Stone specimen and strain-gauge arrangement. 

The specimens were tested in axial displacement control at a constant rate of 5 µm/s. As 

expected, post-peak data could not be obtained because the specimens failed under axial 
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displacement control in an uncontrolled manner just after the peak load. The specimens SS3.1 

and SS4.1 failed at 82.2 MPa and 94.8 MPa, respectively. 

Measuring the axial displacements with the LVDTs on these specimens also allowed 

comparisons between the stress-strain diagrams obtained by the two available arrangements. 

Figure 3.7 shows the axial stress-strain and axial stress-circumferential strain diagrams for the 

specimens SS3.1 and SS4.1, respectively, where: 

εa,lvdt : axial strain measured using LVDTs (defined as positive in axial compression); 

εea,sg: axial strain measured using the axial strain gauges; 

εc: circumferential strain measured by the horizontal strain gauges (defined as negative 

in axial compression). 

In Figure 3.7 it can be observed that the axial stress-circumferential strain diagram exhibits high 

nonlinearities, even for lower stress levels, when compared with the axial stress-strain diagrams. 

The later show a much more linear behaviour, almost up to the peak load. 
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(a) (b) 

Figure 3.7 – Axial and circumferential strain versus axial stress for the stone specimens: 

(a) SS3.1; (b) SS4.1. 
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In order to fully characterize the specimens behaviour in terms of their elastic properties, the 

evolution of Young’s modulus (E), Poisson’s ratio (ν) and volumetric strain (εvol) is presented in 

Figure 3.8 for the specimens SS3.1 and SS4.1. Here, Elvdt and Esg represent the computed 

Young’s modulus using LVDT and strain gauges data, respectively. 
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Figure 3.8 – Variation of Young’s modulus, Poisson’s ratio and volumetric strain for the stone 

specimens: (a) SS3.1; (b) SS4.1. The horizontal scale is normalized. 

The Poisson’s ratio ν and the volumetric strain εvol were defined as follows: 

c

a,sg

εν
ε

=  

( )2 1 2vol a,sg c a,sgνε ε ε ε= + = −  

(3.1) 

The observed behaviour of the stone specimens can be summarized in the following: 

− Initially an adjustment took place between the machine platens and the specimen. This 

happened in almost all the tests carried out and presented here. 
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− With an increase of the applied load, closure of existing microcracks and voids 

produced an increase of the Young’s modulus. At higher stress levels, the Young’s 

modulus (E) started to decrease due to the initiation of cracks. The Poisson’s ratio (ν), 

defined as the ratio between the circumferential and axial strains, increased continually 

with the load increments. This behaviour can be explained by microcrack closure, for 

lower stress levels, and the initiation/propagation of cracks, for higher stress levels. In 

other words, the variations of E and ν are related to fracture of the specimen. 

− Initially, a slight volume reduction took place, caused by the axial compression. An 

important volume increase, due to the crack formation followed this small reduction. It 

can be observed that for half of the peak load there was no volume variation. This 

means that crack formation took place for relative lower stresses. 

− The very large positive volume variation for higher stresses (in compression) can be 

explained by splitting fracture. This phenomenon of positive volume variation in 

compression is known as dilatancy. 

− When the applied load reached the last recordable level, the first macrocracks became 

visible. Due to this fact, the maximum load and failure mode could not be predicted 

during the execution of the test. From the observation of the collapsed specimen, failure 

may be attributed to disintegration along a shear band, formed by the coalescence of the 

major cracks. Tests using another control technique described latter in this report will 

make it possible to understand the collapse mode. The global behaviour described is 

well known in rock mechanics, e.g. Rocha (1981) and Li et al. (1998). 

Figure 3.8 shows that E and ν were greatly affected by the nonlinearities in the stone’s 

behaviour. Thus, it is difficult to define the elastic properties from the uniaxial test results. The 

procedure defined by ASTM (1999) allows the use of several methods employed in engineering 

practice, like tangent, secant or average modulus. This is clearly a consequence of the difficulties 

described above. In order to clarify some of these aspects, Tables 2.1 and 2.2 summarize the 

elastic properties, calculated for different stress levels using the tangent approach.  

The elastic modulus calculated using strain gauges, Esg, was always greater than the value 

obtained using the data from the LVDTs, but the differences are not significant (less than 12%). 

Therefore, the information obtained by means of LVDTs may be used to evaluate the Young’s 

modulus in the specimens tested without strain gauges. 
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Table 3.1 – Elastic properties for the specimen SS3.1 (σpeak = 82.2 MPa) 

Stress level 25% 50% 75% 

Elvdt [GPa] 12.34 14.04 14.09 

Esg [GPa] 12.47 14.31 14.73 

ν 0.28 0.50 0.97 
 

Table 3.2 – Elastic properties for the specimen SS4.1 (σpeak = 94.8 MPa) 

Stress level 25% 50% 75% 

Elvdt [GPa] 13.87 18.57 19.20 

Esg [GPa] 14.69 20.22 21.47 

ν 0.27 0.53 1.05 
 

For a stress load near half of the ultimate load, the Poisson’s ratio equals his theoretical 

maximum elastic value (0.50). This means that dilatancy has major importance in the behaviour 

of the specimen. Also, the previous results indicate that microcracking starts at relatively lower 

stress levels. As happened with the specimens SS1.1 and SS2.1, differences in Young moduli 

could also be found between SS3.1 and SS4.1. 

Following the ASTM proposal, the Young’s modulus can also be defined as the average slope of 

the linear portion of the stress-strain diagram. Taking into account that the straight- line portion is 

located in the [30%-60%] stress interval, the values of E obtained in this interval, using linear 

least square regression, are presented in Table 3.3. 

Table 3.3 – Young’s modulus defined in the [30%-60%] stress interval for the specimens 

SS3.1 and SS4.1. 

Stress level [30% − 60%] 

Specimen SS3.1 SS4.1 

Elvdt [GPa] 13.68 17.71 

Esg [GPa] 13.86 19.20 
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Series of monotonic tests with complete results 

Following the test procedure described above, four monotonic tests were performed in order to 

characterize the complete stress-strain diagram. Based on the data acquired via LVDTs, stress-

strain graphics were obtained by normalizing the axial load applied and the change in measured 

axial length, respectively, by the initial cross-sectional area and by the axial length of specimen 

prior to loading, see ASTM (1999) and Fairhurst et al. (1999). 

All the diagrams exhibited the common initial adjustment between the specimen and the machine 

platens (usually termed as “bedding down”). This means that the initial part of the stress-strain 

graphic presents a “curve” followed by a linear portion, see Figure 3.9. 
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Figure 3.9 – Monotonic stress-strain diagrams for the four stone specimens tested. 

The Young’s modulus of the four specimens was evaluated in the stress interval [30%-60%]. 

Table 3.4 summarizes the Young’s modulus and the ultimate compressive strength of the stone 

specimens (CV is the coefficient of variation). 



Mechanical tests on stone and brick masonry 55 

Table 3.4 – Characterization of the monotonic tests on stone specimens. 

Specimen E30-60 [GPa] σpeak [MPa] 

SS5.1 17.49 93.9 

SS5.2 17.89 98.0 

SS6.1 19.56 86.6 

SS6.2 20.30 87.8 

Average 18.81 91.6 

CV 6.16 % 5.1 % 
 

As expected, the pre-peak behaviour was very easy to follow. All the specimens showed a 

reasonable linear behaviour almost until the peak. Just after the peak load, the specimens 

exhibited very pronounced fragile behaviour. The initial macroscopical cracks were visible only 

for a load very close to the peak load. Macroscopic crack initiation took place at the extremities, 

progressing through the entire specimen. Some of the cracks had a sudden formation and, in 

some specimens, were accompanied by a clear sound. Figure 3.10 presents two specimens 

loaded in the post-peak regime where cracks are perfectly visible. 

  

Figure 3.10 – Typical crack initiation for the stone specimens tested, around peak load. 

In some specimens crack formation led to a sudden unloading on the load-displacement diagram, 

under circumferential displacement control. This unloading occurred very quickly, with 

increasing circumferential displacement and was followed generally by partial load recovery. 
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Apparently, the results concerning these four stone specimens show low scatter. However, this 

low scatter is due to the fact that the four specimens were extracted from only two different stone 

prisms. This low scatter is explained by the stone’s nature. However, even if the stones were 

delivered in a single batch, it was not possible to ensure that all stones were submitted to the 

same conditions or even if they were extracted from the same place. 

3.1.4 Cyclic tests 

After monotonic compressive tests, a series of cyclic load tests were carried out to obtain data 

about the cyclic behaviour of the sandstone, with emphasis on the stiffness degradation evolution 

and energy dissipation. The general procedure adopted was the same as described before with the 

exception of the cyclic part. The unloading branch was always performed under force control 

until a fixed load value, serving as the lowest threshold. Figure 3.11 presents the stress-strain 

diagrams obtained in the cyclic tests. The general behaviour  of these specimens was similar to 

the monotonic ones. On the one hand, the pre-peak behaviour was easily followed, but, on the 

other hand, the post-peak branch showed to be unstable and characterized only with great effort. 

It can be observed that in the post-peak branch the load decreased in a very non-smooth way. 

This clearly reflects the brittleness of sandstone. 

Table 3.5 presents the Young’s modulus and the ultimate compressive strength of the stone 

specimens tested under cyclic loading. Significant differences were found between the several 

specimens in terms of compressive strength and Young’s modulus. Therefore, the intrinsic 

variability of the mechanical properties of stone is an important issue that should kept in mind 

when dealing with natural stone structures. 

The coefficients of variation are higher in the cyclic tests, when compared to the monotonic tests. 

This is partially due to the specimens extracted from the stone piece number two (specimens 

SS2.2 and SS2.3) that present different elastic and mechanic properties (see also Figure 3.5). If 

new coefficients of variation are calculated without the contribution of these two specimens, less 

scatter is found (coefficients of variation of 15.95% and 10.9% for the elastic modulus and peak 

strength, respectively). Another reason for higher coefficients of variation in the cyclic tests had 

to do with the number of stones rather than the number of specimens. In the monotonic tests only 

two stones were used whereas in the cyclic tests five different stones were used. 
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Figure 3.11 – Stress-strain diagrams of the stone specimens tested under cyclic loading. 

In the post-peak region, the specimens had to be unloaded from defined post-peak locations and 

then reloaded in order to generate new stress-strain curves. The unloading points were chosen in 

a way that stiffness degradation, also called damage, could easily be followed. The local post-

peak Young’s modulus is then the positive slope of the ascending (reloading) portion of these 

new curves and it has been calculated using the same method adopted for the elastic Young’s 
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modulus (linear least square regression in an interval). The evolution of the Young’s modulus 

can be considered as a measure of the damage in the material. 

Table 3.5 – Characterization of the cyclic tests on stone specimens. 

Specimen E30-60 [GPa] σpeak [MPa] 

SS2.2 9.50 61.1 

SS2.3 10.46 68.6 

SS3.2 12.64 70.4 

SS4.2 15.54 84.5 

SS7.1 15.62 85.4 

SS8.1 16.49 90.2 

Average 13.38 76.7 

C.V. 20.13 % 13.8 % 
 

The unloading-reloading cycles were done in the pre-peak and post-peak regions. The Young’s 

modulus was calculated for the initial [30%-60%] interval (see Table 3.5) and for all the 

reloading branches as being the slope obtained by linear least square regression, as used before. 

Table 3.6 shows the Young’s modulus computed for all the reloading branches exhibit in 

Figure 3.11 (“rb” denotes reloading branch). 

Table 3.6 – Young’s modulus of the reloading branches obtained by linear least square 

regression (stone specimens). 

E [GPa] 
Specimen 

rb1 rb2 rb3 rb4 rb5 rb6 

SS2.2 15.15 12.07 7.47    

SS2.3 18.38 14.30     

SS3.2 22.05 22.38 21.85 18.44   

SS4.2 21.97 22.92 23.28 21.80 18.88 17.09 

SS7.1 24.00 23.86 22.79 18.28 16.03  

SS8.1 22.66 23.27 23.43 19.43 13.15  
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In the pre-peak region, a slight increase of the Young’s modulus can be observed (e.g. specimens 

SS3.2 and SS4.2). This result is in agreement with the results obtained from the tests using strain 

gauges. On the other hand, a monotonic decrease of the Young’s modulus in the post-peak 

region can be observed (see specimens SS2.2 and SS7.1). This decrease is related to the 

progressive damage growth suffered by the specimen. 

In the stress-strain diagrams presented, a different number of unloading-reloading cycles were 

performed for each specimen. Since the testing machine procedure had to be completely defined 

before the beginning of the test, the uncertain behaviour of the stone specimens produced major 

differences in the stress-strain diagrams for a same adopted procedure. Therefore, prior to each 

test, the testing machine procedure had to be adapted as a function of the stone behaviour. A 

simple stress-strain envelope diagram can give a visual idea about the scattering in the results. 

Figure 3.12 presents the envelope (shaded area) of the monotonic and cyclic stress-strain 

diagrams exhibit in Figure 3.9 and Figure 3.11. It can be observed that the pre-peak portion 

presents a smaller scattering, when compared with the post-peak branches. In the peak zone, the 

cyclic envelope presents a wide scatter, see also Table 3.5, but this can be associated with 

differences in the number of stones selected for monotonic and cyclic tests. 
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Figure 3.12 – Envelope of the stress-strain diagrams considering: (a) monotonic tests; (b) cyclic tests. 

3.1.5 Failure modes 

The analysis and observation of the obtained failure modes allow understanding the behaviour of 

the stone specimens tested. Typical failure modes obtained are shown in Figure 3.13. Due to the 
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confinement effect caused by the machine platens, the top and bottom surfaces did not generally 

present any visible cracks. On the other hand, when specimen rupture took place, the formation 

of circular cone pieces was visible. In all the specimens tested the formation of multiple shear 

bands took place when post-peak region was reached. Its development seemed to be the cause of 

specimen failure and it was associated with large volume increase of the specimen. 

  

  

Figure 3.13 – Failure modes of the tested stone specimens. 

3.1.6 Tests using specimens with different geometry 

In order to check the influence of the confinement effect and slenderness ratio, it was decided to 

perform some tests on specimens with slightly different geometry. All the specimens tested up to 

then had a geometry of ∅5×12 cm3. Thus, two cylindrical specimens of ∅5×10 cm3 (h/d = 2.0) 

were tested under monotonic compression. Table 3.7 shows the results obtained for the two 

specimens tested, in terms of Young’s modulus and ultimate strength. It must be noted that 

results presented in Table 3.7 do not have statistical meaning due to the reduced number of 

specimens tested. 
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Table 3.7 – Characterization of the monotonic tests on stone specimens with h = 10 cm. 

Specimen E30-60 [GPa] σpeak [MPa] 

SS11.1 20.63 91.6 

SS12.1 14.85 93.1 

Average 17.74 92.4 
 

Figure 3.14 illustrates the stress-strain diagram for the specimens described above. With such 

decrease in the specimen’s height (about 17 %) no significant differences were found when 

comparing the peak strength. With respect to the elastic modulus, it turned out to be very 

difficult to extract any conclusions because this property seems to show a wide scatter. 
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Figure 3.14 – Monotonic compressive stress-strain diagrams for two specimens 10 cm height: 

(a) SS11.1; (b) SS12.1. 

However, if a comparison between the post-peak branches is made, it can be observed that the 

smaller height is associated with a better stability until complete loss of strength capacity, see 

Figure 3.14. It can be observed that a quasi- linear path forms the last part of the curve and, for a 

very small load decrease, large decrease in axial length is found. This last branch could be 

obtained because the specimen exhibited a stable post-peak behaviour. Experiments have 

demonstrated that the post-peak behaviour becomes more ductile when the confining pressure is 

increased (Wawersik et al., 1970). So, it is believable that a smaller slenderness factor (from 2.4 

to 2.0) provides a less brittle behaviour, probably due to an increasing confinement effect. The 

reasons why this ratio was not used are given later. 
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In order to illustrate the great importance of an appropriate choice of the control technique, the 

relation between variations in measured axial and circumferential lengths obtained for the 

specimen SS11.1 is shown in Figure 3.15. As it can be observed, pre-peak is characterized by a 

remarkable variation in axial length when compared with the circumferential one. As a result, 

this branch can be obtained under common axial displacement control. 
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Figure 3.15 – Relation between the axial and circumferential length variation for the stone 

specimen SS11.1. 

Figure 3.15 also shows that the post-peak behaviour cannot be described for this particular 

material if axial displacement control is used, due to the plateau obtained. This control must be 

substituted by a monotonic increasing signal in order to obtain the complete stress-strain 

diagram. A possible control seems to be the adopted circumferential displacement control. 

3.2 Direct shear tests on stone specimens 

Shear failure is a very common failure mode observed in most masonry walls when subjected to 

in-plane loading. As a consequence, the structural behaviour of masonry joints has been carefully 

studied, see Atkinson et al. (1989) and van der Pluijm (1993) for a comprehensive analysis. 

However, little is known about the shear behaviour of dry masonry joints, particularly under 

cyclic loading. Therefore, an experimental program aiming at the mechanical characterization of 

the behaviour of dry jointed stone masonry under cyclic shear loading was carried out. The first 

results are presented and discussed in this Section. The main purposes of these tests were the 

assessment of the friction angle φ and the dilatancy angle ψ as well as the characterization of the 
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complete stress-displacement diagram under cyclic shear loading. A discussion of the complete 

experimental program can be found elsewhere (Ramos, 2002). These results are needed for the 

numerical analysis of dry jointed stone masonry walls to be presented in Chapter 4 and for the 

calibration of the constitutive model to be developed in Chapter 5. 

3.2.1 Equipment and specimen preparation 

Several test configurations have been used to determine the cohesion (when it exists) and the 

friction and dilatancy angles. A comprehensive review of this subject is given by Jukes and 

Riddington (1997), where available test configurations are detailed discussed. The most critical 

point involved in these tests is to guarantee that the test set-up ensures a stress distribution as 

uniform as possible in the bed joint. 

In this study the direct shear tests where performed with a servo-controlled testing machine, 

existing at the roadway laboratory, specially conceived to carry out fatigue tests on asphalt 

specimens. This machine is equipped with two opposite platens, each one controlled by an 

independent loading actuator, with a load capacity of 20 kN. Each loading actuator is equipped 

with a load cell and is able to work under load or displacement control.  

Due to geometric restrictions related to the maximum distance allowed between machine platens, 

the maximum specimen height was limited to 8,5 cm. Therefore, specimens were composed by 

two equal stone units, each one measuring 4×5×8 cm3, as shown in Figure 3.16. 
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Figure 3.16 – Adopted geometry of the stone units tested under shear loading. 
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The units were obtained by mechanical cut of the prismatic sandstones pieces described in the 

previous Section. The surface of the units in direct contact during the shear tests presented the 

same smoothness as the stones used to build the stone masonry walls to be described in 

Chapter 4. It is important to emphasize this feature since some of the stone characteristics to be 

estimated here will be used later in modeling. 

The specimens were instrumented with three LVDTs, placed according to Figure 3.17. Two 

LVDTs measured the relative vertical displacement whereas the third LVDT measured the 

relative horizontal displacement along the dry joint. The compressive and shear forces were 

measured by means of two built- in load cells, each one associated to a loading actuator. The 

machine platens were modified by adding lateral steel bars, fastened with screws, to prevent any 

relative horizontal movement between the unit and the platen. In addition, a pre-compressive 

load was applied to the steel bars in order to avoid any relative sliding between the unit and the 

platen during shear loading reversal. 

  
(a) (b) 

Figure 3.17 – LVDTs arrangement: (a) schematic representation; (b) picture taken during testing. 

In order to minimize the overturning moment applied to the joint by the shear load, the contact 

between the unit and the lateral steel bar was located as close to the joint as possible by placing a 

small neoprene sheet between them, see Figure 3.18. Furthermore, two greasy teflon sheets were 

placed between the unit and the platen. Fixing the unit to the base of the platen would increase 

considerably the overturning moment. 

Taking into consideration that the reliability of the results depends greatly on the capacity of the 

test method to assure an appropriate stress distribution down the dry joint, a numerical 

assessment was carried out (Ramos, 2002). In this way, the loading arrangement idealized in 

Figure 3.18(b) was validated by means of a non- linear finite element analysis. 

(Shear direction) 

(Normal direction) 
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(a) (b) 

Figure 3.18 – Test configuration: (a) specimen arrangement; (b) idealized loading arrangement. 

The procedure is the same as used for testing, which is described in the following Section. First a 

vertical compressive stress of 1.5 MPa was applied to the specimen. Then, a monotonic 

increasing horizontal displacement was imposed to the dry joint until complete yielding was 

achieved. It was found that just before the occurrence of yielding in the joint, see Figure 3.19, the 

average normal stress in the joint was very close to the imposed compressive stress (1.5 MPa) 

and that shear stresses presented an acceptable profile stress distribution, quite uniform in a great 

extension of the central part of the joint. 
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Figure 3.19 – Normal and shear stress distribution along the joint just before the occurrence of 

yielding. 

The numerical results have shown that the adopted loading arrangement can lead to a uniform 

stress distribution in a great extension of the joint, which is the main demand that any shear test 

should attain. Therefore, it seems that the proposed testing set-up is able to generate reliable 

results. 
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3.2.2 Testing procedure 

Initially, the units were measured and registered. Then, both units were put into the platens. Any 

potential non-parallelism between the specimen’s faces was corrected by placing a thin layer of 

epoxy resin between the platens and the greasy teflon sheets. This procedure guaranteed a very 

good contact between the two units and between the units and the platens. Special attention was 

devoted to the adjustment of the steel bars and to the setting of the neoprene sheets. Afterwards, 

the three LVDTs were placed in the units, according to Figure 3.17(a). Since only three LVDTs 

were available, only one face was instrumented. However, no rotation along the shear direction 

was expected. 

The test was started by imposing a compressive stress state to the specimen, under force control. 

Three compressive stress levels of 0.5 MPa, 1.0 MPa and 1.5 MPa were defined and for each 

stress level, three specimens were tested cyclically. Afterwards, a cyclic displacement law was 

imposed to the LVDT 3, at a constant rate of 2.5 µm/s. Four cycles of increasing amplitude, 

varying from 0.1 mm to 0.4 mm, were carried out, as shown in Figure 3.20. Their amplitude and 

number were based on preliminary tests. The objective was to stop the test when variations 

between cycles were not visible. 
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Figure 3.20 – Imposed displacement law under cyclic direct shear loading. 

3.2.3 Results 

Typical obtained cyclic shear load-relative shear displacement diagrams are shown in 

Figure 3.21, for the three compressive stress levels adopted in this study. As expected, the 

maximum shear load increased with the compressive stress level. It was observed that, for each 
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stress level, a very close behaviour was found. During loading and reloading shear load grew in a 

non- linear way whereas unloading was almost linear elastic. Moreover, practically no stiffness 

degradation between cycles was observed and no hardening behaviour was found. 
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Figure 3.21 – Shear load-relative shear displacement for a compressive stress level of: 

(a) 0.5 MPa; (b) 1.0 MPa; (c) 1.5 MPa. 

