Concrete is a global material that underwrites commercial well-being and social development. Notwithstanding concrete's uniqueness, it faces challenges from new materials, environmental concerns, and economic factors, as well as ever more demanding design requirements. Indeed, the pressure for change and improvement of performance is relentless and necessary.

*Sustainable Concrete Construction* forms the Proceedings of the three-day International Conference held during the Congress, Challenges of Concrete Construction, 5–11 September 2002, organised by the Concrete Technology Unit, University of Dundee. The Conference deals with such issues as environmental strategies, reuse of waste materials, recycling opportunities, sustainable design, and construction, and economics for sustainability.

**Professor Ravindra K Dhir OBE**
Founding Director of the Concrete Technology Unit at the University of Dundee is renowned as a scholar and practitioner in the field of concrete science, technology, and construction, as well as for his strong collaboration in research with the construction industry. He was awarded an Honorary Fellowship of the Institute of Concrete Technology in 1994 and appointed an Officer of the Order of the British Empire in 1999 for his services to concrete technology.

**Dr Thomas D Dyer**
Is a Lecturer in the Concrete Technology Unit, University of Dundee. He is a materials scientist with interests in the use of waste materials as cement components in concrete and other issues relating to sustainable concrete construction. He is currently involved in research into the use of recycled container glass in concrete.

**Dr Judith E Halliday**
Is a Research/Teaching Fellow in the Concrete Technology Unit, University of Dundee. Her interests include the recycling of waste materials in concrete, with particular emphasis on cement chemistry and environmental impact techniques, as well as the influence of PFA on alkali-silica-reaction and the use of conditioned and lagoon PFA in structural concrete.

---

**Concrete Technology Unit**

Dundee

ACI International

The Institution of Civil Engineers

JSCE

ISBN 0-7277-3177-7

Thomas Telford
Sustainable Concrete Construction

Proceedings of the International Conference held at the University of Dundee, Scotland, UK on 9-11 September 2002

Edited by

Ravindra K. Dhir
Director, Concrete Technology Unit
University of Dundee

Thomas D. Dyer
Lecturer, Concrete Technology Unit
University of Dundee

and

Judith E. Halliday
Research/Teaching Fellow, Concrete Technology Unit
University of Dundee

Thomas Telford
PREFACE

Concrete is a global material that underwrites commercial well-being and social development. Notwithstanding concrete’s uniqueness, it faces challenges from new materials, environmental concerns and economic factors, as well as ever more demanding design requirements. Indeed, the pressure for change and improvement of performance is relentless and necessary.

The Concrete Technology Unit (CTU) of the University of Dundee organised this Congress to address these issues, continuing its established series of events, namely, Creating with Concrete in 1999, Concrete in the Service of Mankind in 1996, Economic and Durable Concrete Construction Through Excellence in 1993 and Protection of Concrete in 1990.

The event was organised in collaboration with three of the world’s most recognised institutions: the Institution of Civil Engineers, the American Concrete Institute and the Japan Society of Civil Engineers. Under the theme of Challenges of Concrete Construction, the Congress consisted of three Seminars: (i) Composite Materials in Concrete Construction, (ii) Concrete Floors and Slabs, (iii) Repair, Rejuvenation and Enhancement of Concrete, and three Conferences: (i) Innovations and Developments in Concrete Materials and Construction, (ii) Sustainable Concrete Construction, (iii) Concrete for Extreme Conditions. In all, a total of 350 papers were presented from 58 countries.

The Opening Addresses were given by Mr Jack McConnell MSP, First Minister of the Scottish Executive, Sir Alan Langlands, Principal and Vice-Chancellor of the University of Dundee, Mr John Letford, Lord Provost, City of Dundee, Professor Adrian Long, Senior Vice-President of the Institution of Civil Engineers, Dr Taketo Uomoto, Director of the Japan Society of Civil Engineers and Dr Terence Holland, President of the American Concrete Institute. The Congress had six opening and six Closing Papers dealing with the main themes of the Seminars and Conferences. Opening Papers were presented by Professor Gerard Van Erp, University of Southern Queensland, Australia Dr Peter Seidler, Astraad Industrieboden, Germany and Professor Kyosti Tuttii, Sannsa Teknik AB, Sweden, Professor Surendra Shah, Northwestern University, USA, Dr Philip Nixon, Building Research Establishment, UK and Mr Hans de Vries, Ministry of Transport, the Netherlands. Closing Papers were presented by Dr Gier Hørgmo, NORUT Technology Ltd, Norway, Professor Andrew Beeby, University of Leeds, UK, Professor Peter Roberty, FaberMaunsell, UK, Professor Heiki Kukko, VTT Building and Transport, Finland, Dr Mette Glavind, Danish Technological Institute, Denmark and Professor Yoshihiro Masuda, Utsunomiya University, Japan. The Congress was closed by Professor Peter Hewlett, Chief Executive of the British Board of Agrément, UK.

The support of 23 International Professional Institutions and 32 Sponsoring Organisations was a major contribution to the success of the Congress. An extensive Trade Fair formed an integral part of the event. The work of the Congress was an immense undertaking and all of those involved are gratefully acknowledged, in particular, the members of the Organising Committee for managing the event from start to finish; members of the International Advisory and National Technical Committees for advising on the selection and reviewing of papers; the Authors and the Chairmen of Technical Sessions for their invaluable contributions to the proceedings.