Table 3.8 presents the statistical values of the stiffness comp uted from the unloading branches, 

using linear least square regressions. It was observed that, for specimens tested under a same 

compressive stress level, unloading stiffness did not present important variations between cycles. 



68 Chapter 3 

However, the increase of the compressive stress applied to the specimens originated a linear 

increase of both unloading and reloading stiffness. 

Table 3.8 – Unloading stiffness (average value and coefficient of variation). 

Stress level 0.5 MPa 1.0 MPa 1.5 MPa 

Average [N/mm3] 149952 176320 220924 

CV (%) 7.7 16.2 16.9 
 

By performing linear least square regressions in all the specimens, it was found that the value of 

tanφ assumes an average value of 0.62 and tanψ is equal to 0.05. For practical purposes, tanψ 

can be considered equal to zero. Finally, Figure 3.22 shows the appearance of the unit’s surface 

after testing. In spite of all the care put in the specimens preparation, the contact between the 

units was not totally uniform. 

   
(a) (b) (c) 

Figure 3.22 – Dry joint surface after testing: compressive stress levels of (a) 0.5 MPa; 

(a) 1.0 MPa; (b) 1.5 MPa. 

3.3 Compressive tests on stone prisms 

Along with the tests on stone specimens, uniaxial compressive tests were also performed on 

stone masonry prisms. The stones were laid dry to replicate dry (mortarless) masonry. The stones 

used in these tests were taken from the batch delivered for the tests described in the previous 

Sections. 
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3.3.1 Prism preparation 

It was decided to perform monotonic uniaxial compressive tests on two different geometries, 

with different slenderness ratios. Therefore, according to available stones, two prisms made of 

three 10×20×10 cm3 pieces and other two prisms made of four 20×20×10 cm3 pieces were built 

and tested. The slenderness ratios obtained (h/d) were three and two, respectively, where h is the 

height and d is the lowest base dimension of the prism. A schematic representation of the prisms 

is shown in Figure 3.23. The adopted h/d ratios allowed a uniaxial compressive behaviour at 

least at the center of the prisms. 
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Figure 3.23 – Geometry of the two different stone prisms tested (front view). 

The prisms were built just by superposition of the stone prismatic pieces and no additional 

surface treatment was made on those pieces. Once again, no material was placed between the 

stones. Stone pieces that presented clearly visible defect were removed and were not used in 

these or in any other tests performed using stones. 

The prisms were denoted by the letters SP (stone prism) and by an order number. SP1 and SP2 

were prisms made of three pieces each and the prisms made of four pieces were denoted by SP3 

and SP4. All the specimens were tested with their natural water content. 
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3.3.2 Test procedure 

The stone prisms were tested in a SUZPECAR testing machine controlled by a MTS 458 system. 

This machine has a 5000 kN load capacity and can work under force or axial displacement 

control. Three axial LVDTs placed between the machine platens, see Figure 3.24, were used as 

displacement measurement transducers. The LVDTs, equally spaced, were attached to a thick 

steel plate (40×32 cm2) placed on the lower machine platen. The applied load was measured by 

means of the machine load cell. Special attention was given to transducers calibration and to the 

adopted testing procedures described, next. 
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Figure 3.24 – Measurement transducers arrangement for the two prism geometries tested (top view). 

Initially, the stone pieces were carefully aligned and the cross-sectional area and height of the 

prism were measured and registered. Then, the prism was put into the lower platen and centered. 

Afterwards, a small preload was applied, in force control, in order to adjust the upper platen to 

the top surface of the specimen. This platen has a hinge in order to avoid any unfavourable effect 

due to non-parallelism between the prism faces. 

The four tests were performed under axial displacement control and force control. The 

displacement rate was kept about 3 µm/s and the unloading branches were performed at a rate of 

10kN/s. The axial displacement of each tested prism was defined by the average value obtained 

from the three LVDTs placed between the machine platens. The axial strain was calculated by 

dividing the change in average measured axial length by the initial axial length of the prism. The 

axial compressive stress was computed as the load divided by the initial cross-sectional area, as 

done before. 
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3.3.3 Test results 

Due to high load values and the brittleness of the stones, careful safety measures were adopted. 

Therefore, the four tests were performed by placing a cylindrical metallic box around the 

machine platens. Thus, due to these safety measures, it was not possible to observe the prisms 

being tested. 

Figure 3.25 presents the stress-strain diagrams of the four tested stone prisms. In all the curves 

the common initial adjustment between the prism and the machine platens is visible. Again, the 

pre-peak behaviour was easy to follow. All the specimens showed a reasonable linear behaviour  

almost until the peak. All the prisms failed just after the peak load, exhibiting a very pronounced 

fragile behaviour. Therefore, post-peak could not be characterized. 
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Figure 3.25 – Stress-strain diagrams of the four stone prisms tested. 

As done in Section 3.1, the Young’s modulus of the four prisms was evaluated in the [30%-60%] 

stress interval. Table 3.9 summarizes the Young’s modulus and the compressive strength values 
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of the four stone prisms. Again, it can be seen that a wide scatter is present in the results due to 

the fact that prisms were made of various pieces that could have distinct properties. 

If a comparison between these results and the results presented in Section 3.1 is established, no 

significant differences respecting the Young’s modulus are found. However, important 

differences with respect to the peak strength are found. 

Table 3.9 – Initial Young’s modulus and peak strength of the stone prisms. 

Specimen E30-60 [GPa] σpeak [MPa] 

SP1 16.21 75.2 

SP2 14.27 49.3 

SP3 13.75 42.1 

SP4 14.96 61.9 
 

The use of several stone pieces in one prism associated with the wide scattering is an important 

factor that can originate lower maximum strength values when a comparison with the stone 

specimens is done. In fact, if only one of the stone pieces presents lower mechanical strength 

with respect to the others, the peak strength of the prism will be naturally reduced. Thus, the use 

of stone pieces associated together may have increased the scatter of the results. 

However, an interpretation purely based on statistics, Mosteller et al. (1973), cannot explain 

completely such decrease in strength. Being the compression failure controlled by mode I 

behaviour, the discontinuity between the stone pieces (horizontal joints) is likely to result in 

stress concentrations in a few contact points that probably originated failure for a load lower than 

the values achieved with the stone specimens. 

The peak load and consequent failure were preceded by crack formation detected only by the 

clear sounds produced. Figure 3.26 shows the failure modes of the two different kinds of prisms 

used, at the end of the tests. From Figure 3.26, the failure may be attributed to relative 

displacements along shear bands, for both prism types. 
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(a) (b) 

Figure 3.26 – Failure modes observed: (a) three pieces prisms; (b) four pieces prism. 

3.4 Compressive tests on brick specimens 

Parallel to the research on the mechanical behaviour of natural stone specimens, this Section 

introduces a complementary experimental work carried out on brick units and brick masonry. 

The main reason for adopting traditional masonry is that the more ductile behaviour of such 

masonry under compression provides adequate mechanical characterization under cyclic loading.  

The brick adopted for this study is presently used mostly in facade elements, solely for aesthetic 

reasons. Nevertheless, in the past, this type of brick was widely used as a structural material. The 

bricks, produced in Barcelona by the Almar S.A. company, exhibit red colour and present the 

average dimensions of 28.5×13×5 cm3, see Figure 3.27. No data concerning the mechanical 

characterization of the bricks was available previously to the current work. 

 

Figure 3.27 – Two half bricks used in the present testing program. 
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It is known that due to the production process, bricks can exhibit different mechanical properties 

for the vertical and horizontal directions. The vertical and horizontal directions are defined as the 

head joint direction (flatwise) and bed joint direction (lenthwise), respectively. Moreover, the 

microstructure of the brick is highly influenced by the firing temperature. Therefore, it was 

decided to perform preliminary compressive tests on prismatic specimens, testing them in the 

flatwise (5 cm) and lengthwise (28.5 cm) directions, see Figure 3.28. No tests were performed on 

the widthwise direction (13 cm) because it was not possible to extract specimens with the same 

height as the lengthwise direction in one single piece. Considering that masonry structures are 

generally submitted to uniaxial or biaxial plane stress, the flatwise and lengthwise directions are 

clearly the most important to be studied. All the brick specimens tested were randomly extracted 

from brick units, which were previously delivered in a single batch. 

28.5

13
5

4 4 4

4

4
4

[cm]
 

Figure 3.28 – Cutting scheme adopted for the prismatic brick specimens. 

3.4.1 Monotonic tests on prismatic specimens 

The problem of adopting an appropriate slenderness ratio for the specimens has been already 

presented and discussed in Section 3.1. To ensure a suitable height/width ratio, prisms of 

4×4×12 cm3 were selected (height/width ratio equal to 3.0). Due to the low height of the brick, it 

was impossible to cut prisms perpendicularly to the flatwise direction unless they had a very 

small dimension, not representative of the material. 

The grinding process, applied on both faces of the brick, reduced its thickness from 5 cm to 

4 cm. Afterwards, specimens representing the flatwise and lengthwise directions were cut. The 
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vertical prisms (flatwise direction) were made of three aligned cubes of 4×4×4 cm3 with no 

material between the cubes, according to RILEM (1994a), and the horizontal prisms (lengthwise 

direction) were cut in one single piece, as shown Figure 3.29. A machine with a diamond 

covered circular blade was used for cutting. After cutting, surfaces that made contact with the 

platens and with each other were carefully polished. 

The prismatic brick specimens were denoted by the specimen number preceded by a reference to 

the direction. Therefore, VPBS1 and HPBS3 indicate, respectively, the vertical prismatic brick 

specimen nº1 and the horizontal prismatic brick specimen nº3. 

  
(a) (b) 

Figure 3.29 – Prismatic brick specimens representative of: (a) vertical direction; (b) horizontal 

direction. 

The day before testing, the specimens were immersed in water with free access to all surfaces. 

The specimens were removed from the water jus t before the beginning of the test, according to 

the RILEM standard (1994a). 

The prismatic specimens were tested using the INSTRON testing machine described in 

Section 3.1. The aim of this test was to obtain the Young’s modulus and the peak strength for 

each direction. In order to calculate those parameters only the effective displacements of the 

specimen should be taken into account. Therefore, three axial LVDTs were placed between the 

machine platens to measure the relative displacement under the two platens, see Figure 3.29. 

As mentioned previously in Section 3.1 and Section 3.3, the specimens were placed into the 

lower platen and carefully aligned with the center of the platen. Afterwards, the upper platen was 
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moved, under force control, to the top surface of the brick specimen. This platen had a hinge to 

prevent any unfavourable effect due to non-parallelism between the specimen faces. No 

interposition material between machine platens and specimen was used. 

All the prismatic specimens were tested monotonically under axial displacement control. The 

displacement rate was changed from 10 µm/s at the beginning up to 2 µm/s near the peak load. 

Following the described procedure, four specimens were tested for each direction. Figure 3.30 

presents four typical stress-strain diagrams obtained. Again, it can be seen that the post-peak 

branch could not be obtained using axial displacement control. 
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Figure 3.30 – Stress-strain graphics for four prismatic brick specimens tested under axial 

displacement control: (a) vertical direction (VPBS1, VPBS2) and (b) horizontal 

direction (HPBS1, HPBS3). 



Mechanical tests on stone and brick masonry 77 

Table 3.10 and Table 3.11 summarize the obtained results. The Young’s modulus was calculated 

in the [30%-70%] stress interval of the peak load because the stress-strain diagrams exhibited 

linear behaviour within this region. 

Table 3.10 – Young’s modulus, ultimate strength and statistical characterization of the vertical 

prismatic brick specimens. 

Specimen E30-60 [GPa] σpeak [MPa] 

VPBS1 11.86 52.7 

VPBS2 12.84 56.2 

VPBS3 12.86 62.7 

VPBS4 13.43 55.7 

Average 12.75 56.8 

C.V. 4.43 % 6.4 % 
 

Table 3.11 – Young’s modulus, ultimate strength and statistical characterization of the 

horizontal prismatic brick specimens. 

Specimen E30-60 [GPa] σpeak [MPa] 

HPBS1 10.51 44.8 

HPBS2 10.94 59.5 

HPBS3 10.47 54.1 

HPBS4 9.89 45.5 

Average 10.45 51.0 

C.V. 3.57 % 12.0 % 
 

In terms of average values, the specimens representative of the vertical direction exhibit a higher 

elastic modulus (an increase of 22% when compared to the horizontal direction). A small 

coefficient of variation was found for both directions (about 4%). With respect to the peak 

strength, it can be observed that the vertical strength is, on average, 11% higher than the 

horizontal strength due to extruding anisotropy. However, for the peak strength higher 

coefficients of variation were found (6% for the vertical direction and 12% for the horizontal 

direction). These values seem to indicate a wide scatter in the peak strength values of the 

horizontal direction, probably due to the alignment of the shrinkage or firing cracks. 
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3.4.2 Monotonic tests on cylindrical specimens 

It became evident after the previous tests that to obtain a post-peak material characterization 

another control technique had to be adopted. The acquired experience using circumferential 

displacement control technique and the encouraging results from the stone specimens tests, 

recommended the use of the same solution for the brick specimens. Only vertical cylindrical brick 

specimens were tested because this is the normal loading direction of masonry walls. Moreover, 

the diameter of the drill used (∅5 cm) did not enable the extraction of complete specimens from 

the available bricks (height = 5.0 cm). Figure 3.31 shows the cutting scheme adopted. 
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Figure 3.31 – Cutting scheme adopted for the cylindrical brick specimens. 

Specimen preparation 

An appropriate height/diameter ratio was adopted in order to obtain uniform stress distribution at 

the central region of the specimen. After grinding the top and bottom surfaces of the bricks, 

cylindrical specimens (∅5×4 cm3) were extracted by means of a drill. As in the previous tests with 

cubes, vertical brick specimens were formed by three aligned cylindrical pieces, see Figure 3.32. 

Test procedure 

The adopted notation for the specimens was VCBSn, where VCBS denotes the vertical 

cylindrical brick specimen and n represents the specimen number. All the brick specimens were 

immersed in water with free access to all surfaces for a minimum period of 24 hours. 

Afterwards, the brick disks were removed from the water and carefully aligned. The diameter 
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and height were measured and registered. Then, the three-piece specimen was put on the lower 

platen and centered. In order to adjust the upper platen to the top surface of the specimen a 

preload was applied, under force control. The upper platen had a hinge to avoid any 

unfavourable effect due to non-parallelism between the specimen faces. No interposition 

material was placed between the specimen and the machine platens. A circumferential LVDT 

placed at the specimen mid-height and three axial LVDTs placed between the machine platens 

were used as displacement measurement transducers, see Figure 3.32. The applied force was 

measured by means of the machine load cell. 

  
(a) (b) 

Figure 3.32 – Testing set-up: (a) machine; (b) cylindrical brick specimen under testing conditions. 

The following control variables were used: 

− Axial displacement control for lower load levels; 

− Force control during unloading; 

− Circumferential displacement control in general. 

The displacement rate was kept at about 5 µm/s in circumferential control, 1.5 µm/s in axial 

displacement control and 2 kN/s during load control. 
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Monotonic tests using axial and transversal extensometers 

As with the stones, a study concerning the rigorous computation of the brick elastic properties 

was fundamental. Hence, two brick specimens (VCBS1 and VCBS2) were tested using three 

double electric resistance strain gauges rosettes, equally spaced around the perimeter and placed 

at mid-height of the specimen, as shown in Figure 3.33. The simultaneous use of the axial 

LVDTs on these specimens, as done before, allowed comparisons between the two computed 

stress-strain diagrams. 

 

Figure 3.33 – Strain-gauge arrangement for the cylindrical brick specimens. 

These two specimens were tested under axial displacement control at a constant rate of 5 µm/s. 

Therefore the load was applied in a continuous manner. Figure 3.34 presents the axial stress-

strain and axial stress-circumferential strain diagrams for the specimens VCBS1 and VCBS2. 

Both specimens failed just after the peak load, so post-peak behaviour could not be chracterized.  

The evolution of the tangent values of Young’s modulus (E), Poisson’s ratio (ν) and volumetric 

strain (εvol) is shown in Figure 3.35, for the brick specimens VCBS1 and VCBS2. The Young’s 

modulus was calculated using both LVDT (Elvdt) and strain-gauge data (Esg). 

From the results presented above, the following conc lusions can be derived: 

− The typical adjustment between the machine plates and the specimen is again visible in 

the initial branch of the stress-strain diagram. In the diagrams computed with strain-

gauge data, such accommodation does not exist. 
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Figure 3.34 – Axial and circumferential strain versus axial stress for the brick specimens: 

(a) VCBS1; (b) VCBS2. 
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Figure 3.35 – Young’s modulus, Poisson’s ratio and volumetric strain for the brick specimens: 

(a) VCBS1; (b) VCBS2 (the horizontal scale is normalized). 
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− The Young’s modulus remains more or less constant under load increase, especially for 

the specimen VCBS2. For both specimens, the Young’s modulus presents higher values 

if calculated with the strain-gauge data, probably due to the introduction of the artificial 

joints. Therefore, the elastic modulus based on the LVDTs measurements seems to be 

slightly underestimated. 

− Poisson’s ratio increases continuously with the applied load. The increase is particularly 

slow up to 50% of the peak load, but grows from there up to the peak and equals 0.5 for 

a very high load (between 80% and 90% of the ultimate load). A Poisson’s ratio equal 

to 0.5 corresponds to a volumetric strain equal to zero. 

− Due to axial compression, a volume reduction occurs up to approximately 50% of the 

peak load. Afterwards, due to the dilation process, a volume increase takes place. The 

initial volume is retrieved for a very high stress. 

Table 3.12 and Table 3.13 condense the elastic properties of the two brick specimens tested with 

strain gauges along the load path. This information helps to understand the diagrams presented 

above. 

Table 3.12 – Elastic properties for the specimen VCBS1 (σpeak = 69.2 MPa). 

Stress level 25% 50% 75% 

Elvdt  [GPa] 11.60 12.10 12.15 

Esg [GPa] 14.29 14.16 14.02 

ν 0.21 0.29 0.43 
 

Table 3.13 – Elastic properties for the specimen VCBS2 (σpeak = 68.2 MPa). 

Stress level 25% 50% 75% 

Elvdt  [GPa] 11.98 13.30 13.63 

Esg [GPa] 15.05 15.05 15.22 

ν 0.24 0.28 0.39 
 

The tangent values of E and ν exhibit limited variations for different load increments but an 

important difference between the two available ways of computing the Young’s modulus (strain 
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gauges and LVDTs) can be detected. A possible reason has to do with the stiffness of the glue 

used to fix the strain gauges. Tests done on bricks have shown that the stiffness, measured with 

strain gauges, increased due to glue penetration into the brick, see Binda et al. (1996a). For 

porous and less stiff materials, the glue had a considerable local influence and such influence 

increased with the porosity of the materials to be tested. On the other hand, the introduction of 

the artificial joints in the brick specimens might have influenced the measurement of the 

Young’s modulus by means of LVDTs, leading to a lower value. Hence, if accurate elastic 

parameters are to be achieved, special care should be put into the computation and definition of 

these parameters. No remarkable differences are found if a comparison between the two 

specimens is made. So, it can be accepted that the results obtained offer a reasonable degree of 

confidence. 

Considering that the Young’s modulus can also be computed in the approximately linear region 

of the stress-strain diagram, Table 3.14 presents the values of E computed in the [30%-70%] 

stress interval, by linear least square regression. These values can be considered accurate enough 

for the purpose of numerical calculations. 

Table 3.14 – Young’s modulus defined in the [30%-70%] stress interval for the specimens 

VCBS1 and VCBS2. 

Stress level [30% − 70%] 

Specimen VCBS1 VCBS2 

Elvdt [GPa] 12.11 13.29 

Esg [GPa] 14.24 15.07 
 

Series of monotonic tests with complete results 

In order to acquire knowledge with regard to the post-peak behaviour, it was decided to perform 

some monotonic tests on brick specimens. Due to the promising results concerning stone 

specimens, the option for circumferential displacement control was made. From the results 

concerning the prismatic specimens, a very strong brittle post-peak behaviour was expected. 

According to the procedure described before, three brick specimens were tested monotonically. 

Two of the obtained stress-strain diagrams are illustrated in Figure 3.36. 
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Figure 3.36 – Stress-strain diagrams of two cylindrical brick specimens tested monotonically: 

(a) VCBS3; (b) VCBS4; (c) VCBS5. 

The diagrams are characterized by an initial curve (typical adjustment between the specimen and 

the machine platens), a linear and stable pre-peak branch and an unstable post-peak region. The 

pre-peak portion is quite similar in both specimens presented and easy to follow. Near the peak 

load the first macroscopic cracks became visible. Visible crack initiation took place in the brick 

cylinders close to the platens, see Figure 3.37. When peak load was reached, the test turned very 

unstable showing all the brittleness of the material. In this way, post-peak behaviour became 

extremely difficult to cha racterize. 

The three specimens achieved resembling ultimate loads. Table 3.15 presents the Young’s 

modulus computed in the [30%-70%] stress interval, the peak strength for the three specimens 
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and the main statistical quantities. It can be observed that no important differences regarding 

either the Young’s modulus or the ultimate strength were found. 

  

Figure 3.37 – Typical crack initiation and progressive evolution. 

Table 3.15 – Characterization of the monotonic tests performed on brick specimens. 

Specimen E30-70 [GPa] σpeak [MPa] 

VCBS3 13.04 57.8 

VCBS4 13.36 63.1 

VCBS5 12.09 60.9 

Average 12.83 60.6 

C.V. 4.20 % 3.6 % 
 

3.4.3 Cyclic tests on cylindrical specimens 

In this Section, the tests carried out under cyclic loading are presented and discussed. A series of 

unloading-reloading cycles were performed, particularly in post-peak, to acquire data about 

stiffness degradation and energy dissipation, as done before with stones specimens. This 

knowledge is especially important if numerical models on cyclic behaviour are intended to be 

used. The general procedure was similar to the monotonic tests. The unloading branches were 

performed under force control at a constant rate of 2 kN/s (≈1 MPa/s). 
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The stress-strain diagrams of the four brick specimens are illustrated in Figure 3.38. The 

diagrams were very difficult to obtain, due to the material’s brittleness. The control in post-peak 

was quite difficult to maintain and some specimens were lost during testing. 
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Figure 3.38 – Stress-strain diagrams of the cylindrical brick specimens tested cyclically. 

The average Young’s modulus, defined in the [30%-70%] stress interval, the peak strength, their 

average quantities and coefficients of variation are presented in Table 3.16. 

Table 3.16 – Characterization of the cyclic tests performed on brick specimens. 

Specimen E30-70 [GPa] σpeak [MPa] 

VCBS6 12.61 65.0 

VCBS7 9.84 50.8 

VCBS8 13.76 70.5 

VCBS9 12.27 63.9 

Average 12.12 62.6 

C.V. 11.78 % 11.6 % 
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The specimen VCBS7 exhibited lower values than the other three. Possibly, this specimen could 

have been damaged during preparation. Another possibility has to do with the material nature. 

Due to the firing temperature and chemical composition it is possible to obtain different 

mechanical strengths inside the same brick. So, some differences in the obtained strengths and 

Young’s modulus may have been related with the different parts of the bricks used to build the 

specimens. 

The Young’s modulus (E) was computed for all the reloading branches showed in Figure 3.38. 

The values obtained by linear least square regression are represented in Table 3.17, where “rb” 

means the reloading branch for which E has been computed. 

Table 3.17 – Young’s modulus of the reloading branches obtained by linear least square 

regression (brick specimens). 

E [GPa] 
Specimen 

rb1 rb2 rb3 rb4 rb5 rb6 

VCBS6 13.07 13.45 11.88 10.61 10.43 10.29 

VCBS7 11.55 11.27 10.34 8.99   

VCBS8 14.98 15.05 12.96 10.20 5.51  

VCBS9 13.76 13.97 13.14 11.35 8.90  
 

A very slight increase of the Young’s modulus the can be detected in the pre-peak portion (see 

specimens VCB6 and VCB9). However, for higher stress levels and during the entire post-peak, 

an important and monotonic decrease on the Young’s modulus occurred for all specimens. This 

reduction is associated with damage growth in the material. 

3.4.4 Failure modes 

The failure modes showed in Figure 3.39 help to understand the behaviour of the brick 

specimens. Although three aligned cylinders formed the vertical specimens, they behaved as 

solid prisms, as happened with other authors, e.g. Binda et al. (1996a). The cracks ran through 

the cylinders with continuity. The existence of shear bands was perfectly visible. The specimens 

presented a diagonal crack, from the bottom to the top, and, usually, the failure through this 

shear band was the cause of specimen collapse. 
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Figure 3.39 – Failure mechanism of the cylindrical vertical brick specimens. 

3.5 Compressive tests on brick prisms 

In order to characterize the behaviour of masonry under cyclic loading, four stacked bond prisms 

of five bricks each, were constructed and tested. The main purpose was to examine the effects of 

brick and mortar properties on the strength and deformation characteristics of the masonry 

prisms. 

Brick masonry is composed of two materials with different mechanical properties: mortar and 

bricks. Usually, mortar presents a softer behaviour whereas clay brick exhibits a stiffer 

behaviour. The mechanical properties of masonry depend on the characteristics of the component 

materials and on the construction conditions. In fact, workmanship effects can have a large 

influence on the mechanical properties of masonry. 

It is known that, under uniaxial compressive loading, mortar tends to expand laterally more than 

the brick, because it has weaker mechanical properties. Due to the continuity between bricks and 

mortar, ensured by cohesion and friction, mortar is confined laterally by the bricks. Thus, shear 

stresses, developed at the mortar-brick interface, produce a triaxial compressive stress state in the 

mortar and bilateral horizontal tension coupled with vertical compression in the brick, see 

Figure 3.40 for a schematic illustration. In this way, failure usually occurs by the development of 

cracks in the bricks, parallel to the loading direction. 
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Figure 3.40 – Masonry prism under compressive loading normal to bed joints and stress states 

for brick and mortar elements (C denotes compression and T denotes tension). 

3.5.1 Prism preparation 

The bricks used in this study are from the same batch as those that were used in Section 3.4. 

They are currently produced in Barcelona and have the average dimensions of 28,5×13×5 cm3. 

The stacked bond prisms were built in accordance to code LUM B1, see RILEM (1994b) and 

Figure 3.41. 

[cm]28.5

28

13

4.
5

5
1

 

Figure 3.41 – Geometry established for the brick masonry prisms, based on the RILEM 

recommendations. 
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The joints were kept at a uniform thickness of about 1 cm and filled with mortar. The top and 

bottom bricks were carefully grounded for a better surface planarity and parallelism between the 

prism faces. The grinding process, applied on one face of the bricks, reduced their thickness 

from 5 cm to 4,5 cm. Then, the bricks used to build the prisms were immersed in water with free 

access to all surfaces, at least for one hour. Using pre-mixed cement mortar, four prisms of five 

bricks high were built, resulting in prisms of 28.5×13×28 cm3 with a slenderness ratio of 2.15 

(see Figure 3.41 for a schematic presentation). This ratio allows a uniaxial compressive 

behaviour at the center of the prisms. In spite of the care put into the construction of the prisms, 

not all of them were built precisely with the same height. Table 3.18 shows the measured height 

of each prism. In this study, the brick masonry prisms were designated by the name BP (brick 

prism) followed by an order number. 

Table 3.18 – Relative brick and mortar heights computed for the four prisms. 

Prism htotal [cm] hmortar / htotal hbrick / htotal 

BP1 28.1 15 % 85 % 

BP2 27.7 14 % 86 % 

BP3 27.3 14 % 86 % 

BP4 27.3 15 % 85 % 
 

The maximum error was about 2.5% with respect to the prism height as it was initially defined. 

Also, the mortar thickness was kept almost equal to the value established (14.3% of the prism 

height). The stacked bonded prisms were not stored and cured at controlled temperature and 

humidity, as RILEM code specifies. Instead, they were cured outside of the laboratory in order to 

simulate practical curing conditions, close to the brick masonry walls. During the first days 

following construction, the prisms were wetted to prevent from drying out. 

3.5.2 Mortar specimens 

Some results performed on mortar specimens are presented in this section. However, it must be 

noted that the conditions of mortar curing inside the prism and inside the mould are necessarily 

different. Nevertheless, the data obtained in this way provides an indication about the mortar 
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properties. The mortar used was made from a pre-mix, based on Portland cement and fine 

aggregates (0-2 mm). 

During the construction of the brick prisms, three cylindrical mortar specimens of ∅10×20 cm3 

were made, at the same time and with the same mortar used to build the brick prisms. The 

specimens were made of mortar from three different mixes. The specimens were left outside 

together with the stacked bond prisms and submitted to the same atmospheric conditions. 

The specimens were then tested under axial displacement control, at a constant rate of 2 µm/s. 

The tests were done in the closed- loop servo-controlled INSTRON testing machine, described in 

Section 3.1. The axial displacements were measured by using three axial LVDTs placed between 

the machine platens and the applied force was measured by means of the machine load cell. The 

axial strains and stresses were computed by dividing the average axial displacement and load by 

the initial axial length of the specimen and the initial cross-sectional area, respectively. The 

diagrams obtained in this way are presented in Figure 3.42. Unfortunately, the specimen M1 was 

seriously damaged just before testing, so only results concerning specimens M2 and M3 are 

available. 
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Figure 3.42 – Stress-strain diagrams obtained for the cement mortar specimens M2 and M3, 

used to build the brick masonry prisms. 

Table 3.19 exhibits the results in terms of Young’s modulus and ultimate strength. As it can be 

observed, the specimens were tested at an age higher than the standard 28 days. Also, the stacked 

bond prisms were tested at similar age. 
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Table 3.19 – Cement mortar specimens: age of testing, Young’s modulus and peak strength. 

Specimen Age (days) E0 [GPa] σpeak [MPa] 

M1    

M2 78 4.19 6.2 

M3 76 1.57 4.8 
 

The Young’s modulus was defined based on the higher linear least square regression coefficient 

computed in the [0% -50%] stress interval. The cyclic test performed on specimen M2 showed 

that no remarkable stiffness degradation was found when the slopes of the reloading branches 

were analyzed. 

3.5.3 Test procedure 

The brick masonry prisms were tested in the SUZPERCAR testing machine, presented in 

Section 3.3, due to its high load capacity (5 MN). The ages of testing as well as the mortar type 

used are referred to in Table 3.20, for each prism. 

Table 3.20 – Brick prisms: age of testing and mortar type used. 

Prism Age (days) Mortar type 

BP1 63 M1 

BP2 63 M1 

BP3 61 M2 

BP4 59 M3 
 

Three axial LVDTs were placed between the machine platens, equally spaced and attached to a 

thick steel plate (40×32 cm2) located on the lower machine platen, see Figure 3.43 for a 

schematic representation. The applied load was measured by means of the machine load cell. 

After making all the measurements necessary for an appropriate geometric characterisation, the 

prism was placed into the lower platen and carefully centered. Then, the lower platen was moved 

under force control until a pre-compression was applied to the prism. The hinge located in the 
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upper platen was used to prevent any adverse effect due to any potential non-parallelism between 

the prism faces. No interposition material was used between the machine platens and the prim. 

LVDT2 LVDT3

120°

[cm]40

LVDT1

32

15
120°

 

Figure 3.43 – Measurement transducers arrangement used for the brick masonry tests (top view). 

For testing, the following control variables were used: 

− Axial displacement control for loading and reloading; 

− Force control during unloading. 

The axial displacement rate was kept about 3 µm/s and unloading was done at an approximate 

rate of 10 kN/s. It was decided to perform unloading-reloading branches in order to check the 

properties related to cyclic behaviour, such as stiffness degradation and hysteretic energy 

dissipation. 

3.5.4 Test results 

The stress-strain diagrams of the four masonry prisms are presented in Figure 3.44. The axial 

displacement of each prism was defined by the average value computed from the three axial 

LVDTs used. Then, the axial strain was calculated by dividing the average axial displacement by 

the initial axial length of the prism. In the same manner, the axial compressive stress was 

computed as the axial load divided by the initial cross-sectional area. 

Apart from the initial adjustment between the prism and the machine platens, stress-strain curves 

exhibited a pre-peak bilinear behaviour. An initial linear branch was followed by another branch 

up to near the peak, with lower stiffness and greater development. Transition between these two 
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different slopes was located from 6 MPa to 10 MPa (between 21% and 35% of the peak load) and 

defined the beginning of the nonlinear behaviour of the masonry prisms. The beginning of brick 

cracking and mortar nonlinearities are likely to originate this behaviour. The ultimate strength of 

each prism is displayed in Table 3.21. All prisms presented very close strength values. 
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Figure 3.44 – Stress-strain diagrams obtained for the brick masonry prisms under cyclic loading. 

Table 3.21 – Ultimate strength of the masonry prisms 

Prism σpeak [MPa] 

BP1 28.9 

BP2 28.8 

BP3 28.2 

BP4 28.3 

Average 28.6 

CV 1.1 % 
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Two other relevant aspects are clearly visible from the analysis of Figure 3.44. The average 

strength value of the masonry prisms is much higher than the mortar strength presented in 

Section 3.5.2. This is mainly due to two factors. On one hand the mortar joint between bricks 

was subjected to a triaxial compressive stress state. Results from triaxial tests have shown that 

mortar behaviour is dependent on confining pressure as well as on mortar type, and that axial 

stress increases along with confining pressure, McNary and Abrams (1985). On the other hand, 

the different conditions of cure of the mortar inside the prism and inside the mould may have 

changed significantly its mechanic properties. 

A second aspect has to do with the ductility presented by the diagrams showed in Figure 3.44, 

when compared to the stress-strain curves exhibited in Section 3.3 of the brick specimens (very 

fragile structural behaviour ). From this comparison, it can be concluded that mortar has a 

preponderant influence on the prism deformation. A comparison made with brick specimens 

showed that a reduction of the peak strength was compensated by a stable post-peak behaviour. 

As reported by Binda et al. (1996b), it can be concluded that the compressive strength of the 

masonry is highly influenced by the characteristics of the single components. 

With the purpose of investigating the magnitude of stiffness degradation, the slope of all 

reloading branches was computed by linear least square regression and it is shown in Table 3.22. 

The graphical representation of the elastic modulus of the reloading branches (values in 

Table 3.22) as a function of the axial stress is illustrated in Figure 3.45. 

Table 3.22 – Elastic modulus of the reloading branches calculated by linear least square 

regression. 

E [GPa] 
Brick prism 

rb1 rb2 rb3 rb4 rb5 rb6 rb7 

BP1 10.58 10.82 10.13 10.83 7.86 6.68 4.16 

BP2 10.84 11.16 11.07 7.91 5.66 4.40  

BP3 10.72 10.95 10.50 8.85 6.10 4.34  

BP4 10.50 10.59 10.72 10.12 8.78 6.14  
 

Even for the distinct values of the secant Young’s modulus, visible in the stress-strain envelope of 

Figure 3.46, Table 3.22 shows that stiffness of the reloading branches, computed via linear least 
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square regression, present values relatively close for a same strain level. In the pre-peak portion of 

the stress-strain curves, the stiffness of the reloading branches remained relatively constant. On the 

other hand, in post-peak the slope of the reloading branches suffered an important decrease. 

Figure 3.44 shows also that energy dissipation increased with the strain level. 
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Figure 3.45 – Graphical representation of the elastic modulus of the reloading branches as a 

function of the accumulative axial stress, for each brick prism. 
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Figure 3.46 – Stress-strain envelope diagram of the four diagrams present in Figure 3.44. 

3.5.5 Failure modes 

The failure modes obtained from testing the stacked bond prisms are shown in Figure 3.47. The 

pictures were obtained at the end of each test, corresponding to the final part of the post-peak 
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branch of the stress-strain diagrams. In these tests, the post-peak branch was easy to follow and a 

satisfactory stable behaviour was found. 

  
(a) (b) 

 
(c) 

Figure 3.47 – Failure modes of the brick masonry prisms: (a) frontal view; (b) lateral view; 

(c) perspective of three tested prisms. 

3.6 Summary 

This Chapter presents an experimental study inserted in a wider experimental research program 

aiming at the mechanical characterization of historic building materials, e.g. Ramos (2002) and 

Almeida (2002). Within this experimental program, a sandstone was fully characterized in tension 
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(Ramos, 2002), shear and compression. The experimental tests described in this study were 

performed at Universitat Politècnica de Catalunya and at Universidade do Minho, consisting of 

several specimens and masonry prisms made of stone and bricks tested under monotonic and 

cyclic compressive and shear loading, allowing obtaining valuable experimental data. 

The stone specimens tested under compressive loading were characterized by high ultimate 

strength values and a very pronounced fragile behaviour after peak load. The cyclic tests indicate 

that stiffness degradation occurred especially during post-peak domain. Moreover, the small 

difference between LVDTs measurements and strain gauges measurements enables the 

assessment of the Young’s modulus by means of axial LVDTs. A comparison between the 

results discussed in Sections 3.1 and 3.3 allowed concluding that the Young’s modulus computed 

for the cylindrical stone specimens and for the stone prisms presented very similar average 

values. However, the scatter concerning the mechanical properties constitutes an important issue 

in the sense that a significant decrease of resistance took place when shifting from stone 

specimens to masonry (in terms of average values). Thus, this subject should be further studied 

since existing design codes, e.g. EC6 (CEN, 1995), do not take stacked dry-stone masonry into 

consideration. 

The direct shear tests performed on dry stone joints showed a typical elasto-plastic behaviour for 

the shear stress-relative shear displacement diagrams. During the cyclic loading neither stiffness 

degradation nor hardening behaviour  between cycles was observed. It was found that tanφ equals 

0.62 and that tanψ is equal to zero. 

Afterwards, sets of brick specimens were tested in uniaxial compression. The results showed a 

brittle behaviour. Even if the brick specimens were made of three aligned cylinders, they 

behaved as whole specimens, where cracks ran continuously through the cylinders. In addition, 

no significant differences were found between prismatic and cylindrical specimens, in terms of 

Young’s modulus and peak strength values (considering average values). Complementary, four 

stacked bond prisms made of five bricks each, were constructed and tested under cyclic loading. 

The average strength value of the prisms was much higher when compared to the mortar 

specimens, but less than the average strength of the bricks tested separately. Mortar had a very 

large influence on prism deformation. A reduction on the peak strength was compensated by 

stable post-peak behaviour. The compressive strength of masonry was highly influenced by the 

characteristics of the single components, brick and mortar. 
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The brittle behaviour exhibited both by stone and brick specimens, where a same height/diameter 

ratio (h/d=2.4) was used, has evidenced that the post-peak regime cannot be followed even using 

an axial displacement control. A more advanced control technique, as circumferential control, 

has to be used. Subsequent tests on stone specimens, where the height/diameter ratio was 

reduced from 2.4 to 2.0, have shown a better stability until complete loss of strength capacity, 

i.e. a more stable post-peak behaviour, without significant variation of the peak strength. 

Finally, the results described in this Chapter show undoubtedly that when dealing with historical 

building materials, the intrinsic variability of the mechanical properties of natural stone and clay 

brick masonry is an important issue that should be kept in mind. 
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4. DRY STONE MASONRY WALLS UNDER COMPRESSIVE AND 

SHEAR LOADING 

Although not as common as mortar jointed masonry, structures made of stones laid without 

mortar between them represent nowadays an important legacy when dealing with historic 

constructions. Moreover, in the Northern part of Portugal, it is common to find dry stone 

masonry historical constructions due to the lack of lime in ancient times. Understanding and 

preserving constructions made of dry joints, either related to structural assessment or repair, 

inevitably demands adequate knowledge of their mechanical behaviour, which can be extremely 

complex. If out-of-plane failure is prevented by appropriate construction techniques, the research 

concerning these structures can focus on their in-plane structural behaviour. In spite of that, 

research on this particular type of masonry structures is almost inexistent and therefore little is 

known about the mechanical behaviour of masonry structures with dry joints. Since the 

possibility of performing destructive tests on historical constructions, either in-situ or by 

removing samples large enough to be representative is most of the times impossible (Macchi, 

1992), the key is to carry out laboratory tests. In these tests, careful attention should be paid to 

the geometric definition and to the adopted materials in order to assure a representation of the 

existing constructions. 

In an equal manner, the numerical analysis of this particular type of masonry structures 

constitutes a great challenge nowadays, even for the most sophisticated numerical tools 

available. The material discontinuity introduced by the joints makes the use of interface elements 

within a finite element formulation an appropriate option to model such structures. Another 

attractive tool is the discrete element method, e.g. Cundall and Hart (1992), Lemos (1998a), 

briefly discussed in Chapter 2. Independently of the numerical tools adopted to perform such 

analyses, it is necessary to introduce appropriate experimental data concerning inelastic and 

cyclic behaviour, which most of the times is not available. 

In this Chapter an experimental research concerning the structural behaviour of dry stone 

masonry is presented. Seven walls made of sandstone blocks, built without any interposition 

material, were tested under combined compressive and shear loads. The most relevant results 

concerning the behaviour of the shear walls are described, including ultimate loads and failure 

modes, and the main conclusions are discussed. For the latter purpose, an existing numerical 
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plasticity model based on the micro-modelling strategy was used to simulate the structural 

response of the walls. The model was calibrated with data collected from the tests as well as 

from uniaxial testing. The computational model appropriate for each wall is also discussed. 

4.1 Experimental research 

In order to contribute to improving the knowledge of dry jointed masonry, an experimental 

research program was developed at the Structural Technology Laboratory of Universitat 

Politècnica de Catalunya, in cooperation with Universidade do Minho, concerning the structural 

behaviour of dry jointed masonry stone walls submitted to combined vertical and horizontal 

loads. In total, seven walls were built and successfully tested. These tests were planed and 

performed aiming at two main complementary objectives, namely: 

− To contribute to the enlightenment of the mechanics of dry jointed masonry made of stone 

blocks, subjected simultaneously to compressive and shear loading (typical of a seismic 

action). This knowledge is essential for assessing the structural behaviour of ancient stone 

masonry constructions, when existing mortar exhibits lower mechanical strength due to 

weathering, the use of weak raw materials, or even those originally made without any kind 

of interposition material between the stone pieces. This type of construction was very 

common in Ancient Greece and in the North of Portugal. 

− To make available adequate data aiming at the calibration of numerical models, especially 

those based on the micro-modelling strategy. In fact, the numerical model of the walls 

presented in this Chapter was calibrated with data obtained directly from the tests. 

It must be noted that these tests a characterized the structural response of a specific type of stone 

and geometry to the given loading conditions. Therefore, extrapolating these results for other 

contexts might be erroneous. 

All the tests were carried out under monotonic loading due to equipment restrictions. It is, 

however, of great interest to perform such tests in a cyclic fashion, in order to obtain 

experimental data about cyclic behaviour, which is almost unavailable, but essential to evaluate 

the safety level of historical constructions in seismic areas (e.g. South of Europe). 
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4.1.1 Materials and geometry 

Using the same type of stones referred to in Chapter 2 for uniaxial compressive and shear tests, 

seven dry jointed stone masonry walls were built, according to the geometry shown in 

Figure 4.1. All the stones used were mechanically cut and showed a smooth surface.  
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Figure 4.1 – Adopted geometry for the dry stone masonry walls and schematic loading 

arrangement. 

The terminology adopted to designate the walls, based on the value of the vertical load applied, 

is given in Table 4.1. 

Table 4.1 – Wall notation according to the applied vertical load. 

Wall designation Vertical load [kN] 

SW.30.1 30 

SW.30.2 30 

SW.100.1 100 

SW.100.2 100 

SW.200.1 200 

SW.200.2 200 

SW.250.1 250 
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Considering that historical structures are usually submitted to low compressive stress states and 

taking into account the laboratory facilities, the walls were tested for vertical loads of 30, 100, 

200, and 250 kN, which resulted in compressive stresses of 0.15, 0.50, 1.00 and 1.25 MPa, 

respectively. For the higher vertical loads (200 and 250 kN), the risk of lateral buckling was real. 

In fact, a test not described here failed prematurely by lateral buckling. All the walls were built 

inside the laboratory, directly under the load frame, since the absence of any adhesive material 

between the stones would make extremely difficult the transport of the walls to their testing 

place. The several phases necessary to carry out the manual construction are briefly described in 

the following: 

− First, a thin layer of self- levelling mortar was laid on the floor in order to correct any 

potential roughness of the reaction slab. The mortar used was a high strength (≈50 MPa) 

and rapid hardening mortar (≈1 day); 

− Then, the wall construction was initiated. The stones were carefully placed in order to 

preserve verticality and alignment, see Figure 4.2(a). During the building process, no 

interposition material was used. The stones with clearly visible defects were rejected; 

− After laying the ten courses of stones, totalling a height of 1.0 m, a thin layer of self-

levelling mortar was laid on the top of the wall. This layer had the aim of linking the last 

stone course and of enabling a good contact between the top of the wall and the top 

reinforced concrete beam, where vertical load was applied; 

− Finally, the wall was instrumented with eight LVDTs, see Figure 4.2(b), in order to 

measure relative displacements between stone pieces during horizontal loading. 

  
(a) (b) 

Figure 4.2 – Wall construction: (a) stone laying and (b) LVDTs arrangement (side A). 
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4.1.2 Equipment and test procedure 

The walls were tested one day after their cons truction, which was made possible due to the rapid 

mortar strength development. The main steps of the adopted procedure for testing are described 

as follows: 

− Initially, a vertical compressive load was applied by means of a hydraulic actuator of 

1000 kN capacity, under force control at a rate of 1 kN/s, until the desirable load was 

totally applied to the wall. Subsequently, the hydraulic actuator was kept under force 

control, resulting in an applied constant vertical load, e.g. Figure 4.3. Consequently, the 

beam was allowed to move in vertical and horizontal directions; 

− Afterwards, the horizontal load was applied by imposing small displacement increments. 

For this purpose, a hydraulic actuator was horizontally fixed and the load was applied 

against the reinforced concrete beam; 

− During the test, the main events, as opening of the joints and appearance of cracks, were 

registered by means of photographs (see Appendix A for detailed sequences). The total 

duration of the tests varied between 15 and 25 minutes, depending on the applied vertical 

load; 

− The tests were stopped before complete collapse of the walls, in order to protect the 

equipment against possible damage. In some tests, failure happened suddenly, without any 

previous visib le signs. 
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Figure 4.3 – Chronological history of the vertical load applied to SW.200.1 stone wall, under 

force control. 
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4.1.3 Load-displacement diagrams 

Following the procedure described before, a large amount of experimental data was collected 

during the tests, ranging from applied loads to relative displacements between stone blocks. 

Clearly, one of the most important information is the relation between the horizontal load and the 

horizontal displacement, shown in Figure 4.4. The walls tested with the same compressive load 

are presented in the same diagram, for better comparison. The horizontal load was measured by 

using a load cell placed between the hydraulic actuator and the reinforced concrete beam. The 

horizontal displacement was computed as the difference between the horizontal displacement of 

the beam and the displacement measured at the bottom of the wall (which was verified to be 

irrelevant). Moreover, relative displacements between the reinforced concrete beam and the last 

level of stones did not occur. 
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Figure 4.4 – Horizontal load-displacement diagrams of the seven tested walls, sorted by equal 

applied vertical load. 
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The horizontal load-displacements diagrams are characterized by two distinct main behaviours, 

see Figure 4.5. Initially, the curves exhibited great stiffness. Elastic behaviour was observed at 

almost 30% of the respective peak load. Then, continuous stiffness degradation took place under 

increasing horizontal displacement. The second part of the diagrams is characterized by an 

oscillation of the horizontal load in all the diagrams shown. Sudden relative stone movements 

originated these oscillations, due to the absence of an interlayer material. For successive 

displacement increments, a load growth occurred until the next load dropping took place. This 

process was repeated several times during testing. 
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Figure 4.5 – Horizontal load−displacement diagrams grouped together. 

4.1.4 Failure modes 

The failure pattern of each wall is shown in Figure 4.6 and Figure 4.7. The complete cracking 

evolution is given in Appendix A, for all walls. The pictures show that the failure mode is linked 

with the level of vertical load applied to the wall. This result is already well known for regular 

masonry, e.g. Page et al. (1980) and Mann and Müller (1982), who have shown that the level of 

compression controls the failure mode of shear walls. 
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For lower stress levels, failure occurred by simple rotation of the upper part of the wall and 

sliding along the bed joints, leading to a stepped diagonal crack, without visible cracking in the 

stones, see Figure 4.6. For higher vertical loads, this kind of rigid body movement of the stones 

was gradually prevented from occur. Cracking in the stones started to become noticeable, being 

the stepped diagonal crack partially replaced by a diagonal cracking band, with several cracks 

running through the stones, where visible damage was localized, see Figure 4.7. 

 
SW.30.1 

 
SW.30.2 

 
SW.100.1 

 
SW.100.2 

Figure 4.6 – Failure modes observed (vertical load equal to 30 and 100 kN). 

From simple friction failure along bed joints, the failure pattern has successively become 

characterized by the occurrence of cracking of the stones. This means that for an increasing 

vertical load, failure of the units under combined loading is likely to occur prior to friction 

failure along the bed joints. Naturally, this phenomenon is highly dependent on the tensile 

strength of the stones, which appears to be rather low when compared to the compressive 

strength. 
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SW.200.1 

 
SW.200.2 

 
SW.250.1 

 
SW.250.1 

Figure 4.7 – Failure modes observed (vertical load equal to 200 and 250 kN). 

From the pictures it can be observed that all walls exhibited diagonal failure, with increasing 

stone damage level according to increasing compressive stress levels. In all walls, the lack of an 

interlayer material (e.g. mortar) induced stress concentrations in the contact points, leading to 

premature vertical cracking of the stones. Naturally, this cracking process was much more 

relevant for higher vertical loads. 

4.1.5 Relation between normal and shear stresses 

Usually, test results concerning in-plane testing of walls concerning compressive and shear 

loading, are presented in terms of a relation between the normal and shear stresses, at failure. 

However, this procedure does not account for local peak stresses that may influence failure. In 

spite of that, it was decided to investigate such a possible relation. Table 4.2 summarizes the 

values obtained for the vertical and maximum horizontal loads, for all tests. 
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Table 4.2 – Vertical and maximum horizontal loads measured. 

Wall Vert. load [kN] Máx. horiz. load [kN] 

SW.30.1 30 22 

SW.30.2 30 23 

SW.100.1 100 42 

SW.100.2 100 49 

SW.200.1 200 72 

SW.200.2 200 69 

SW.250.1 250 102 
 

It can be observed that the maximum horizontal load increased with the vertical load applied, as 

expected. A graphic representation, in terms of stresses, is shown in Figure 4.8. 
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Figure 4.8 – Relation between normal and tangential stresses: experimental data and linear 

least square regressions. 

The normal (σ) and tangential (τ) stresses were obtained by dividing the vertical and horizontal 

forces by the wall cross-sectional area (bed joint area), respectively. These stresses represent 

average values, since neither vertical stresses nor horizontal stresses are constant along the bed 

joint. 

The linear least square regression computed for the seven walls showed a good approximation to 

the experimental data (r2 = 0.98). However, this approximation implies cohesion different from 

zero. For a linear least square regression with zero cohesion, a slightly greater coefficient was 
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obtained, but the first two points (SW.30.1 and SW.30.2) are weakly approximated (r2 = 0.95). In 

both cases, a linear relation between the average compressive stress and the average ultimate 

shear stress fits reasonably well the experimental data. Nevertheless, the obtained friction 

coefficient  of the walls (0.32 and 0.39) is rather different from the tangent of the friction angle of 

the stone joints, tanφ , which was experimentally found to be equal to 0.62, see Chapter 3. 

4.2 Numerical modelling 

Complementary to the experimental research described above, see also Oliveira (2000), a 

numerical simulation of the tested stone walls is presented in this Section to further discuss and 

understand the experimental results. The simulations were carried out using the multisurface 

interface model proposed by Lourenço and Rots (1997). Complementarily, a brief description of 

the model is given in Section 5.3. 

Basically, the model assumes that the stone units behave in an elastic fashion whereas inelastic 

behaviour is concentrated in the joints. In these simulations, the stones were modelled using 

eight-node continuum plane stress elements with Gauss integration and, for the joints, six-node 

zero-thickness line interface elements with Lobatto integration were used. The boundary 

conditions and the load application method were defined in accordance with the experimental 

arrangement. 

4.2.1 Elastic parameters 

Dry stone masonry exhibits a peculiar “elastic” behaviour under compressive loading. Young’s 

modulus of the stones used to build the walls was characterized in Chapter 3, under uniaxial 

compression. The average value of 10 monotonic uniaxial compressive tests performed on 

cylindrical specimens reads 15500 N/mm2. On the other hand, Young’s modulus of stone prisms, 

built using four stacked stones, under uniaxial compression resulted in the slightly lower value of 

14800 N/mm2 (average of 4 prisms). Nevertheless, because of the large coefficients of variation 

found when testing natural stone, as found in Chapter 3, this difference has no statistical 

relevance. For this reason, for the micro-modelling strategy adopted here, Young’s modulus of 

the stone will be assumed equal to 15500 N/mm2. However, when building large walls, it was 

found that Young’s modulus is considerably different from the values measured in small 
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specimens. This phenomenon was also reported by Lourenço (1996), when modelling masonry 

shear walls tested at the Eindhoven University of Technology. The reason for the difference in 

stiffness between large and small specimens is, most likely, related to the less uniform assembly 

of large specimens. 

Here, the calculation of joint stiffness is based on the experimental data of the vertical 

displacements measured during the vertical load application. All walls, with the exception of the 

series with a 30 kN pre-compression load (SW.30.1 and SW.30.2), were instrumented with two 

LVDTs measuring relative vertical displacements of points separated by 0.9 m. The Young 

moduli, based on these measurements, and calculated as the normal stress divided by the average 

strain measured, are presented in Table 1. It is observed that: 

− The values calculated in this way are in the range of only 3.5-7.5% of Young’s modulus of 

the separately tested stone; 

− Young’s modulus of the walls increases with the vertical load. 

Based on these values, a linear least square regression was performed and the calculated Young’s 

moduli are presented both in Table 4.3 and Figure 4.9. 

Table 4.3 – Vertical load test results. 

Young’s modulus [N/mm2] 
Wall 

Etest1 Etest2 Ecalc 

SW.30   566 

SW.100 824 688 768 

SW.200 969 1302 1057 

SW.250 1024 1353 1202 
 

This peculiar dependency of the stiffness on the compressive loading is explained by the larger 

contact between stone blocks (or the closing of the joints) under higher normal stresses. This 

feature seems a clear indication of the complexity of the behaviour of dry jointed masonry 

structures and of the difficulty to model its structural behaviour adequately. Unfortunately, this 

characteristic can hardly be taken into account directly in FEM analyses. One possibility would 

be the consideration of a non- linear elastic behaviour that promoted a stiffness growth as a 
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function of the compressive load. Here, this feature is indirectly considered by modifying the 

joint stiffness in each model, as a function of the vertical load applied. 
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Figure 4.9 – Young’s modulus vs. vertical load applied. 

Normal joint stiffness n,jointk  is calcula ted by considering the wall, in the vertical direction, as a 

series of two springs, one representing a stone block and the other representing a joint. This 

assumption leads to 

1
1 1n,joint

wall stone

k
h

E E

=
 

− 
 

 
(4.1) 

where h is the height of the block (equal to 100 mm), Ewall is the Young’s modulus of the wall 

(given in Table 4.3) and Estone is the Young’s modulus of the stone (assumed equal to 15500 

N/mm2). The tangential stiffness s,jointk  is calculated directly from the normal stiffness, 

assuming that the theory of elasticity is applicable, as 

( )2 1
n,joint

s,joint
k

k
ν

=
+

 (4.2) 

where ν is the Poisson’s ratio (assumed equal to 0.2). With these assumptions, the stiffness of the 

joints is given in Table 4.4. 
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Table 4.4 – Stiffness calculated for the joints. 

Walls 
kn 

[N/mm3] 

kt 

[N/mm3] 

SW.30 5.87 2.45 

SW.100 8.08 3.37 

SW.200 11.4 4.73 

SW.250 13.0 5.43 
 

4.2.2 Inelastic parameters 

In the particular case of dry stone masonry joints, the tensile strength and cohesion are assumed 

to be equal to zero. Obviously, this renders the numerical analysis more demanding because 

almost all the joints will behave in a non- linear fashion. The tensile behaviour of the stone has 

been characterized by Ramos (2002), where a tensile strength of 3.7 N/mm2 and a fracture 

energy of 0.11 Nmm/mm2 were found. The shear behaviour of the stone joints has been 

characterized in Chapter 3, where a value of 0.62 was found for tanφ and a value of zero was 

found for tanψ, being φ and ψ the friction and dilatancy angles of the stone joints, respectively. 

The uniaxial compressive behaviour of the block assembly has been characterized in Chapter 3, 

with a compressive strength of 57 N/mm2. The fracture energy in compression was assumed to 

be half of the value given by Model Code 90 (CEB-FIB, 1990) for concrete, due to the higher 

brittleness of stone. 

4.2.3 Load-displacement diagrams 

As discussed in the previous Section, the walls with a vertical load of 30 kN and 100 kN 

exhibited limited stone cracking. For this reason, the possibility of cracking through the stone 

blocks was not considered in the model of these walls. Quite on the contrary, potential cracks 

through the middle of the blocks were considered for the walls with a vertical load of 200 kN 

and 250 kN. Figure 4.10 illustrates the load-displacement diagrams from the tests and the 

numerical results, up to a displacement of 15 mm. Table 4.5 presents the differences between the 

numerical and experimental collapse loads, where the experimental collapse load represent the 

average of two tests, when applicable. 
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Figure 4.10 – Horizontal load-displacement diagrams for all walls (the thicker line indicates the 

numerical result). 

Table 4.5 – Comparison of experimental and numerical collapse loads. The experimental 

value represents the average of two tests (except for SW.250). 

Walls 
Experimental 

[kN] 

Numerical 

[kN] 

Ratio 

[-] 

SW.30 22.4 16.3 0.73 

SW.100 45.0 47.5 1.06 

SW.200 70.3 81.4 1.16 

SW.250 102.7 98.0 0.95 
 

The agreement between experimental and numerical responses can be considered satisfactory, 

taking into account that the experiments have been carried out with dry masonry and with natural 

stone. 
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4.2.4 Failure modes 

Together with the global load-displacement response, a comparison in terms of the deformed 

mesh and failure pattern is necessary to appraise the quality of the numerical analyses. 

Figure 4.11 and Figure 4.12 show a representation of the minimum (compressive) principal 

stresses for the SW30 and SW200 models, on the incremental deformed mesh. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.11 – SW.30. Principal compressive stresses [N/mm2] depicted on the incremental 

deformed mesh for a horizontal displacement equal to [mm]: (a) 0.5; (b) 1.0; 

(c) 1.5; (d) 2.0; (e) 3.0; (f) 15.0. 
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For lower vertical loads, see Figure 4.11, it is possible to observe that separation of the blocks 

through diagonal cracks gradually progresses from the bottom courses to the top, while the 

number of active compressive struts decreases. Finally, an overturning failure mechanism is 

found with a complete diagonal crack through head and bed joints. It is noticed that, at this stage, 

the compressive stresses are still rather low, with respect to the peak compressive stress of the 

block assemblage. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4.12 – SW.200. Principal compressive stresses [N/mm2] depicted on the incremental 

deformed mesh for a horizontal displacement equal to [mm]: (a) 1.0; (b) 2.0; 

(c) 3.0; (d) 4.0; (e) 5.0; (f) 15.0. 
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For higher vertical loads, see Figure 4.12, the onset of diagonal cracking if delayed to great 

extent. Up to a horizontal displacement of 1 mm, no diagonal compressive struts are found and 

the complete wall is still structurally active. When diagonal cracking starts to occur, it seems that 

some shear is always transmitted to the lower part of the wall. A complete diagonal crack fails to 

propagate and the failure mode seems to be mostly controlled by shear, together with rocking of 

the cracked stone pieces in the compressed toe of the wall. Again, the compressive stresses are 

low in comparison with the peak compressive stress of the block assemblage. This seems to 

indicate that the “crushing” observed in the experiments results from a combination of shear and 

tensile failure of the stone. In fact, the smooth grain of the stone results in a very low dissipation 

of energy due to mode I failure. In the numerical analysis, in order to obtain reasonable 

agreement with the experiments, as shown in Figure 4.10, a full crack was assumed in the 

potential cracks in the middle of the blocks, once the peak tensile strength of the stone was 

reached. The use of the fracture energy measured by Ramos (2002) for the potential cracks in the 

middle of the blocks, resulted in overly high collapse load values. This, again, indicates that the 

peak stresses at the irregular contacts result in extremely rapid crack propagation in the stone 

blocks. It is expected that significant higher collapse loads would be found for walls SW.200 and 

SW.250 if bedding of the stones even with a very weak bonding agent, was present.  

4.3 Summary 

The results involving dry jointed stone masonry walls were presented and discussed. The walls 

were built without any kind of material between the stone blocks and combined vertical and 

horizontal loads were applied for different vertical compressive loads. A variable vertical 

stiffness of the walls was found. It was observed that vertical stiffness increased with the 

compressive stress. The horizontal load-displacement diagrams are characterized by two main 

features. Initially, the curves exhibited great stiffness and elastic behaviour was observed almost 

up to 30% of the peak load. Then, continuous stiffness degradation took place under increasing 

deformation. The second part of the diagrams was characterized by an oscillation of the 

horizontal load. The observed failure modes are clearly associated with the vertical load applied. 

For lower stress levels, failure happened by rotation and sliding of part of the wall, whereas for 

higher vertical loads cracking started to become noticeable. A linear relation between average 

compressive stresses and average ultimate shear stresses seems to be a good approximation to 

experiments. 
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The modelling performed on the same walls allowed to numerically follow the load history and 

to understand the main phenomena related with the behaviour of the walls. Besides the 

resemblance of the collapse loads, the evolution of the deformed meshes is in accordance with 

experimental loading. Numerical results have also shown rapid crack propagation under high 

compressive stresses. Bedding of the stones, even using a very weak mortar, would be 

convenient, since it would most likely lead to a more stable structural response. 
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5. MODELLING OF CYCLIC BEHAVIOUR OF MASONRY 

It has been recognized that an advanced numerical analysis should not only be able to give the 

maximum load capacity but also to trace the structural response through post-peak behaviour and 

to outline the failure mode of the structure. In fact, numerical modelling has already been used in 

order to design experimental tests on representative structures to be tested in the laboratory 

(Pegon and Pinto, 1996). These “numerical experiments” allow the enhancement of experimental 

test programs (e.g. changing geometric configuration, localizing data acquisition equipment or 

even load levels). Nevertheless, numerical tests inevitably imply the use of proper modelling of 

inelastic constitutive behaviour that must be fed by advanced experimental testing. 

A common feature to all mechanical analysis of structures is the need for constitutive models 

that relate the states of stress and strain in the material. Naturally, different constitutive models 

may be chosen depending on the engineering materials, as well as on the purpose and required 

precision of the model predictions. Constitutive models should be seen as mathematical 

simplifications that approximate complex physical behaviour under certain circumstances. 

Therefore, “exact” models do not exist because it is impossible to reproduce all the information 

present in nature. However, the choice of an appropriate constitutive model is crucial and 

completely determines the insight into the structural problem. 

The two most popular classes of inelastic material constitutive theories used to derive consistent 

constitutive models are plasticity and continuum damage mechanics (Hansen and Schreyer, 

1994). The theory of plasticity attempts to replicate the dislocations of the material, being the 

plastic material behaviour characterized by the occurrence of permanent deformations. In 

contrast, continuum damage mechanics is concerned with the description of progressive 

weakening of a material due to the development of microcracks and microvo ids. Both theories 

are generally either based on a micromechanical or a phenomenological approach. In the 

micromechanical (or fundamental) approach, elementary constitutive relations are established for 

the microstructural behaviour (mechanical description). This kind of approach is still less 

developed, although important achievements have been attained, see Nemat-Nasser and Hori 

(1993). In contrast, the phenomenological approach establishes a model directly based on the 

observed features from experimental tests. 
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Constitutive models based on the standard plasticity framework according to a phenomenological 

approach (also known as the mathematical theory of plasticity), will be proposed in the present 

study. According to the objectives presented in Chapter 1, it is advantageous to develop 

constitutive relations that present numerical robustness and allow one to follow the entire response 

of the structure, even beyond the experimental failure load, rather than incorporate quite complex 

material models, which could result in unstable algorithms. It must be noted that, generally, 

numerical failure, at which the iterative solution procedure no longer converges, has no physical 

meaning with respect to the real structural failure (Crisfield, 1991; Feenstra, 1993). 

In this Chapter, a brief description of the solution procedures used in non-linear finite element 

formulation is presented, followed by a revision of the incremental plasticity theory, and some 

subsequent improvements of the classical theory which are briefly described. Then, a succinct 

description of an existing constitutive model for interface elements is given, from which an 

extension to include cyclic loading, totally based on the plasticity theory and formulated in 

modern plasticity concepts, is proposed. Finally, illustrative examples of the behaviour of the 

developed model together with an assessment of the ability of the model to reproduce reputed 

experimental results available in the literature are given. 

5.1 Non-linear finite element formulation 

Modelling of a given structure consists of two tasks: (a) spatial discretization of the geometry 

into elements and, (b) representation of the physical behaviour of the materials from which the 

structure is made. In the present study, the finite element method based on the displacement 

method is adopted to simulate the observed structural behaviour. Then, the assembly of all 

elements in conjunction with applied loads and boundary conditions results in a system of 

equilibrium equations that has to be solved in order to obtain the unknown nodal displacements. 

The application of a micro-modelling strategy to in-plane structures, previously described in 

Chapter 2, requires the use of continuum elements and line interface elements, as schematically 

shown in Figure 5.1. For each type of element, the respective constitutive model establishes a 

relation between generalized stress and strain vectors that is usually expressed as 

=s eD  (5.1) 
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where D represents the stiffness matrix. For plane continuum plane stress elements, the stress 

vector s  and strain vector e  are defined, respectively, as 

x

y

xy

 σ
 

= σ 
 
τ 

s  
x

y

xy

 ε
 

= ε 
 γ 

e  (5.2) 

These elements are integrated here using the standard reduced Gauss scheme (2x2-point Gauss 

quadrature). 
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Figure 5.1 – Types of finite elements employed in this study: (a) six-node zero-thickness line 

interface element with Lobatto integration; (b) eight-node continuum plane stress 

element with Gauss integration. 

For zero-thickness line interface elements, the constitutive relation defined by eq. (5.1) expresses 

a direct relation between the traction vector s  and the relative displacement vector e  along the 

interface, which read 

σ 
=  τ 

s  n

t

u
u

 ∆
=  

∆ 
e  (5.3) 

The option for zero-thickness line interfaces is related to the fact that physical thickness of an 

interface should only be modelled if strain gradients across the layer are expected and need to be 

resolved (Hohberg, 1992). This option is further encouraged by the fact that for the analyses 

performed along this study involving the use of interface elements, only the global effect of a 

displacement discontinuity needs to be modelled. The interface elements are integrated with a 

Lobatto scheme, for which the integration points match the nodal points (3-point Lobatto 

quadrature). This scheme has shown to be more stable than standard Gauss integration, see 

Hohberg (1992) and Schellekens and De Borst (1993) for a comprehensive analysis. 
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5.1.1 Solution procedures for non-linear problems 

The adoption of complex constitutive relations leads generally to a non- linear relation between 

the internal force vector intf  and the nodal displacement vector u , which implies that 

displacements often depend on the displacements at previous stages. In this study, the external 

force vector extf  is assumed to be displacement independent, since non- linear geometrical 

behaviour is not considered. 

The complete structural response is obtained using an incremental procedure where the load is 

applied into a finite number of increments. These increments can also be associated to time steps, 

for which a pseudo-time variable could be introduced to describe the loading progression. Hence, 

this pseudo-time variable would be used just to hierarchize the succession of events because time 

independent behaviour is considered along all of the study. 

The problem is formulated by imposing equilibrium between internal and external forces. 

Starting from a converged load stage n (Zienkiewicz and Taylor, 1991), 

n=u u  n = 0Ψ  ext ext ,n=f f  (5.4) 

where Ψ  represents the unbalanced force vector, a load increment is applied, at stage n+1 

1 1ext,n ext,n ext ,n+ += + ∆f f f  (5.5) 

The equilibrium between internal and external forces is affected, being the system of equations 

to be solved expressed as 

1 11 1) ) -( (n int ext ,nn n+ ++ += = = 0? u u? f f  (5.6) 

The objective is to calculate the nodal displacement increment vector 1n+∆u  

1 1=n n n+ ++ ∆u u u  (5.7) 

that equilibrates the internal and external forces. It is important that 1ext ,n+∆f  should be kept 

reasonably small so that path dependence can be followed. 
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The non- linear problem defined by eq. (5.6) is solved iteratively using a local quadratic Newton-

Raphson procedure, which linearizes the non- linear equilibrium equations at each iteration. 

Eq. (5.6) is, then, approximated as 

1
1 1 1

1
( ) ( ) + =

i
i i i
n n n

n

+
+ + +

+

∂ ≈ δ ∂ 
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? ?u u u
u

0  (5.8) 

being i the iteration counter starting from 

0
1n n+ =u u  (5.9) 

and 
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where t?  is the tangential stiffness matrix. From eq. (5.8), the iterative displacement vector 

correction reads 

( )1 1
1 11
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ii i

n nnt
+ −
+ ++

= −δ ?u uK  (5.11) 

The sum of successive iterative increments 1
1

i
n
+
+δu  gives 

1
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=
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until appropriate convergence criteria are satisfied. Frequently the criteria used to stop the 

iteration process are based on norm ratios, defined in terms of force, displacement or energy. 

For path dependent constitutive relations, which is the case of the plasticity theory, it is essential 

to use the total increment 1
1

i
n
+
+∆u  to compute the stress changes 1

1
i
n
+
+∆s . If not, the iterative 

increment changes 1
1

i
n
+
+δu  may lead to spurious unloading during the iterations (Crisfield, 1991). 

5.1.2 Advanced solution procedures 

In addition to the Newton-Raphson method described above, some advanced solution procedures 

will be briefly presented. In order to improve the convergence of the iterative scheme and to pass 
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limit points, these techniques will be used actively in the analyses performed with the numerical 

model to be proposed later on in this Chapter. However, only a general approach will be 

presented just to introduce the issue. For detailed discussions the reader is referred to selected 

references. 

Line search technique 

One of the drawbacks of the iterative procedure described above has to do with the fact that 

convergence depends strongly on the starting solution. Indeed, a good starting point can lead to 

convergence where otherwise divergence would occur (Crisfield, 1991). When ordinary iteration 

schemes fail to converge, the application of line search techniques can be very useful to achieve 

convergence and also to accelerate the overall convergence of modified Newton-Raphson 

methods (Zienkiewicz and Taylor, 1991). 

Basically, the line search technique can be regarded as a minimization of the total potential 

energy of the system, which is a function of the total displacements u, in the direction of the 

iterative displacement increment vector 1
1

i
n
+
+δu . The displacements are updated according to 

1 1
1 11

i , j i i
n nn ij

+ +
+ ++ = +u u uη δ  (5.13) 

in which j is the counter of the line searches. The line search factor ijη  scales the iterative 

displacement and is calculated making the projection of the unbalanced forces 1
1( )i

n
+
+? u  in the 

search direction 1
1

i
n
+
+δu  equal to zero, 

11
1 1 ) 0(( )

T i , ji
n n

++
+ + =δ ? uu  (5.14) 

For a detailed discussion related to the line search technique see Crisfield (1991) and 

Zienkiewicz and Taylor (1991). 

Constrained Newton-Raphson method 

An important aspect of the incremental- iterative method described above is that the load 

increment size applied has to be adapted to the structural response. If the load increment is 

chosen reasonably small, convergence is usually achieved in a small number of iterations and the 

convergence of the Newton-Raphson method is typically quadratic (Bathe, 1996). 
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The standard procedure where the load increment is kept constant during the necessary iterations 

to achieve equilibrium is not totally efficient and fails at limit points. This aspect is especially 

important for structures made of materials characterized by softening behaviour, as is the case of 

masonry structures. Figure 5.2 illustrates schematically the complex structural behaviour that can 

be found in engineering structures. To compute the response beyond maximum load points, as in 

Figure 5.2 (a) and (b), a special solution procedure that allows for a decrease in load and an 

increase in displacement must be used. 
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Figure 5.2 – Complex structural behaviour: (a) softening; (b) snap-through; (c) snap-back. 

One possibility is to use direct displacement control by incrementing in a continuous fashion 

some degrees of freedom. However, this approach cannot be applied to all structural problems 

and is incapable of properly handling strong localizations, as shown in Figure 5.2 (c). 

These difficulties can be surpassed by adding a constraint equation to the initial non- linear 

equilibrium equation system. The basic idea, due to Riks (1979) and developed by 

Crisfield (1981) and Ramm (1981), is to introduce the load multiplier as a new variable that 

increases or decreases the size of the load increment in order to pass limit points. The additional 

equation required for the solution expresses a constraint between the load multiplier 1n+∆λ  and 

the incremental displacement vector, of the form 

1 1( ) = 0n nf ,+ +∆λ ∆u  (5.15) 

Different constraint equations have been proposed in literature, see Crisfield (1991) and 

Bathe (1996) for a comprehensive discussion. This constraint procedure is known as the arc-

length method and has shown to be particularly effective near limit points (Bathe, 1996). 
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5.2 The incremental theory of plasticity 

The plastic material behaviour is characterized by the occurrence of permanent deformations. 

Although the occurrence of these permanent deformations can be related to processes inside the 

material like slip in metals, the mathematical formulation of plasticity has been successfully 

extended to materials showing irreversible deformations, such as concrete (Chen, 1982), soil 

(Chen and Mizuno, 1990) or masonry (Lourenço, 1996). As stated before, the theory of plasticity 

should just be seen as a mathematical model that approximates the observed behaviour under 

certain circumstances. 

In the following Sections, a brief review of the theory of plasticity will be presented. Recent 

books covering the plasticity theory are due to Lemaitre and Caboche (1985), Lubliner (1990) 

and Simo and Hughes (1998), among others, where a comprehensive study of the subject can be 

found. 

5.2.1 Fundamentals 

In the context of small strains, the total strain rate vector can be additively decomposed into an 

elastic part and an irreversible, or plastic part, respectively denoted by ee&  and pe& : 

pe +=e e e& & &  (5.16) 

These and all the rate quantities presented along this Chapter are derivatives in order to the 

pseudo-time variable introduced above, because rate independent behaviour is assumed. The 

elastic strain rate vector is related with the stress rate vector s&  through the elastic stiffness 

matrix D, 

( )e p= = −s e e eD D& & &&  (5.17) 

The essential elements of any constitutive model based on the classical plasticity theory are the 

yield criterion, the hardening rule and the flow rule (Koiter, 1960). The yield criterion defines a 

surface (hypersurface) in the stress space that bounds all possible stress states. In general, this 

surface is not fixed in stress space and its motion is controlled by the hardening rule. Inside the 

yield surface every material point exhibits elastic behaviour. Yield can only occur if the stress 

vector satisfies the yield function, which has the form 
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( ) 0f , , =s a κ  (5.18) 

where a  and κ  are internal variables of the model. a  is the back-stress vector that defines the 

centre of the yield surface, allowing for kinematic hardening behaviour, and κ  is a scalar 

hardening variable that controls the amount of hardening/softening. 

During the incremental plastic deformation process the yield surface can change size, shape or 

location. These modifications are defined by the hardening rules. Based on experimental results, 

three main phenomenological hardening models were proposed to represent hardening 

behaviour: isotropic hardening (Odqvist, 1933), kinematic hardening (Prager, 1955) and mixed 

hardening (Hodge, 1957), see Figure 5.3 for a schematic representation. 
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Figure 5.3 – Movement of the yield surface ruled by: (a) isotropic hardening; (b) kinematic 

hardening; (c) mixed hardening. σ1 and σ2 are the principal stresses. 

Referring to eq. (5.18), a  controls the location of the centre of the yield surface whereas κ  

controls the size and shape of the yield surface. A simple example can be cons tructed assuming 

linear isotropic and kinematic hardening laws. Figure 5.4 represents the mechanical response of a 

one-dimensional model to the three hardening hypotheses mentioned above. The scalars I and K 

represent the isotropic hardening modulus and the kinematic hardening modulus, respectively. In 

Figure 5.4 both parameters are assumed to be constant. 

The isotropic hardening law is the easiest one and good results can be achieved under monotonic 

loading conditions. However, the description of induced anisotropy or other features related to 

cyclic behaviour, e.g. the Bauschinger effect, cannot be suitably carried out using such a law and 

therefore more complex hardening laws are required. 
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Figure 5.4 – Schematic representation of the mechanical response of a one-dimensional model 

to a: (a) isotropic hardening law; (b) kinematic hardening law; (c) mixed 

hardening law. The elastoplastic tangent modulus is specified for each case, 

including unloading. 

The evolution of the plastic strain rate is given by the flow rule 

p g
λ

∂
=

∂
e

s
&&  (5.19) 

where λ  is a non-negative scalar named plastic multiplier and g is the plastic potential function 

that describes a plastic potential surface in stress space. Generally g is expressed as a function of 

the stress vector and some internal variables (hardening variables). For the case of g = f, the flow 

rule is termed associated. Otherwise, a non-associated flow rule is obtained. 

The plastic multiplier rate λ&  and the yield function have to fulfil the Kuhn-Tucker conditions: 

0λ ≥&  0f ≤  0fλ =&  (5.20) 

Suitable rules for the evolution of the hardening variables, in the rate form, have to be 

established. The scalar κ&  is generally related with the equivalent plastic strain rate epsε&  (strain 

hardening) or with the plastic work rate p
W&  (work hardening). For the former hypothesis, the 

equivalent plastic strain rate can be defined as 

( )
Tpeps pκ ε= = e e&& &&  (5.21) 
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The equivalent plastic strain rate can also be derived from the plastic work per unit of volume, 

resulting 

p pT
eps W

κ ε
σ σ

= = =
s e& &&&  (5.22) 

in which σ  is a scalar named effective stress, expressed as a function of the hardening 

variable κ , defining the hardening law. Instead, here, if the hypothesis of work hardening is 

adopted, the rate variable κ&  is defined as 

p pTWκ = = s e& &&  (5.23) 

Generally, the evolution of the back-stress vector is related with the flow direction, known as the 

Prager’s hardening rule (Prager, 1955) 

(1- )
g

Kγ λ
∂

=
∂

a
s

&&  (5.24) 

or with the direction of the relative stress vector, Zigler’s rule (Zigler, 1959), which reads 

(1- ) ( - )Kγ λ=a s a&&  (5.25) 

The scalar K represents the kinematic hardening modulus and γ  is an adimensional parameter 

that settles the proportion of isotropic and kinematic hardening. 0γ =  implies full kinematic 

hardening while full isotropic hardening is obtained with 1γ = . 

5.2.2 Integration of the elastoplastic constitutive equations 

The local integration of the non- linear rate equations over the finite step 1( ) ( )n n+→⋅ ⋅ , or 

1( ) ( )t t+→⋅ ⋅ , and the subsequent solution of the resulting system of equations are the main 

problems in computational plasticity. With regard to the later, the reader is referred to 

Section 5.1, where the general solution procedure is described. 

At the current increment n (or time t) all the basic variables ne , p
ne , na  and nκ  are known. The 

elastic strain and stress vectors are regarded as dependent variables because they are related with 

the basic variables through the equations 
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pe −=e e e  e=s eD  (5.26) 

The integration of the rate equations is a strain driven process in which the total strain vector is 

the only independent variable, 

1 1n n n+ += + ∆e e e  (5.27) 

Then, it is just necessary to update the remaining basic variables. By applying the implicit Euler 

backward algorithm, the continuous constrained problem is transformed in a discrete problem for 

the variables 1
p
n+e , 1n+a  and 1nκ + , constrained by the discrete Kuhn-Tucker conditions 

1 0nλ + ≥  1 0nf + ≤  1 1 0n nfλ + + =  (5.28) 

as shown by Simo et al. (1988). The stability and accuracy of the implicit Euler backward has 

been exhaustively demonstrated, e.g. Ortiz and Popov (1985), De Borst and Feenstra (1990). 

Application of this algorithm results in the following discrete set of equations 
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( )1 1 1 1 1n n n n n , n, λκ κ κ+ + + + +∆∆= s a+  

( )11 11 0nn n ,n ,f κ ++ ++ =s a  

(5.29) 

The algorithm procedure consists of two phases, an elastic predictor and a plastic corrector. The 

elastic predictor step is obtained by freezing plastic flow during the finite step, which leads to an 

elastic trial state (auxiliary state) 

1 1
trial
n n n+ +∆=s s e+ D  

1
p,trial p

nn+ =e e  

1
trial
n n+ =a a  

1
trial
n nκ κ+ =  

( )11 11 1
trial trial trialtrial

nn nn n , ,f f ++ ++ += s a κ  

(5.30) 
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If the elastic trial stress 1
trial
n+s  lies outside the yield surface, then the elastic state becomes 

inadmissible and plastic flow must occur. As a result, a plastic corrector, given by eq. (5.29), is 

used to find an admissible stress state consistent with eq. (5.28), which is named return mapping 

of the stress update. 

Equations (5.29) are of general use and in some cases can be greatly simplified. In particular, for 

the hardening laws and the yield functions used in the model to be presented in Sections 5.3 

and 5.4, the former system of equations can be reduced to a non- linear equation with only one 

unknown, see also Feenstra (1993) and Lourenço (1996), solved with a local Newton-Raphson 

method. This simplification will be conveniently detailed later on. 

5.2.3 Evaluation of the consistent tangent operator 

The application of the Newton-Raphson method to solve the incremental- iterative procedure 

described before guaranties a quadratic rate of asymptotic convergence while close enough to the 

solution provided that an appropriate tangent operator is used. Simo and Taylor (1985) referred 

that the use of a continuum tangent operator, derived from the rate elastoplastic equations (Owen 

and Hilton, 1980), was the main cause of the absence of quadratic convergence. Simo and Taylor 

(1985) also demonstrated that to preserve the quadratic rate of asymptotic convergence it is 

necessary to use a tangent operator obtained from the consistent linearization of the non- linear 

incremental constitutive equations resulting from the integration over a finite step. Thus, the 

consistent tangent stiffness matrix has to be derived from the update stress at the end of iteration 

n+1 
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The unknowns of the return mapping algorithm described above are the stress vector 1n+s , the 

internal variables 1n+a  and 1nκ +  and the plastic multiplier 1nλ + , which are now grouped in a 

vector 1n+q . The linearization of eq. (5.29), see Lourenço (1996), results in 
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in which J is the Jacobian computed to solve the return mapping, and nσ and nq are, respectively, 

the dimensions of the vectors s  and q . By inversion of the Jacobian, the consistent tangent 

stiffness matrix becomes as 

1
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ep
n n

n

d
d

−
×

+

= =   
s
e

JD σ σ
 (5.33) 

Eq. (5.33) represents a general expression for the consistent tangent stiffness matrix. This 

expression will be opportunely detailed for the constitutive models to be used. 

5.2.4 Extended formulations of classical plasticity theory 

Although isotropic and kinematic hardening models have been extensively used in engineering 

modelling, they are not capable of adequately describing the structural cyclic behaviour of quasi-

brittle materials. In order to surpass this deficiency, several improvements have been proposed to 

extend the classical plasticity formulation to include cyclic loading in an appropriate manner. In 

the following, some of these improvements are briefly introduced, namely nested yield surface 

models, bounding surface models and generalized plasticity models. These models can include 

classical plasticity as a particular case. 

Nested yield surface models 

In order to account for a more realistic prediction of cyclic behaviour, an extended formulation 

of the classical incremental theory of plasticity was proposed independently by Iwan (1967) and 

Mróz (1967). Instead of using a single yield surface, they proposed the use of a family of yield 

surfaces, in which each surface had an independent motion, ruled by a kinematic hardening law, 

see Figure 5.5 . The hardening rules are defined separately for each yield surface. 

The movement of the stress point is performed in an elastic fashion until the yield surface f1 is 

reached. Afterwards, plastic flow begins and the surface f1 starts to move towards the surface f2. 

When surface f2 is reached, it becomes the active yield surface and f1 is translated by the stress 

point, remaining tangent to surface f2 on the stress path. Unloading and subsequent reloading 

processes have a similar treatment to loading. 
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Figure 5.5 – Schematic representation of a series of nested yield surfaces in stress space: 

(a) initial position; (b) motion. 

This class of models may be very useful to overcome some limitations of the plasticity theory, 

but its use is made difficult by the need of a complete memorization of size and location of each 

yield surface, which may turn computer implementation hard and costly. 

Bounding surface models 

This class of models was initially introduced by Dafalias and Popov (1975) and Kreig (1975) 

separately. Two surfaces need to be defined in the stress space, an inner surface termed loading 

surface and an outer surface termed bounding surface. The inner surface encloses an elastic 

domain and moves with plastic deformation within the outer surface. The loading surface may 

contact the bounding surface but not intersect it. Both surfaces can move and deform according 

to isotropic and kinematic hardening rules, see Figure 5.6 . 
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Figure 5.6 – Schematic representation of a bounding surface model. 
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The plastic modulus, at a given stress point, is specified as a function of the measure of the 

distance between the stress point and its image on the bounding surface, obtained from a 

mapping rule, see Dafalias (1986) for a detailed description. A special case is obtained by 

assuming that the loading surface coincides with the bounding surface, resulting in the classical 

plasticity theory. The bounding surface concept has been used by several authors to establish 

constitutive models for soils (Mróz et al., 1978), concrete (Fardis et al., 1983) and metals 

(Hashiguchi, 1989). 

Generalized plasticity models 

The generalized plasticity theory appeared as a natural enhancement of the classical plasticity 

theory to face complex loading conditions. An initial framework of generalized plasticity was 

proposed by Zienkiewicz and Mróz (1984), with applications to soil mechanics. 

Irreversible (plastic) strains are produced without the need for specifying any yield surfaces, for 

explicitly defining plastic potentials, or for applying consistency rules. Furthermore, the 

constitutive matrix becomes dependent of the incremental stress direction. 

A direction vector, defined in stress space, is used to discriminate between loading and 

unloading conditions, for which scalar functions are used to characterize plastic moduli. The 

reader is referred to the works of Zienkiewicz et al. (1985) and Pastor et al. (1990) for a detailed 

introduction. Naturally, classical plasticity and bounding surface theories can be obtained from 

particular cases of the generalized plasticity theory.  

5.3 An existing constitutive interface model 

The micro-modelling strategy, in which the units are discretized with continuum elements and 

the joints are discretized with interface elements, as discussed in detail in Chapter 2, is a very 

powerful tool to understand the behaviour of masonry, as shown by Lourenço (1996). Therefore, 

an appropriate simulation of the interface behaviour is a key aspect of masonry modelling in a 

micro-modelling approach. 

Lourenço (1994) developed a constitutive model for the monotonic behaviour of interface 

elements within the incremental theory of plasticity, including all the modern concepts used in 

computational plasticity, such as the implicit return mapping and consistent tangent operators. 
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The model was closely checked against experimental data in which it showed great accuracy in 

reproducing experimental results. However, if a cyclic loading is intended to be performed, this 

model is unable to reproduce the main observed features, such as stiffness degradation, crack 

opening/closing and energy dissipation, as already examined in Chapter 2. The reader should 

keep in mind that classical plasticity is characterized by pure elastic behaviour during unloading 

from the yield surface, as illustrated in Figure 5.4  (page 130). Based on the framework of 

plasticity, the model developed by Lourenço (1994) will be extended in order to include in a 

proper fashion the main phenomenological aspects that characterize cyclic loading of masonry. 

This Section is devoted to the description of the existing model, being the reader referred to 

Lourenço (1994, 1996) for a comprehensive introduction. 

5.3.1 Yield surfaces, hardening laws and flow rules 

The rate independent interface model is defined by a convex composite yield criterion which 

consists of three individual yield functions, where softening behaviour has been included for all 

modes (tensile, shear and cap modes). The yield functions read 

Tension criterion: ( ) ( )t ttt ,f = −s σ σκ κ  

Coulomb friction criterion: ( ) ( )s sss , tanf τ σ φκ κσ= + −s  

Compressive cap criterion: ( )21
2( ) ( )T

c ccc ,f κ κσ= −s ss P  

(5.34) 

where φ  represents the friction angle and P is a projection diagonal matrix, based on material 

parameters. tσ , sσ  and cσ  are the isotropic effective stresses of each of the adopted yield 

functions, ruled by the scalar internal variables tκ , sκ  and cκ , respectively. Figure 5.7 

schematically represents the three individual yield surfaces that compose the multisurface 

interface model in stress space. The rate expressions for the evolution of the isotropic hardening 

variables were assumed to be given by 

[ ]1 0
pp

t n tuκ λ= = =∆ e &&& &  

[ ]0 1 pp
s stuκ λ== =∆ e &&& &  

( )T
Tp p

c cκ λ= = se e sPP&& &&  

(5.35) 
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Figure 5.7 – Existing multisurface interface model (stress space). 

For tensile and shear modes exponential softening laws were adopted according to available 

experimental data, whereas for compression a hardening/softening law was chosen. Based on 

these isotropic hardening laws, the uniaxial behaviour under tensile, compressive and shear 

loading, illustrated in Figure 5.8 , is easily reproduced. The elastic unloading is also exemplified. 

n∆u

σ

 

∆u t

τ

 
(a) (b) 

Figure 5.8 – Monotonic behaviour under (a) uniaxial tensile and compressive loading; 

(b) direct shear loading. 

Associated flow rules were assumed for tensile and cap modes and a non-associated plastic 

potential sg  was adopted for the shear mode with a dilatancy angle ψ  and a cohesion c, given 

by 

t tg f=  

s tan cg = − −τ σ ψ  

c cg f=  

(5.36) 

A non-associated flow rule for shear is necessary because friction and dilatancy angles are 

different, as shown by Van der Pluijm (1993). 
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5.3.2 Integration of the elastoplastic constitutive equations 

From eqs. (5.29) and (5.30), the stress update for each individual yield surface is obtained 

according to 

( )1 1 1 1 1
1

trial
n n n n n

n

g
λ λ+ + + + +

+

∂
= = −∆ ∆

∂
s s s

s
D  (5.37) 

Furthermore, since 1n+s  and 1nκ +  can be expressed as functions of 1nλ +∆ , the yield function is 

transformed into a non- linear equation of one variable ( )1 0nf λ + =∆ , which is solved locally 

using the Newton-Raphson method. Considering that only one surface is active, the derivatives 

necessary to the iterative procedure read 

1

T

tt t
t

t n

gf f
h

λ +
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h
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T
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c
c cc n

f f f
h

κ
κ λλ +
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(5.38) 

where 
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f
h
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∂

= −
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= −
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f
h
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∂ ∂
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∆∂ ∂
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5.3.3 Consistent tangent operator 

For the constitutive model described above, the consistent tangent stiffness matrix reads 

1

T

ep

Tn

g
d

gd h+

∂
∂= =

∂
∂

?s s
e ?

s

H H
H -D

+ H
 (5.40) 

where H, γ  and h are defined as 
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(5.41) 

5.3.4 Corner regime 

In the described composite yie ld criterion, the intersection of the different yield surfaces defines 

two possible corners, see Figure 5.7 , composed by the tensile and shear modes or by the shear 

and cap modes, since intersection between cap and tensile modes is numerically prevented from 

occurring. Following Koiter’s rule (Koiter, 1953), the plastic strain rate in a corner is given by a 

linear combination of the plastic strain rates of yield surfaces 1 and 2 

1 2
1 2 1 2

p p p g g
λ λ

∂ ∂
= + = +

∂ ∂
e e e

s s
& && & &  (5.42) 

In the model, tensile and shear softening are coupled because, physically, both phenomena are 

related with the degradation of bond between the unit and the mortar. At this corner, a quadratic 

combination for the hardening parameters rate was adopted, which read 

( )22( )cor
t st ακ λλ= + &&&  

2
2( )tcor

s s
λ

κ λα
 

= + 
 

& &&  

(5.43) 

where α is a scalar that depends on material parameters. Again by physical reasoning, shear and 

cap modes were assumed to be uncoupled, since phenomena that rule the hardening/softening of 

each mode seem to be only lightly related. Thus, eqs. (5.35)2, 3 remain unchanged. The stress 

update is then given by 

( ) 1 2
1 1 1 1 2 1 1 1 1 2 1

1 1

trial
n n ,n ,n n ,n ,n

n n

g g
,λ λ λ λ+ + + + + + +

+ +

∂ ∂
= = − −∆ ∆ ∆ ∆

∂ ∂
s s s

s s
D D  (5.44) 
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For the corner regime, the Euler backward algorithm can be simply expressed in a system of two 

nonlinear equations on the variables 1 1,nλ +∆  and 2 1,nλ +∆  

( )
( )

1 1 2 11

1 1 2 12

0

0

,n ,n

,n ,n

,f

,f

+ +

+ +

 =∆ ∆


=∆ ∆

λ λ

λ λ
 (5.45) 

solved by a Newton-Raphson iterative procedure. The Jacobian matrix is given in 

Lourenço (1996). For multisurface plasticity an expression equivalent to eq. (5.40) can also be 

obtained. The reader is referred to Lourenço (1996), where such expression can be found. 

5.4 Extension to cyclic loading 

As discussed in Chapters 2 and 3, experimental work carried out to investigate the cyclic behaviour 

of interfaces allow one to recognize some important features, now summarized as: 

− Stiffness degradation in tension; 

− Residual relative displacements at zero stress; 

− Absence of stiffness degradation in direct shear; 

− Complete crack closing under compressive loading. 

Based on the available experimental results concerning the cyclic behaviour of interfaces and 

masonry structures, the following will be assumed: 

− Elastic behaviour constitutes a satisfactory approach for shear unloading/reloading 

inside the monotonic yield surface; 

− Elastic unloading/reloading is not an appropriate hypothesis for tensile and compressive 

loading since observed experimental behaviour cannot be simulated accurately, namely 

stiffness degradation and crack closing/reopening which clearly exhibit nonlinear 

behaviour. 

With these assumptions, it becomes clear that the classical formulation of the plasticity theory is 

unable to reproduce those particular features and therefore cannot be accepted for cyclic loading. 

This section is dedicated to the description of a new constitutive model, able to accurately 

reproduce the main features related to cyclic behaviour of interfaces and fully based on the 

plasticity theory. 
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5.4.1 Fundamentals 

Previous to the extension of the existing model to account for cyclic loading, a change was made 

in the monotonic version. In order to obtain a simpler relation between cκ  and cλ , the 

monotonic compressive cap criterion was rewritten in square root form 

( )
1

2 ( )( ) T
cccc ,f κσκ = −ss sP  (5.46) 

in which the projection matrix P equals { }1 ssdiag ,C  with ssC  being a material parameter. 

Considering a strain hardening hypothesis, where the equivalent plastic strain rate is derived 

from the plastic work per unit of volume, eq. (5.22) gives 

pT
eps

c cεκ λ
σ

= = =
s e& &&&  (5.47) 

and eq. (5.38)3 is replaced by 
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In addition, the consistent tangent operator can be rewritten as 

1
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 (5.50) 

H is given by eq.(5.41)1 and h is defined in eqs. (5.39)1, 2 and eq. (5.49). 

In order to include unloading/reloading behaviour in an accurate fashion, an extension of the 

plasticity theory is proposed. Two new auxiliary yield surfaces (called unloading surfaces), 

similar to the monotonic ones, are introduced in the monotonic model, described in Section 5.3, 

to model unloading behaviour to tension and to compression. Each unloading surface can only 

move inside the admissible stress space and towards the similar monotonic yield surface. In 
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recent years, other researchers have used this concept of unloading surface in soils (Pan, 1991), 

masonry (Combescure and Pegon, 1996) and concrete (Cachim, 1999). 

In the proposed model, the motion of the unloading surface is controlled by a mixed hardening 

law. By adopting appropriate evolution rules, it is possible to reproduce non- linear behavior 

during unloading from the monotonic surface. A new unloading surface must be activated each 

time a stress reversal takes place, being deactivated when the unloading surface reaches the 

monotonic envelope for which it moves to or when a subsequent stress reversal occurs. The 

developed model comprises six possibilities for unloading movements, as schematized in 

Figure 5.9. Two unloading cases from the monotonic envelope are considered: unloading to 

tension (CT) and unloading to compression (TC). In both cases, a stress reversal can occur even 

before the monotonic envelope has been reached, leading to reloading movements to 

compression (CTC) or to tension (TCT), respectively. These two cases may originate two new 

other movements if a reversal situation happens before stresses reach the monotonic envelope, 

respectively CTCT and TCTC. If a stress reversal takes place during a CTCT or TCTC 

movement, reloading movements CTC and TCT are assumed to occur, respectively. 

TCTC TCT TC T CTCC CT CTCTE

 
Figure 5.9 – Adopted hypotheses for cyclic behaviour (E for elastic, C for compression and T 

for tension). 

The movements to tension (CT, TCT and CTCT) are carried out with the same unloading 

surface, but different hardening laws, which must be based on reliable experimental data. The 

same applies to movements to compression (TC, CTC and TCTC). The adopted hardening laws 

will be discussed in the next Sections. Both unloading surfaces are ruled by mixed hardening 

laws, for which a definition of  α  is necessary. The evolution of the back-stress vector is 

assumed to be given by (Feenstra, 1993; Cachim, 1999) 

(1- ) U tK αγ λ=a u&&  (5.51) 

where tK  is the kinematic tangential hardening modulus, Uλ&  is the unloading plastic multiplier 

rate and αu  is the unitary vector of α . γ is the parameter that controls the proportion of isotropic 
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and kinematic hardening. Associated flow rules are assumed during unloading to tension and to 

compression, leading to 

U Ug f=  (5.52) 

5.4.2 Unloading to tension 

Unloading to tension (CT, TCT and CTCT) can occur from any admissible stress state outside 

the tensile monotonic envelope. The yield function is given by 

( )(1)( ) ( )UU UU i , tt tt , ,f = − − σσ α γκ κs a  (5.53) 

where the (1) subscript represents the first component of α . Or, introducing the relative (or 

reduced) stress vector ξ , 

= −? s a  (5.54) 

eq. (5.53) can be rewritten as 

(1)( ) ( )UU UU i , tt tt , ,f = −s a ? σ γκ κ  (5.55) 

with ξ(1) the first component of ξ , Ui , tσ  the isotropic effective stress and U tκ  is the tensile 

unloading hardening parameter. Figure 5.10 represents a hypothetical CT case, where the stress 

point initiates a stress reversal at point A and reaches the monotonic tensile envelope at point D, 

being deactivated afterwards. 

τ
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C
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(Tension)
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σ
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(Shear)

 

Figure 5.10 – Motion of the unloading surface Utf  to tension. 
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The points B and C represent intermediary stages of the stress path. The points CA, CB, CC, and CD 

represent the centre of the unloading surface Utf  when the stress point is at A, B, C and D, respectively. 

Considering a strain hardening hypothesis and assuming that the hardening behaviour is 

controlled only by the normal plastic relative displacement, see eq. (5.35)1, the evolution 

equation for the hardening parameter reads 

U U
p

t n tuκ λ= =∆ && &  (5.56) 

5.4.3 Unloading to compression 

Considering eq. (5.54), the yield function used to describe unloading to compression (TC, CTC 

and TCTC) reads 

( )
1

2( , ) ( )U UUU
T

c ci , cc ,f γσκ κ= −?s a ?P  (5.57) 

where Ui , cσ  is the isotropic effective stress and U cκ  the compressive unloading hardening 

parameter. A possible TC case is exemplified in Figure 5.11. The unloading plastic process starts 

at point A, on the monotonic tensile surface, goes through points B and C and has its finish at 

point D, for which the stress point touches the monotonic compressive envelope. The points CA, 

CB, CC, and CD represent the centre of the unloading surface Ucf  when the stress point is at A, 

B, C and D, respectively. 
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Figure 5.11 – Motion of the unloading surface Ucf  to compression. 
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By assuming a strain hardening hypothesis, eq. (5.22) results in 

U U
U

T p

c c
i , c

κ λ
σ

= =
? e& &&  (5.58) 

5.4.4 Adopted hardening laws 

For each of the six hypotheses considered for unloading movements in Section 5.4.1, a curve that 

relates the unloading hardening parameter Uκ  and the unloading effective stress Uσ  must be 

defined. The characterization of its shape must be based on a phenomenological approach to 

existing experimental results. Subsequently, these relations are calibrated for the uniaxial case, as 

usual in classical plasticity. So, a complete material description based on adequate experimental 

data and focused on cyclic behaviour is essential for calibrating advanced numerical models, see 

Chapter 2 for details. Figure 5.12 shows schematically the three curves adopted to simulate 

unloading from compression (CT) and subsequent stress reversals before reaching the monotonic 

envelope (CTC and CTCT). Their mathematical characterization may be summarized as: 

CT: This curve is based in three points and is described by two parabolas. Two points 

(0 and 2) belong to the monotonic envelopes and a third point (1) corresponds to 

the zero stress point in the ( , )nuσ ∆  uniaxial diagram. The hardening parameters 

are given through linear relations between the plastic strain at zero stress (1), the 

plastic strain at the tensile envelope (2) and the plastic strain at the compressive 

envelope. 

CTC: This diagram is described by a parabola, defined by two points and a derivative: 

the reversal point and a point belonging to the compressive monotonic envelope, 

where the derivative is imposed according to the compressive plastic strain. 

CTCT: This curve can either be similar to a CT curve or be represented by a parabola, 

depending on the stress reversal point. The former case occurs for a negative 

stress reversal value, being the point 1 defined as a function of the other two 

points and point 1 of Figure 5.12(a). The later situation is based in two points and 

a derivative: the reversal point and a point belonging to the tensile monotonic 

envelope, where the derivative is compelled according to the previous CT curve. 
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(a) (b) (c) 

Figure 5.12 – Schematic hardening laws for: (a) CT, (b) CTC and (c) CTCT movements. 

In the same way, an initial unloading from the tensile monotonic envelope can originate three 

different types of movement (TC, TCT and TCTC), as shown in Figure 5.13. The higher 

complexity of these curves with respect to the former ones is directly related to the phenomena 

of closing and reopening experienced by the interface, specially important in the context of 

cyclic behaviour of masonry structures using a micro-modelling strategy. The adopted curves 

can be synthesized as follow: 

TC: This curve is based in four points, in which two of them belong to the monotonic 

envelopes. The full description is given by three different branches. First a linear 

branch takes place until stress changes signal. Point 1 is given through a linear 

relation between the plastic strain at zero stress and the plastic strain at the tensile 

envelope. Then, two parabolas are used to reproduce the variation of stiffness 

associated to the closing of the interface, being point 2 defined as a function of the 

other points; 

TCT: This diagram is described by two parabolas, which are necessary to accurately 

describe the interface reopening. Their definition is based on three points. Point 1 is 

defined as a function of the reversal point and the point belonging to the tensile 

monotonic envelope. For a positive stress reversal value only one parabola is used; 

TCTC: This curve can either be similar to a TC curve or be based only on two parabolas, 

depending on the stress reversal point. The former situation is used for a positive 

stress reversal value whereas the later case is triggered if a reversal from TCT 

occurs for a negative stress value; 
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Figure 5.13 – Schematic hardening laws for: (a) TC, (b) TCT and (c) TCTC movements. 

These six different curves characterized above will be used in the definition of the isotropic 

hardening laws and the kinematic hardening laws as well. Physical reasons force that C1 

continuity (continuous functions with continuous derivatives) must be imposed to all ( , )UUσ κ  

curves. Also, all functions must originate positive effective stress values and their derivatives 

must always be non-negative. Within these restrictions, the mathematical parameters that 

characterize the hardening laws must be adequately chosen to fit experimental data, obtained 

from uniaxial tests. 

5.4.5 Integration of the elastoplastic constitutive equations  

By applying an implicit Euler backward integration scheme to the equations of evolution, the 

following discrete set of equations is obtained at n+1 
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1 1 1(1- ) Un n ,n , nksK αλγ+ + +∆= +a a u  

1 1U U , U,n n ,nλκ κ+ +∆= +  

( )11 11 0UU ,nn n,n , ,f κ ++ ++ =s a  

(5.59) 
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where ksK  is the kinematic secant hardening modulus, defined as a function of the unloading 

hardening parameter and the kinematic effective stress (Feenstra and De Borst, 1992). The 

discrete Kuhn-Tucker conditions at step n+1 are expressed as 

1 0U ,nλ + ≥ ,   ( )11 11 0UU ,nn n ,,n ,f κ ++ ++ ≤s a ,   ( )11 11 1 0UU U ,nn n ,,n ,n ,f κλ ++ ++ + =s a  (5.60) 

Considering an auxiliary elastic trial state, where plastic flow is frozen during the finite step, 

eqs. (5.59) can be reformulated and read 

1 1
trial
n n n+ +∆=s s e+ D  

1
p,trial p

nn+ =e e  

1
trial
n n+ =a a  

1U U ,
trial

,n nκ κ+ =  

( )11 11 1 UU U ,
trial trial trialtrial

,nn n,n n , ,f f ++ ++ += s a κ  

(5.61) 

A stress reversal occurrence is based on the elastic trial state. After a plastic process (monotonic 

or cyclic), a stress reversal case is established under the condition of a negative unloading yield 

function value. Within the notation inserted before, unloading movements CT or TC must be 

started from the respective monotonic envelope whenever, after a converged load step where 

( ) 0nnn ,f κ =s , the following condition occurs 

( )111 1 0trial trialtrial
nnn n ,f f κ +++ += <s  (5.62) 

The remaining unloading hypotheses, see Figure 5.9, are trigged whenever, after a successful 

load step in which ( ) 0UU ,nn n,n , ,f κ =s a , the following situation happens 

( )11 11 1 0UU U
trial trial trialtrial

,nn n,n ,n , ,f f κ ++ ++ += <s a  (5.63) 

The system of non- linear equations expressed by eqs. (5.59) can be greatly simplified because 

the variables 1n+s , 1n+a  and 1U ,nκ +  can be expressed as functions of 1U ,nλ +∆  and therefore 

eq. (5.59)5 is transformed in a non- linear equation in one variable. The plastic corrector step 
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consists of computing an admissible value of 1U ,nλ +∆  that satisfies eqs. (5.60) using the Newton-

Rapshon method. The derivative necessary reads 
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5.4.6 Consistent tangent operator 

The consistent tangent stiffness matrix is obtained by consistent linearization of the stress update 

resulting from the return-mapping algorithm. The total derivative of σ  (single surface) at n+1 

reads 
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Imposing the consistency condition at n+1 
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the consistent tangent stiffness matrix is obtained as 

1

T

U U

T

U U
U

ep

n

g f

d
d f g

h
+

 ∂ ∂
 ∂ ∂ = = −

 ∂ ∂
 ∂ ∂ 

H H

HD

+ H

s ss
e

s s

 (5.68) 

Where the modified stiffness matrix H and Uh  are given by eq. (5.65). 
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5.4.7 Unloading behaviour with active shear mode 

From analysis of Figure 5.10 and Figure 5.11, it can be observed that a composite yield criterion, 

composed by an unloading/shear corner, may occur. These two modes are assumed to be 

uncoupled, resulting U Uκ λ= &&  and s sκ λ= && . Based on eqs. (5.29), (5.30), (5.59) and (5.61), the 

stress vector is updating according to 
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Since all unknowns can be expressed as functions of 1U ,nλ +∆  and 1s,nλ +∆ , the system of non-

linear equations to be solved can be reduced simply to 

( )
( )

1 1

1 1

0

0

U

UU

,n s,ns

,n s,n

,f

,f

λ λ

λ λ

+ +

+ +

 =∆ ∆


=∆ ∆
 (5.70) 

and the components of the Jacobian necessary for the iterative Newton-Raphson procedure are 

computed from 
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where 
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Uh is defined by eq. (5.65)2 and sh  is given by eq.(5.39)2. Following a procedure similar to the one 

described at Section 5.4.6, the consistent tangent stiffness matrix for corner mode is obtained as 



152 Chapter 5 

1

1

T Tep

n

d
-

d

−

+

 = = + 
s
e

H HU E HU HV VD  (5.73) 

where the modified stiffness matrix H is given by eq. (5.72) and the matrices U and V read 

U sgg ∂∂ 
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and the hardening matrix reads 

0

0
U

s

h

h

 
=  

 
E  (5.75) 

A remaining problem is how to identify which modes are active, because the location of the corner 

is unknown at the beginning of the load step and the trial stress cannot be used to predict accurately 

the number of active yield surfaces at the end of the increment. Several algorithms have been 

proposed to solve this question, e.g. Simo et al. (1988) and Feenstra (1993). Lourenço (1996) 

proposed an algorithm based on a trial and error procedure, which will be used here. 

5.4.8 Sub-incremental procedure 

A new unloading surface is activated each time a stress reversal takes place and it is deactivated 

when reaches the monotonic envelope for which it moves to. This means that yielding may occur 

on the unloading surface at the beginning of a given load step and on the monotonic surface at 

the end. Therefore, a sub-incremental procedure must be used in order to split such load 

increment in two sub-increments, each one corresponding to a different yield surface. 

In a strain driven process, in which the total strain vector is the only independent variable, see 

Section 5.2.2, the problem consists in the computation of the scalar 0 1β< <  

1 1 1(1- )n n n nβ β+ + += + +∆ ∆e e e e  (5.76) 

for which the use of the strain increment 1nβ +∆e  leads the unloading surface to touch the 

monotonic envelope. After the deactivation of the unloading surface, the remaining strain increment 

1(1- ) nβ +∆e  is used with the monotonic surface. In this study, β  is computed through a mathematical 

iterative procedure, where the monotonic yield function is evaluated at each iteration. 
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5.5 Validation against experimental data 

The numerical model has to be validated by comparisons with experimental results. However, 

available experimental results performed under cyclic loading in cementitious interfaces are 

scarce, especially experiments performed under tensile loading. Therefore, comparison will be 

done using masonry and concrete test results. It is important to note that the failure of the 

interface element under tensile loading is directly related with the failure of the mortar joint, but 

its failure under compressive loading is associated with the failure of the unit and mortar joint. 

The ability of the proposed constitutive model to simulate experimental results is next assessed by 

a comparison with reputed available experimental data obtained under several loading conditions. 

5.5.1 Direct shear test 

A direct shear test on mortar joints carried out by Atkinson et al. (1989) is used here to evaluate 

the ability of the model to predict cyclic shear loading assuming elastic unloading/reloading 

behaviour. The comparison between experimental data and numerical response is shown in 

Figure 5.14. The results were scaled by the experimental values at peak. A good agreement can 

be found between the experimental and the numerical results. As assumed at the formulation of 

the constitutive model, elastic behaviour for shear unloading/reloading showed to be a good 

approximation to experiments. The hypothesis of exponential softening seemed also to be 

appropriate for shear monotonic loading. 
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Figure 5.14 – Direct shear test under cyclic loading. 
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5.5.2 Uniaxial tensile test 

The ability of the model to capture the main features related to cyclic tensile tests is checked 

against the experimental results of Gopalaratnam and Shah (1985) on concrete specimens. 

The comparison between experimental and numerical results is shown in Figure 5.15, in terms of 

(σ-∆u) curve and total energy. The experimental data was modified in order to express a (σ-∆u) 

relationship and then scaled by experimental values at peak. The numerical response is in a good 

agreement with the experimental results, namely in terms of stiffness degradation and dissipated 

energy. A better agreement could be found if monotonic exponential softening were replaced by 

a more suitable law, e.g. Hordijk (1991). 
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Figure 5.15 – Uniaxial tensile test under cyclic loading: (a) scaled (σ-∆u) curve and (b) total 

energy. 

5.5.3 Uniaxial compressive test 

The experiments carried out by Karsan and Jirsa (1969) under cyclic compressive loading are 

used here to appraise the ability of the proposed model to simulate cyclic compressive loading. 

The experimental and numerical results are compared in Figure 5.16. As done in the previous 

Section, the experimental results were modified in order to express a (σ-∆u) relationship and 

then scaled by experimental values at peak. Characteristic features such as stiffness degradation 

during each unloading/reloading cycle and between cycles, as well as energy dissipation are 

simulated by the model in an appropriate fashion. 
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Figure 5.16 – Uniaxial compressive test under cyclic loading: (a) scaled (σ-∆u) curve; (b) total energy. 

5.5.4 Uniaxial tensile-compressive test 

The last example presented here deals with a tensile-compressive loading test performed by 

Reinhardt (1984) on a concrete specimen. Only six loading cycles were simulated. The 

comparison between experimental and numerical results is shown in Figure 5.17. 
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Figure 5.17 – Cyclic tensile-compressive loading test: (a) all cycles and (b) details of cycle 4 and cycle 6. 
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Once more, the results were normalized by experimental values at peak. In spite of the complex 

cyclic behaviour exhibited by the experimental result, particularly important stiffness changes 

associated with closing and reopening of cracks, the model showed to be able to describe 

accurately the experimental behaviour. 

5.6 Reflections about the proposed model 

The complete definition of the hardening laws presented in Section 5.4.4 requires the need of four 

new material parameters with respect to the monotonic version, which can be obtained from 

uniaxial cyclic experiments under tensile and compressive loading. These parameters define ratios 

between the plastic strain expected at some special points of the uniaxial (σ-∆un) curve and the 

monotonic plastic strain. Some of these points are schematized in Figure 5.18, and are defined as: 

− κ1t: plastic strain at zero stress when unloading from the monotonic tensile envelope, 

see Figure 5.18(a); 

− κ1c: plastic strain at zero stress when unloading from the monotonic compressive 

envelope, see Figure 5.18(b); 

− κ2c: plastic strain at the monotonic tensile envelope when unloading from the monotonic 

compressive envelope, see Figure 5.18(b); 

− ∆κc: plastic strain increment originated by a reloading from a CT or a CTCT unloading 

movement (stiffness degradation between cycles, see Figure 5.16a). 
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Figure 5.18 – Special points at the uniaxial (σ-∆u) curve: (a) tensile loading and 

(b) compressive loading. 
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Table 5.1 gives the material parameters used to simulate numerically the last three experiments 

presented above. These material parameters have a clear physical meaning and can be obtained 

from adequate uniaxial cyclic tests. The remaining parameters that fully define the selected 

hardening laws, which are required to observe imposed physical and mathematical conditions, 

were chosen to fit experimental data from the above cyclic tests and will be fixed henceforth. 

Table 5.1 – Adopted material parameters for cyclic behaviour. 

Numerical simulation 1

t

κ
κ

 1

c

κ
κ

 2

c

κ
κ

 c

c

κ
κ
∆  

Gopalaratnam and Shah (1985) 0.76    

Karsan and Jirsa (1969)  0.56 0.28 0.13 

Reinhardt (1984) 0.73    
 

5.7 Summary 

The use of the Newton-Raphson method to solve non-linear equations arising from the utilization 

of the finite element method is briefly presented, including some advanced solution procedures, 

able to increase the performance of the method. 

The incremental plasticity theory is reviewed and some improvements of the classical theory are 

described. An existing constitutive model for the monotonic behaviour of interface elements 

within the incremental theory of plasticity is described. 

Starting from this model, a new constitutive model entirely founded on the incremental theory of 

plasticity able to describe the cyclic loading of interface elements is proposed. Two new 

auxiliary yield surfaces, similar to the monotonic ones, are introduced. Each unloading surface 

can only move inside the admissible stress space and towards the similar monotonic yield 

surface. Its motion is controlled by a mixed hardening law. Elastic unloading is assumed only for 

the shear component. The normal component (tension and compression) is described in a 

nonlinear fashion, adopting appropriate hardening laws. Afterwards, the proposed model is 

checked against experimental data. Four reputed experimental results available in the literature 

were used. Comparison between experimental and numerical results showed that the most 

relevant features observed in experiments are captured by the model and, therefore, it can be 
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considered able to represent accurately the experimental behaviour. The material parameters 

necessary to perform cyclic analyses are presented. Their value show clearly the need of 

considering non- linear material behaviour during unloading, particularly stiffness degradation. 

This model will be used for the analysis of full masonry structures, as described in detail in 

Chapter 6. 

 

 

 



6. APPLICATIONS 

The objective of this Chapter is not to perform an exhaustive use of the developed constitutive 

model to engineering structures but solely to assess its ability to reproduce the main features 

observed in experiments, in an appropriate manner, which can only be achieved if validation 

against reliable experimental data is done. Three different groups of masonry structures will be 

analysed, using the developed numerical model. The first group concerns the analysis of two 

stacked bond prisms, tested under cyclic loading at Universitat Politècnica de Catalunya. The 

second group deals with a masonry shear wall tested at Eindhoven University of Technology. 

Finally, the last example concerns the analysis of two masonry shear walls, tested at the Joint 

Research Centre (Italy) and already used by other researchers to validate cyclic numerical 

models. In all numerical applications presented in this Chapter, numerical results were 

converged for an energy norm of 1×10-4. 

6.1 UPC stacked bond prisms 

The first example deals with two simple prisms, subjected to cyclic uniaxial compression, which 

have already been presented in Section 3.5. Two stacked bond prisms of five bricks each, named 

BP1 and BP2, were constructed and tested under cyclic loading until failure was reached. 

Modelling resorts to six-node zero-thickness line interface elements for the mortar joints and 

eight-node continuum plane stress elements for the brick units, as illustrated in Figure 6.1. 

δ

 
Figure 6.1 – Stacked bond prism: Geometry and modelling. 
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Both numerical analyses are carried out under displacement control by imposing equal vertical 

displacements at the top of the prisms, where horizontal movements are prevented to occur. In 

spite of the confinement provided by the machine platens, the slenderness ratio of 2.15 allows a 

predominant uniaxial behaviour at middle height. 

6.1.1 Elastic parameters 

The elastic properties of the bricks and mortar joints are computed using average values obtained 

from the experiments described in Section 3.4 and Section 3.5. The interface stiffness is derived 

using the expressions (CUR, 1997) 
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 (6.1) 

in which Eu and Em are the Young’s moduli and Gu and Gm are the shear moduli of the unit and 

the mortar, respectively, and hm is the mortar joint thickness. Table 6.1 summarizes the adopted 

elastic properties. 

Table 6.1 – Elastic properties for the units and joints (BP1 and BP2). 

Unit Interface 

E [N/mm2] ν [-] nk  [N/mm3] sk  [N/mm3] 

14700 0.20 648 288 
 

6.1.2 Inelastic parameters 

In the micro-modelling strategy, usually the units are assumed to behave elastically, whereas the 

overall non- linear behaviour is concentrated in the interface elements (Lourenço, 1996). 

Consequently, in a uniaxial compressive test, the compressive strength of the joint is equal to the 

compressive strength of the prism. Thus, a compressive strength of 29.15 N/mm2 is adopted for 

the interface elements. The parameters that characterize stiffness degradation were obtained by 
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inverse fitting. Table 6.2 summarizes the model parameters that characterize stiffness 

degradation under compressive loading, required by the numerical model. 

Table 6.2 – Adopted model parameters for cyclic behaviour. 

1

c

κ
κ
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c

κ
κ

 c

c

κ
κ
∆  

0.71 0.05 0.02 
 
Since the specimens BP1 and BP2 were made with the same materials, both analyses are carried 

out using the same elastic and inelastic model parameters. 

6.1.3 Discussion of the results 

The finite element model described above is submitted to two different numerical displacement-

controlled tests, defined in such a way that comparisons with experiments are possible. The 

numerical results obtained following this procedure, together with the experimental results, 

established in terms of axial load-displacement diagrams and evolution of the total energy, are 

shown in Figure 6.2 and Figure 6.3 for the prisms BP1 and BP2, respectively. 
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(a) (b) 

Figure 6.2 – BP1: comparison between experimental and numerical results in terms of (a) axial 

load-displacement diagram and (b) total energy evolution. 
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Figure 6.3 – BP2: comparison between experimental and numerical results in terms of (a) axial 

load-displacement diagram and (b) total energy evolution. 

The analysis of Figure 6.2(a) and Figure 6.3(a) indicates that the global load−displacement 

response is well reproduced by the model, although hardening behaviour in the pre-peak branch 

could have been better simulated if a different hardening law had been used. This purpose will 

not be pursued here, since the main objective is to evaluate the ability of the proposed model to 

reproduce the features observed in experiments involving cyclic loading and not to fit closely the 

monotonic axial load-displacement curve. 

The dissipated energy is also an important issue when dealing with cyclic loading. The 

comparisons exhibited in Figure 6.2(b) and Figure 6.3(b) between experimental and numerical 

results show that a good agreement can be found, aside from the lag originated by differences in 

the hardening branch of the axial load-displacement diagram. 

Table 6.3 exhibits the numerical Young’s moduli of the prisms measured initially (elastic value) 

and measured at each one of the reloading branches, by means of linear least square regressions. 

It was found that BP1 and BP2 exhibit reloading Young’s moduli values very close to each 

other, essentially because unloading was initiated at similar stress levels. Experimental Young’s 

moduli, presented in Table 3.22, are also reproduced in Table 6.3 for a better comparison. In 

reference directly to cyclic behaviour, the comparison between numerical and experimental 

results has shown that stiffness degradation is well captured by the model. 
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Table 6.3 – Numerical Young’s moduli: elastic value and values measured at each reloading 

branch (the experimental values are also presented for a better comparison). 

E [GPa] 
Brick prism 

E0 rb1 rb2 rb3 rb4 rb5 rb6 rb7 

BP1 (num) 11.1 10.8 10.8 10.7 10.4 9.0 7.0 4.8 

BP2 (num) 11.1 10.7 10.7 10.4 9.2 7.1 4.9  

         BP1 (exp)  10.58 10.82 10.13 10.83 7.86 6.68 4.16 

BP2 (exp)  10.84 11.16 11.07 7.91 5.66 4.40  
 

The experimental failure modes of the prisms, see Section 3.5 for a review, pointed out that 

failure was essentially due to splitting of the bricks instead of crushing of the mortar, as reported 

by others researchers, e.g. McNary and Abrams (1985) and Binda et al. (1996b). This seems to 

be in contradiction with the assumption of elastic behaviour of the units. But, as stated in 

Chapter 5, these numerical results must be seen as phenomenological approaches to the observed 

experimental results and, in this context, the adopted modelling strategy has shown to be quite 

efficient in reproducing the overall observed behaviour. Furthermore, better results concerning 

the monotonic behaviour could have been achieved if a different hardening law had been chosen. 

6.2 TUE masonry shear wall 

In this section a masonry shear wall tested at the University of Eindhoven, within the scope of 

the CUR project (CUR, 1997), is numerically tested in a cyclic fashion. Since the wall was 

experimentally tested under monotonic loading, no comparisons can be established between the 

experiments and the numerical cyclic results to be attained here. Therefore, the main purposes of 

this numerical experiment are directly concerned with the application of the developed 

constitutive model to an existing masonry structure in order to investigate features related to 

cyclic behaviour, as stiffness degradation, energy dissipation and failure patterns. 
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6.2.1 Experimental set-up 

Within the scope of the CUR project, Raijmakers and Vermeltfoort (1992) and Vermeltfoort and 

Raijmakers (1993) have tested several masonry shear walls, either with or without central 

openings. The walls were characterized by a height/width ratio of one, with dimensions of 

1000×990 mm2, as represented in Figure 6.4. The walls were made of wire-cut solid clay bricks 

with dimensions 210×52×10 mm3 and 10 mm thick mortar, prepared with a volumetric 

cement:lime:sand ratio of 1:2:9. The shear walls were built with 18 courses, from which only 16 

were considered active, since the 2 extreme courses were clamped in steel beams. 
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Figure 6.4 – Geometry of the tested masonry shear walls. 

During testing, different vertical uniform loads were initially applied to the walls. Afterwards, 

for each level of vertical load, a horizontal displacement was imposed at the top steel beam, 

keeping the top and bottom steel beams horizontal and preventing any ve rtical movement of the 

top steel beam. For the purpose of investigating the cyclic behaviour, a wall without any opening 

and submitted to a vertical uniform load of 121.2 N/mm is considered here, which corresponds to 

an average compressive stress value of 1.21 N/mm2. In what follows, the wall to be tested is 

denoted as TUE wall. 



Applications 165 

6.2.2 Numerical modelling 

In the developed finite element model, units were modelled considering eight-node plane stress 

elements while mortar joints are represented by six-node zero-thickness line interface elements, 

as illustrated in Figure 6.5. Potential vertical cracks in the middle of the units are not included 

here since their consideration usually leads to sudden load falls in the load−displacement 

diagram, which is associated with numerical cracking in the middle of the unit. As a result, their 

inclusion generally affects the robustness of the numerical model. 

 

continuum element

interface element

 

Figure 6.5 – Finite element model of the TUE wall: six-node zero-thickness line interface 

elements and eight-node continuum plane stress elements. 

The model parameters necessary for modelling are adopted from Lourenço (1996), where this 

wall has been numerically tested under monotonic loading. Table 6.4 and Table 6.5 summarize 

the elastic and inelastic parameters necessary for a complete monotonic study. 

Table 6.4 – Elastic properties for the units and joints (TUE wall). 

Unit Joint 

E [N/mm2] ν [-] nk  [N/mm3] sk  [N/mm3] 

16700 0.15 110 50 
 

Table 6.5 – “Monotonic” inelastic properties for the joints (TUE wall). 

Tension Shear Compression 

ft I
fG  c  II

fG  fc III
fG  

[N/mm2] [Nmm/mm2] [N/mm2] 
tanφ tanψ 

[Nmm/mm2] [N/mm2] [Nmm/mm2] 

0.16 0.012 0.224 0.75 0.0 0.050 11.5 13.7 
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With respect to the parameters that control cyclic behaviour, since no experimental data 

concerning cyclic behaviour is available, an accurate definition of these parameters was not 

possible and, therefore, it was decided to base the choice of these parameters on the values 

introduced in Chapter 5. The adopted values are shown in Table 6.6. 

Table 6.6 – “Cyclic” inelastic properties for the joints (TUE wall). 

Tension Tension - compression Compression 

1

t

κ
κ

 1

c

κ
κ

 2

c

κ
κ

 c

c

κ
κ
∆  

0.60 0.75 0.50 0.0 
 

The parameter Css that controls the contribution of the shear stress to compressive failure was set 

equal to zero. The reason of this choice is directly related to the intended robustness of the 

numerical model. It was verified that this assumption increases the robustness of the constitutive 

model, specially under load reversal and, at the same time, it is not expected to influence 

noticeably the accuracy of the structural response for lower compressive stress states, since only 

few material points are expected to have their stress state affected. 

Monotonic behaviour 

The finite element model of the TUE wall is submitted to increasing imposed displacements at 

the top steel beam, both in the left-right (LR) direction and in the right- left (RL) direction. The 

monotonic behaviour of the TUE wall is presented in Figure 6.6 (LR direction) and Figure 6.7 

(RL direction), in terms of horizontal load-displacement diagram and deformed pattern. It was 

decided to stop numerical analyses after reaching peak load since the main goal is to investigate 

specific issues related to cyclic behaviour. 

As it can be inferred from the analysis of Figure 6.6 and Figure 6.7, for displacements greater 

than 2 mm the horizontal load-displacement response is highly depending on the horizontal 

loading direction, although deformed patterns are rather resembling in qualitative terms. The 

geometrically asymmetric wall is due to the fact that the first course does not contain an integer 

number of bricks (it starts with a entire brick and finishes with a half brick) together with an 

even number of courses. As expected, the lower load capacity occurs when the top and bottom 

halves bricks are in compression (loading in the RL direction). Taking this issue into account, it 
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is likely that the wall exhibits asymmetry when loaded in a cyclic fashion, and that the cyclic 

behaviour deviates from the monotonic behaviour. 
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Figure 6.6 – TUE wall: (a) monotonic horizontal load-displacement diagram (LR direction); 

(b) principal compressive stresses [N/mm2] depicted on the incremental deformed 

mesh at the end of analysis. 
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Figure 6.7 – TUE wall: (a) monotonic horizontal load-displacement diagram (RL direction); 

(b) principal compressive stresses [N/mm2] depicted on the incremental deformed 

mesh at the end of analysis. 

Figure 6.6(b) and Figure 6.7(b) show clearly that, independently of the loading direction, failure 

is originated by the progress of diagonal stepped cracks. If cracking of the units had been 



168 Chapter 6 

allowed, diagonal cracking would have been more concentrated (Lourenço, 1996). It is 

perceptible that the development of diagonal cracks leads to the formation of two distinct struts, 

one at each side of the diagonal line while minor internal forces between the two sides of the 

diagonal are transmitted by shearing of the bed joints. At the supports, the high compressive 

stress leads to masonry crushing. 

Cyclic behaviour: Analysis I 

In order to investigate the cyclic behaviour of the TUE wall, it was decided to submitted initially 

the structure to a set of loading−unloading cycles by imposing increasing horizontal 

displacements at the top steel beam, where unloading is performed at +1.0 mm, +2.0 mm, 

+3.0 mm and +4.0 mm, until a zero horizontal force value is achieved. The global horizontal 

load-displacement diagram, obtained following the described procedure, is shown in Figure 6.8, 

where the evolution of the total energy is also given. 
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(a) (b) 

Figure 6.8 – TUE wall (analysis I): cyclic horizontal load-displacement diagram 

(LR direction), where the dotted line represents the monotonic curve; (b) total 

energy evolution. 

Figure 6.8(a) shows that the cyclic horizontal load−displacement diagram follows closely the 

monotonic one aside from the final branch, where failure occurs for a smaller horizontal 

displacement. Unloading is performed in a quite linear fashion, while reloading presents initially 

high stiffness (but lower than the elastic stiffness), due to closure of diagonal cracks, with 
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combined mode I and mode II behaviour, and then is followed by a progressive decrease of 

stiffness (reopening). From Figure 6.8(a) it is also possible to notice important stiffness 

degradation between cycles. Since unloading is almost linear, a comparison between the elastic 

stiffness and the values measured in the unloading branches is rather straightforward. Table 6.7 

presents the ratios between the stiffness of the unloading branches (ub), measured by means of 

linear least square regressions, and the elastic stiffness. Stiffness degradation increases with the 

imposed lateral displacements and at +4.0 mm is about half of the elastic value. 

Table 6.7 – Stiffness ratio of the unloading branches. 

E/E0  

ub1 ub2 ub3 ub4 

0.87 0.67 0.57 0.51 
 

The sequence of the unloading−reloading cycles originates a structural response characterized by 

a light strength degradation (around 4%) as well as noticeable stiffness degradation, see 

Figure 6.8(a). From the same figure it can also be observed that the energy dissipated in an 

unloading−reloading cycle is increased from cycle to cycle, see also Figure 6.8(b). This seems to 

indicate that masonry shear walls with diagonal zigzag cracks possess an appropriate seismic 

behaviour with respect to energy dissipation. Phenomenological correct, these features are 

essentially dependent on the chosen shape of the hardening laws, defined in Chapter 5, and 

secondarily on the model parameters, defined in Table 6.6. Figure 6.9 illustrates the incremental 

deformed meshes with the principal compressive stresses depicted on them, for imposed 

horizontal displacements in correspondence with Figure 6.8(a). In spite of the cyclic horizontal 

displacements imposed to the wall, the deformed pattern that eventually characterizes the failure 

mode is quite similar to the ones found in the monotonic analyses. This fact can be concluded by 

comparing Figure 6.6(b) and Figure 6.7(b) with Figure 6.9(d). Initially, the structural response is 

characterized by the formation of a single, large, compressive strut, as evidenced in 

Figure 6.9(a). During unloading to zero force, cracked head joints are partially closed and bed 

joints slide in the opposite direction. As happened in both monotonic analyses described before, 

the evolution of the diagonal cracks clearly lead to the development of two struts, one at each 

side of the diagonal line. The softening behaviour that appears after peak load is caused by 

compressive crushing of the lower toe of the wall, which eventually leads to failure. 
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(a) (b) 

  
(c) (d) 

Figure 6.9 – TUE wall (analysis I): Principal compressive stresses [N/mm2] depicted on the 

incremental deformed mesh for a horizontal displacement equal to [mm]: (a) +1.0; 

(b) +2.0; (c) +3.0; (d) +4.0. 

Cyclic behaviour: Analysis II 

The behaviour of the same TUE submitted to an increasing cyclic displacement-controlled test 

including total load reversal is now analyzed. Subsequently to the application of the vertical 

uniform load of 121.2 N/mm (average compressive stress value of 1.21 N/mm2), as done before, 

the displacement law illustrated in Figure 6.10 is imposed at the top steel beam. Taking into 

account the monotonic structural response illustrated in Figure 6.7, it is expect that failure occurs 

before the end of the imposition of the displacement law. 
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Figure 6.10 – Imposed lateral displacements to TUE wall (analysis II). 

The numerical results, in terms of horizontal load-displacement diagram and total energy, are 

represented in Figure 6.11. From the figure it can observed that, aside from the descending 

branch leading to failure, the structure shows a relatively symmetric behaviour, in terms  of the 

load-displacement curve, in spite of the geometric unit asymmetry. 
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(a) (b) 

Figure 6.11 – TUE wall (analysis II): cyclic horizontal load-displacement diagram (the dashed 

lines represent the maximum monotonic loads); (b) total energy evolution. 

The observation of symmetric response is further supported by the information displayed in 

Table 6.8, where horizontal loads and stiffness ratios of the load reversal points are given. As 

observed in Analysis I, unloading/reloading branches are linear in a great extension. 
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Table 6.8 – Characterization of the load reversal points in terms of horizontal load and 

unloading stiffness ratio. 

Displacement 
[mm] 

Horizontal load 
[kN] 

Unloading stiffness 
ratio 

+1.0 74.1 0.88 

-1.0 75.3 0.89 

+2.0 88.5 0.66 

-1.3 78.7  
 

The similarity of the structural response in both directions is due to the fact that displacements 

corresponding to the beginning of unloading are smaller than 2 mm, that corresponds to the limit 

from which the monotonic diagrams start to show clear differences between themselves. It is also 

stressed that the asymmetry is only in the micro-structure (units) and not in the macro-structure 

(wall). However, the geometric asymmetry of the wall is most likely the main cause leading to 

failure in the RL direction. Moreover, if the imposed displacement had initially been applied in 

the RL direction, probably the wall would have failed in the RL direction, as in this example, due 

to the geometric asymmetry.  

Both maximum horizontal loads obtained in this analysis, either in the LR direction (88,5 kN) or 

in the RL direction (78,7 kN), are lower than the maximum values achieved in the monotonic 

analyses (112.0  kN in the LR direction and 90.8 kN in the RL direction). With reference to the 

LR direction, if the wall had not collapsed during the last RL movement, possibly a horizontal 

load higher than 88.5 kN would have been attained in the following LR movement (+3.0 mm). 

However, a maximum cyclic horizontal load, obtained during the last RL movement, lower than 

the maximum monotonic horizontal load (RL direction), reflects an important loss of 

strength (≈13%), which may be related with the diagonal cracking. 

Figure 6.12 shows the incremental deformed meshes together with the principal compressive 

stresses, for values of the horizontal displacement corresponding to the initiation of the 

unloading branches. Initial visible damage appears in the middle of the wall and is characterized 

by the formation of cracks, both in head joints and in bed joints. When a load reversal is 

initiated, a closure of the cracked head joints is observed and new head joints start to crack or to 

reopen. The typical deformed pattern, characterized by the development of two major 
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compressive struts and already discussed at the time when monotonic results were presented, is 

once more found for cyclic loading, characterizing the structural response in both directions. 

  
(a) (b) 

  
(c) (d) 

Figure 6.12 – TUE wall (analysis II): Principal compressive stresses [N/mm2] depicted on the 

incremental deformed mesh for a horizontal displacement equal to [mm]: (a) +1.0; 

(b) –1.0; (c) +2.0; (d) -1.4 (failure initiation). 

The present numerical analysis was stopped when softening behaviour  was clearly detected. In 

spite of that, the analysis could have been continued under load control and using the arc-length 

method, an advanced solution procedure mentioned in Chapter 5, which exerts an indirect 

displacement control over the most active interface elements, that is to say interface elements 

submitted to the higher compressive stresses. 
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6.3 JRC masonry shear walls 

The need for a realistic assessment of the seismic vulnerability of existing masonry buildings has 

led the National Research Council of Italy (CNR) to develop a comprehensive research program 

concerning old masonry structures. The large number of constructions built before the existence 

of appropriate seismic codes associated with the lack of knowledge about the material properties 

can be seen as the main reasons for this need, see Calvi et al. (1992). Generally, these (three-

dimensional) structures are subject to complex loading conditions. However, the modelling of 

single components is preferred to understand the fundamental mechanics involved. Actually, a 

good understanding of how old masonry structures behave is a key aspect if structural 

interventions are intended to be designed or if a safety assessment is sought. Since masonry 

shear walls are the main reaction systems in most old masonry buildings, their study as structural 

components of more complex structures assumes a great importance to understand the behaviour 

of masonry structures. 

6.3.1 Experimental set-up 

Two types of masonry walls were chosen for being representative of the building prototype 

tested at Pavia University (Calvi et al., 1992) within the framework of the research program 

promoted by CNR. The two walls were made of 250×120×55 mm3 brick units and hydraulic 

lime mortar (the same materials as those used to construct the building prototype) arranged in 

two-wythes thickness English bond pattern with the same width of 1000 mm, the same thickness 

of 250 mm, the same joint thickness of 10 mm, but different heights, see Figure 6.13. The higher 

wall (HW) presented a height/width ratio of 2.0 whereas the lower wall (LW) presented a ratio of 

1.35. The tests were performed at the Joint Research Centre (JRC), Ispra, Italy (Anthoine et al., 

1995). Henceforth, these walls are here referred as the JRC walls. 

The experimental results have shown that the different height/width ratio implies quite important 

changes in the wall’s overall behaviour. These changes are most certainly related to the 

activation of different mechanisms of non- linearity, namely cracking of the joints, frictional 

sliding along the joints, tensile and shear rupture of the units and compressive failure of 

masonry. 
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Figure 6.13 – Unreinforced masonry shear walls: (a) high wall (HW); (b) low wall (LW). 

Load and boundary conditions were chosen in order to reproduce as well as possible the real 

conditions experienced by the walls during a seismic occurrence. In this way, a uniform vertical 

compressive load was initially applied. Afterwards, a quasi-static cyclic horizontal displacement 

was imposed to the steel beam, at the top of the wall. The experimental set-up was such that the 

steel beam was prevented to rotate, so allowing the same vertical and horizontal displacements to 

all points of the beam (Anthoine et al., 1995). Both JRC walls were initially subject to a uniform 

vertical load of 150 kN, resulting in an average normal stress of 0.6 N/mm2. Keeping this vertical 

load constant, increasing alternated in-plane horizontal displacements were imposed to each 

wall, which are schematically illustrated in Figure 6.14. In both experiments, two cycles were 

performed at each amplitude, with the exception of the low wall for which three cycles were 

done, for a given amplitude. 
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(a) (b) 

Figure 6.14 – Imposed lateral displacements in experiments: (a) high wall; (b) low wall. 

6.3.2 Numerical modelling 

In the finite element model developed for the analysis of these masonry walls, units are modelled 

through eight-node plane stress elements while mortar joints are represented by six-node zero-

thickness line interface elements, as illustrated in Figure 6.15. Potential vertical cracks in the 

units are again not included in the model. 

 

continuum element

interface element

 

Figure 6.15 – Finite element model: six-node zero-thickness line interface elements and eight-

node continuum plane stress elements. 

The choice of the appropriate model parameters values necessary to numerical modelling is most 

of the times a quite difficult task. If, on the one hand, masonry experimental results are 

characterized by a wide scatter, on the other hand, reliable experimental data suitable for 

calibrating numerical models is, most of the times, scarce or even inexistent. Along with the 

construction of the construction of the building prototype and the JRC walls, the research 

program promoted by CNR included an experimental research to characterize those materials, 

see reports by Binda et al. (1995a, 1995b). As expected, most of the experiments showed a large 

scatter in the results. Therefore, it was decided that the required model parameters would be 

based on average experimental values. The adopted elastic and inelastic parameters are defined 

in Table 6.9, Table 6.10 and Table 6.11. The parameter Css is assumed to be equal to zero. With 
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respect to the inelastic parameters which characterize cyclic behaviour, no suitable experimental 

data was available. Hence, the chosen values are equal to the values used in the analysis of the 

TUE wall. Such scattering in the results would probably allow a close fitting of the experimental 

results in terms of the global load-displacement diagram. However, such attempt will not be 

followed here. 

Table 6.9 – Elastic properties for the units and joints (JRC walls). 

Unit Joint 

E [N/mm2] ν [-] nk  [N/mm3] sk  [N/mm3] 

2500 0.15 48 21 
 

Table 6.10 – “Monotonic” inelastic properties for the joints (JRC walls). 

Tension Shear Compression 

ft I
fG  c  II

fG  fc III
fG  

[N/mm2] [Nmm/mm2] [N/mm2] 
tanφ tanψ 

[Nmm/mm2] [N/mm2] [Nmm/mm2] 

0.15 0.020 0.35 0.60 0.0 0.050 5.0 5.0 
 

Table 6.11 – “Cyclic” inelastic properties for the joints (JRC walls) 

Tension Tension - compression Compression 

1

t

κ
κ

 1

c

κ
κ

 2

c

κ
κ

 c

c

κ
κ
∆  

0.60 0.75 0.50 0.10 
 

High wall (HW) 

In order to get an idea about the overall structural behaviour, a monotonic analysis is initially 

carried out. The results are shown in Figure 6.16, in terms of horizontal load-displacement 

diagram and incremental deformed mesh, together with the contour of the principal compressive 

stresses. The structural behaviour is mainly characterized by the opening of the top and bottom 

bed joints, in close resemblance with a rigid body movement. 
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Figure 6.16 – HW: (a) monotonic horizontal load-displacement diagram; (b) principal 

compressive stresses [N/mm2] depicted on the incremental deformed mesh. 

After the monotonic analysis, a cyclic analysis is performed. Alternated lateral displacements, in 

accordance with Figure 6.14(a), are imposed at the level of the top steel beam. The cycle of 

±12.5 mm is only performed once, since the response mechanism is well identified and failure is 

not expected to occur on that cycle. Figure 6.17 presents the numerical results in terms of 

horizontal load-displacement diagram and total energy evolution of the system. The 

experimental results are illustrated in Figure 6.18, in terms of the same quantities, so that a 

comparison can be easily done (see also Anthoine et al., 1995). Moreover, for a better 

understanding of the cyclic behaviour, Figure 6.19 represents the principal compressive stresses 

represented on the incremental deformed meshes, for lateral displacements of ±2.5 mm, ±7.5 mm 

and ±12.5 mm. 

The numerical response indicates clearly that the high wall submitted to alternate horizontal 

displacements simply rocks in both ways. The highly non- linear shape of the load−displacement 

curve is essentially due to the opening and subsequent closure, under load reversal, of the top and 

bottom bed joints, which is evidenced by Figure 6.19. Similar deformed patterns, involving the 

opening of extreme bed joints, were observed during the experimental test (Anthoine et al., 1995). 
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(a) (b) 

Figure 6.17 – High wall: cyclic numerical results in terms of (a) horizontal load-displacement 

diagram and (b) total energy evolution. 
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(a) (b) 

Figure 6.18 – High wall: cyclic experimental results in terms of (a) horizontal load-displacement 

diagram and (b) total energy evolution (Anthoine et al., 1995). 

Numerical results show that the cyclic behaviour of the wall is essentially controlled by the 

opening and closure of the extreme bed joints, where damage is mainly concentrated. The model 

also shows low energy dissipation, which is a consequence of the non- linear mechanism 

activated (opening-closure of bed joints). 
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(a) (c) (e) 

   
(b) (d) (f) 

Figure 6.19 – High wall: Principal compressive stresses [N/mm2] depicted on the incremental 

deformed mesh for a horizontal displacement equal to [mm]: (a) +2.5; (b) –2.5; 

(c) +7.5; (d) –7.5; (e) +12.5; (f) –12.5. 

It was observed that at the end of the numerical test, the masonry wall seemed to be in good 

condition. It is believe that even if the second cycle of ±12.5 mm had been imposed, failure of 

the wall would have not been achieved. This fact is in accordance with the experiment. Actually, 

the wall was not destroyed at the end of the experimental test, which allowed it to be tested once 

more, this time applying a larger vertical load. 

The analysis of Figure 6.17, Figure 6.18 and Figure 6.19 shows that the constitutive model is 

able to reproduce with accuracy the experimental cyclic response of the high wall, both in terms 

of maximum load (Fexp = 72 kN and Fnum = 67.6 kN), global load-displacement diagram, 
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hystereses cycles and total energy evolution and in terms of deformed mesh, which allows to 

conclude that good agreement is found between the numerical and experimental results. 

Low wall (LW) 

In what follows, the structural response of the low wall is analyzed. For that, the same finite 

element model as well as the same model parameters are used in this analysis. A previous 

monotonic analysis is performed in order to outline the wall’s behaviour. The results are shown 

in Figure 6.20, in terms of horizontal load-displacement diagram and incremental deformed 

mesh, together with the contour of the principal compressive stresses, after peak load has been 

reached. 
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(a) (b) 

Figure 6.20 – Low wall: (a) monotonic horizontal load-displacement diagram; (b) principal 

compressive stresses [N/mm2] depicted on the incremental deformed mesh. 

The numerical results show that the maximum horizontal load is overestimated (the experimental 

results are shown in Figure 6.24), in spite of the incremental deformed mesh being in accordance 

with the experimental crack pattern and failure mode. These preliminary results indicate that the 

walls behave in a distinct manner, due to a different height/width ratio, for which different 

inelastic mechanisms are activated. In the low wall, failure is initiated at the central part of the 

wall, where vertical cracks along head joints are clearly noticeable. These differences in the 

structural behaviour were observed in the experiments (Anthoine et al., 1995). 
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Afterwards, the displacement law illustrated in Figure 6.14(b) is imposed to the low wall, in 

order to characterize its cyclic response. The numerical results are shown in Figure 6.21. It was 

observed that, for a displacement close to +4.1 mm, the steel beam started to slide along the top 

tier of bricks. Since this mechanism has not been observed in the experiment, it was decided to 

stop the analysis. 
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Figure 6.21 – Low wall: (a) cyclic horizontal load-displacement diagram; (b) principal 

compressive stresses [N/mm2] depicted on the incremental deformed mesh, for a 

displacement equal to +4.1 mm. 

The unexpected sliding of the steel beam along the bricks raises two main questions with respect 

to both walls, but particularly to the low wall: 

− Are the boundary conditions experienced by the walls well simulated? 

− Are the chosen model parameters values the most adequate? 

In relation to the first question, all the available information related to boundary conditions 

(Anthoine et al., 1995; Gambarotta and Lagomarsino, 1997a) is rigorously followed and 

implemented in the present finite element model. If sliding was not prevented to happen in the 

experiments, then the sliding observed numerically may be related with some inappropriate 

model parameter value, which lead unavoidably to the second question. The definition of the 

model parameters values in the context of historic masonry structures is always a complex task, 

essentially motivated by the lack of appropriate experimental data or, when it is available, by the 
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important scatter present on it. With respect to this issue, with basis on the wide scatter presented 

in available experiments, it was decided to adopt average values, as already referred. Possibly, 

the adoption of other than the average values for the model parameters would lead to a better 

fitting of the experiments. Since no further information is available and considering that no 

sliding of the steel beam was detected in experiments, it is decided to perform again the analysis 

of the low wall, now considering perfect shear bond between the last course of bricks and the 

steel beam. As usually, the study was started by analyzing the monotonic behaviour of the wall. 

The structural response is shown in Figure 6.22, in terms of horizontal load-displacement 

diagram and incremental deformed mesh, with the principal compressive stresses represented on 

it. The wall’s behaviour is quite similar to the one illustrated in Figure 6.20, which means 

basically that sliding of the steel beam did not occur in the first run under monotonic loading, 

being due to cyclic loading. On the other hand, it is believed that the overestimation of the peak 

load can be surpassed if a lower value of the compressive strength is adopted. But this objective 

is not pursued here. 
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(a) (b) 

Figure 6.22 – Low wall: (a) monotonic horizontal load-displacement diagram (run 2); 

(b) principal compressive stresses [N/mm2] depicted on the incremental deformed 

mesh. 

The cyclic analysis is done by imposing the prescribing horizontal displacements to the top of 

the wall, subsequently to the application of the vertical load. Figure 6.23 characterizes the 

structural response in terms of the cyclic horizontal load-displacement diagram and incremental 
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deformed mesh with the principal compressive stresses depicted on it, as usual. The experimental 

results are illustrated in Figure 6.24, in terms of the same quantities. 
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(a) (b) 

Figure 6.23 – Low wall: cyclic numerical results in terms of (a) horizontal load-displacement 

diagram and (b) total energy evolution. 
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(a) (b) 

Figure 6.24 – Low wall: cyclic experimental results in terms of (a) horizontal load-displacement 

diagram and (b) total energy evolution (Anthoine et al., 1995). 

In addition, Figure 6.25 shows the principal compressive stresses represented on the incremental 

deformed meshes, for lateral displacements of ±1.5 mm, ±3.0 mm, +4.5 mm and –2.9 mm. 
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(a) (c) (e) 

   
(b) (d) (f) 

Figure 6.25 – Low wall: Principal compressive stresses [N/mm2] depicted on the incremental 

deformed mesh for a horizontal displacement equal to [mm]: (a) +1.5; (b) –1.5; 

(c) +3.0; (d) –3.0; (e) +4.5; (f) –2.91 (failure initiation). 

For the cycles of small amplitude (±1.5 mm and ±3.0 mm) damage is essentially due to the 

opening–closure at the corners, as it can be confirmed by analyzing the shape of the unlo ading 

branches of the load−displacement diagram and the deformed meshes from Figure 6.25. For 

higher displacements, the deformed pattern is characterized by the development of cracks in the 

head joints of the central region of the wall. The changing of the main inelastic mechanism is 

clearly visible from the shape of the unloading branch started at a displacement of +4.5 mm. 

Unloading and subsequent reloading causes damage in the same area, leading to the formation of 

a kind of vertical crack, only interrupted by the units, that are not allowed to crack. This kind of 

alignment of vertical cracks is the main cause leading to failure initiation, see Figure 6.25(f). 

This type of deformed pattern was also observed in the experiment. In spite of that, only a part of 

the numerical load-displacement diagram has been obtained, due to failure initiation for a 

displacement close to –2.91 mm. 

It is known that some physical problems are sensitive to small variations in data parameters. This 

sensibility of the structural response to the input data is certainly increased with non- linear 
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constitutive models. Therefore, a sensibility analysis should be carried out in order to evaluate 

the sensibility of the structural response to the variation of most important parameters for this 

example, as cohesion, compressive strength and compressive facture energy. Also, more 

information concerning the establishment of the experimental boundary conditions is needed. 

Another important feature is related with the representativeness of the experimental result from 

just one test. Taking into account the large scatter that characterizes masonry in general, at least 

two experiments of each wall should had been performed. This aspect assumes special relevance 

because the main objective of the numerical analyses is to capture the most relevant features 

observed in the experiments and not to fit closely the load-displacement diagram of a given wall. 

6.4 Summary 

The performance of the developed constitutive model has been investigated against three groups 

of masonry structures. The numerical results have shown that the model is able to reproduce the 

main features that characterize cyclic behaviour, where the main inelastic mechanisms as 

cracking of the joints, frictional sliding along the joints and compressive failure of masonry were 

involved. During the analysis of the TUE wall, different structural responses were found in 

opposite directions of horizontal loading. The reasons for such differences are related with the 

asymmetrical geometry of the masonry shear wall. The cyclic analysis performed on the wall 

exposed the main structural cyclic characteristics, as stiffness degradation and energy 

dissipation. With basis on the results, it is recommended that structures intended to be analysed 

cyclically should possess a symmetrical geometry configuration. Furthermore, the validation of 

the constitutive model against experimental data has been carried out. The simulation of the UPC 

prisms has been successfully achieved, where numeric results followed closely the experimental 

ones. The analysis of the JRC walls has been only partially succeeded. The simulation of the 

high wall has been totally fulfilled, where the dominant joint opening-closure mode was well 

captured by the mode. Important differences concerning the structural behaviour, failure mode 

and dissipated energy were found between the TUE wall and the JRC wall (high wall). Such 

satisfactory results have not been possible to attain for the low wall. Failure started earlier than in 

the experiment, although the obtained failure mode was similar to the experimental one. 

The large importance of an accurate modelling of the boundary conditions has been emphasized 

and the difficulty of an appropriate definition of the model parameters has also been shown. This 
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difficulty arises mainly due to the inexistence of appropriate experimental data. Aside from any 

other information, a definition based simply on average values has been addressed. 

Finally, a more refined finite element mesh (each unit modeled with 4×2 elements instead of 

2×1 elements) would most likely increase the insight into the response of the wall specially in 

the softening regime, since during the possible collapse of a given integration point, less amount 

of energy would be released and, therefore, a more soft post-peak diagram would be achieved. 
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7. CONCLUDING REMARKS 

The study of historical masonry structures demands a combined experimental and numerical 

research program in order to obtain an adequate material characterization, which is used both to 

supply data to numerical models  and to validate the respective numerical results. This approach 

is followed in the present study. An advanced material characterization, based on complex 

deformation-controlled tests, was carried out and the experimental data obtained in this fashion 

was used both for the calibration of the constitutive model and for the validation of the numerical 

simulations. Characteristic features associated with the structural behaviour under cyclic loading 

were used to develop a cyclic constitutive model, based on a phenomenological approach. The 

material discontinuity introduced by the existence of the joints makes the use of interface 

elements within a finite element formulation an appropriate option to model masonry structures, 

which is followed in this study. 

Experimental research 

Within an experimental research program undertaken by Universidade do Minho, aiming at the 

mechanical characterization of historical masonry building materials, experimental deformation-

controlled tests were carried out at Universitat Politècnica de Catalunya and at Universidade do 

Minho, consisting of specimens and assemblages made of stone (sandstone) and bricks, tested 

under monotonic and cyclic compressive and shear loading. Also dry stone masonry walls were 

tested under simultaneous compressive and shear loading. 

The stone specimens tested under compressive loading were characterized by high peak strength 

values and by a very pronounced fragile softening behaviour. When measuring the Young’s 

modulus in the specimens, no relevant differences were found between LVDTs measurements 

and strain gauges measurements. The comparison between the experimental results derived from 

the stone specimens and from the dry stone assemblages showed that the Young’s modulus 

computed for the stone specimens and for the stone prisms presented very similar average 

values. On the other hand, a considerable decrease of peak strength occurred when shifting from 

stone specimens to masonry, in terms of average values. It seemed that both the wide scatter 

presented by the experimental results concerning stone specimens and the horizontal 
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discontinuity between the stone pieces is likely to result in stress concentrations in a few contact 

points, which originated the failure of the stone prisms for lower load values than the stone 

specimens. The shear stress-relative shear displacement diagrams from the direct shear tests 

performed on dry stone joints were characterized by a marked elasto-plastic behaviour. During 

the cyclic loading, neither stiffness degradation nor hardening behaviour between cycles was 

noticeable. 

Also brick specimens, entirely prismatic and made of three aligned cylinders, were tested under 

compressive loading. Again, the results showed a manifest brittle behaviour. With reference to 

the Young’s modulus and peak strength values, no significant differences were found between 

the prismatic and cylindrical specimens. In addition, four stacked bond prisms made of five 

bricks each, were constructed and tested under cyclic loading. The average strength value of the 

prisms was much higher when compared to single mortar specimens, but less than the average 

strength of the bricks tested separately. 

The brittle behaviour exhibited both by stone and brick specimens, has shown that post-peak regime 

cannot be captured using an ordinary axial displacement control. A more advanced control technique, 

such as circumferential control, has to be used. With reference to the stone cylindrical specimens, it 

was shown that a reduction of the height/diameter ratio, from 2.4 to 2.0, led to a more stable post-

peak behaviour. Therefore, based in these results, it is recommended its adoption in future work. 

However, it is noted that ratios lower than 2.0 might not ensure a uniaxial stress state at the center of 

the specimen. The experimental results concerning specimens and prisms have shown that the 

intrinsic variability of the mechanical properties of natural stone and clay brick masonry is a rather 

significant issue that should be taken into account when dealing with historical building materials. 

Seven dry jointed stone masonry walls were built. Combined vertical and horizontal loading was 

applied for different vertical compressive loads. A variable stiffness of the walls was found. 

Moreover, it was observed that vertical stiffness increased with the compressive stress, which is 

a phenomenon that has not been addressed by other authors. Initially, the horizontal load-

displacement diagrams of the walls exhibited large stiffness and elastic behaviour was observed 

almost up to 30% of the peak load. Afterwards, continuous stiffness degradation occurred under 

increasing horizontal deformation. The second part of the diagrams was characterized by an 

oscillation of the horizontal load. It was observed that the failure patterns were correlated with 

the amount of compressive loading. For lower confining stress levels, failure occurred by 
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rotation and sliding of part of the wall whereas for higher vertical loads cracking was noticeable. 

A linear relation between average compressive stresses and average ultimate shear stresses 

seems to be a good approximation to experiments, as it is usually prescribed by the codes of 

practice. The numerical modelling of the stone walls allowed to follow the load history and to 

understand the main phenomena related with their structural behaviour. Both collapse loads and 

evolution of the deformed meshes were in accordance with experimental results. 

Numerical modelling 

Based on an existing constitutive model for the monotonic analysis of interface elements, 

formulated within the framework of plasticity theory, a new constitutive model entirely established 

on the basis of the incremental theory of plasticity and able to describe the cyclic loading of 

interface elements was developed in this study. The cyclic behaviour  is based in the introduction of 

two new auxiliary (unloading) yield surfaces, similar to the monotonic ones. Each unloading surface 

is allowed to move only inside the admissible stress space and always towards the similar 

monotonic yield surface. Its motion is controlled by a mixed hardening law. The hypothesis of 

elastic unloading is assumed only for the shear component. Therefore, the normal component is 

described in a nonlinear fashion, adopting suitable hardening laws based on phenomenological 

experimental results. 

The performance of the developed constitutive model is assessed by comparisons against 

experimental results available in the literature, both at the element level and at the structural level. 

Comparison between experimental and numerical results showed tha t the most relevant features 

observed in experiments, as opening-closure and shear sliding of the joints, stiffness degradation, 

strength degradation and energy dissipation, are well captured by the model, which enables its use 

for the analysis and study of masonry structures under cyclic loading. In addition, it is shown that 

the material behaviour during unloading should be considered in a non- linear fashion. 

Suggestions for future work 

The objectives defined in the introduction of this study were successfully achieved. In particular, 

the mechanical characterization of historical masonry materials (stone and brick) under cyclic 

loading was carried out, and a constitutive model for the analysis of masonry structures (micro-

level) under cyclic loading was successfully developed. 
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The testing of dry stone masonry under combined normal and cyclic shear loading is a challenging 

issue, since almost no data is currently available. The attainment of experimental results under 

cyclic loading is rather important both to understand the complex behaviour of the dry stone walls 

and to validate numerical results. 

Further applications of the numerical model are required for studying the influence of the material 

parameters in the structural behaviour. Also, the usage of the proposed formulation for macro- level 

models is suggested. Finally, the incorporation of fatigue, deterioration and creep in these complex 

models remains a true challenge. 
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Pictures of the SW30.1 stone wall test 
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Pictures of the SW30.2 stone wall test. 
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Pictures of the SW100.1 stone wall test. 
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Pictures of the SW100.2 stone wall test. 
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Pictures of the SW200.1 stone wall test. 
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Pictures of the SW200.2 stone wall test. 
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Pictures of the SW250.1 stone wall test. 

 