All of the proceedings have been prepared directly from the camera-ready manuscripts submitted by the authors and editing has been restricted to minor changes where it was considered absolutely necessary.
CONTENTS

Preface iii
Introduction iv
Organising Committee v
International Advisory Committee vi
National Technical Committee viii
Collaborating Institutions x
Sponsoring Organisations With Exhibition x
Supporting Institutions xi

Opening Paper
More sustainable construction: the role of concrete 1
P J Nixon, Building Research Establishment, United Kingdom

THEME 1 ENVIRONMENTAL STRATEGIES 13

Keynote Paper
Consider the environment - Why and how
B J Jensen and M Glavind, Danish Technological Institute, Denmark

Effects of construction activities on environment
Z A Siddiqui, M A Chaudhry and M Ashraf 23

Comparative study of different fly ashes: Characterisation and performances
I Torresan, N Magarotto and N Zeminian 33

Communication, coordination and concrete problems
P D Novelli 47

Environmental information on concrete
J Bijen 57

Implications of the Kyoto Protocol: The introduction of the Climate Change Levy in the UK and its consequential requirements and impacts on the UK cement industry
R Fowler 67

Behaviour of cement/plating waste derived products:
Unconfined compressive strength and setting time
O I Fernandez, P Lopez and A Iribien 77
Sustainable development of cement and concrete 87
IT providing a path from research to practice
I Konratova

Development of a low energy environmentally friendly cement 95
P Jimenez, S Goni, A Guerrero, M P Lorenzo and A Macias

The contribution of organic acids and enriched industrial by-products in energy conservation during cement clinker production 107
V Kasselouri-Rigopoulou and S Antiohos

THEME 2 REUSE OF WASTE MATERIALS

Keynote Paper
The role of combustion by-products in sustainable construction materials 117
T Naik, University of Wisconsin, Milwaukee

The use of cellulose wastes in lightweight concrete: improvement of properties by admixtures 131
R Jauberthie, C Lanois, I Cisse, S Tambar and F Rendell

Hydrated lime pastes containing coal fly ash and polyanilino phenolic additives for the inertization of fly ashes from municipal solid wastes incinerators 139
G Rinaldi and F Medici

Utilization of converter slag as a concrete admixture 151
Y Umemura and N Tsuyuki

Comparative response of SBR latex modified concrete 161
S A Rizwan, K Ahmad and A Hameed

Low water demand binders in road building 171
A M Gridchin, R V Lesovik and V V Strokov

Investigation of the use of waste plastic as an aggregate for lightweight concrete 177
H Koide, M Tomon and T Sasaki

Performance of concrete with recycled aggregates 187
A L A Fraaij, H S Pietersen and J de Vries

Dump slags in concretes, solutions and binders 199
B S Batalin and V G Kraft

Advantages of simultaneous use of cement kiln dust and blast furnace slag 205
G Batis, E Rakanta, E Sideri, E Chaniotakis and A Papageorgiou

A new low-heat sulfate resistant binder for mass concrete, HPC and SCC 213
D Novak and H Sommer

The production of superpozzolan from coal fired utility ash ponds 223
T L Robl and G Groppo

Using recycled brick as concrete aggregate 231
K Jankovic

Utilization of CCPs in Europe 241
P Brennan, N Cooke and W vom Berg

Cork granules as lightweight aggregate 253
S R Karade, M Irle, K Maher and F Caldiera

The effect of Metakaoitin additions on strength development in cement mortars 263
S S Potgieter, J H Potgieter and P Napo

Mining backfill formulations from various cementitious and waste materials 271
J H Potgieter and S S Potgieter

By-products from mineral and metallurgical industries as filler in concrete 281
H Moosberg-Bustnes

Recycling of masonry debris as a raw material in the ceramic industry 291
K van Dijik, A L A Fraaij, Ch F Hendriks, E Mulder and J van der Zwan

Structural lightweight concrete - an environmentally responsible material of construction 305
M N Haque, O Kayali and H Al-Khatait

The environmental benefits of using PFA in cementitious systems 313
L K A Sear

Study on the utilisation of melting slag from municipal solid waste as concrete materials 323
M Kitatsuji, T Endo, H Ishida and K Fujii

Aggregate cement reactions in MWI-bottom ash-based concrete - a petrographical assessment 335
B Lienin, R Dreesen and D Van Rossem

Use of Na and K as inert elements for the long-term leaching assessment of heavy metals from cementitious matrices containing waste material 345
T Van Gerven, V Dutre, D Gysen and C Vandecasteele

Durability of cement rubber-composites under freeze thaw cycles 355
A Benazzouk and M Queneudec

Fly ash lightweight aggregates produced by cold bonding for sustainable concrete construction 363
C Videla and P M Martinez
THEME 3 ENVIRONMENTALLY SENSITIVE CONCRETE CONSTRUCTION

Keynote Paper
Rethinking sustainable concrete construction
P G Goring, John Doyle Construction, United Kingdom

Concrete design considering environmental performance
K Kawai and T Sugiyama

Demountable prefabricated reinforced concrete structure designed for multistorey car parks
A Ionescu and T Hodisan

Evaluation of hybrid concrete construction for the UK market
J Glass, B Baicche and C Goodchild

Commercial-scale recovery of lightweight block sand from stored coal combustion ash
J Groppo and T Robl

A tailor made road binder for hydraulically bound bases with induced cracks
H Sommer

THEME 4 TOTAL RECYCLING OPPORTUNITIES

Keynote Paper
Total recycling opportunities - tasting the topics for the conference session
M Torring and E Lauritzen, DEMEX Consulting Engineers A/S, Denmark

A new concrete recycling technique for coarse aggregate regeneration process
K Yanagibashi, T Yonezawa, K Arakawa and M Yamada

The "LAW" process: an innovative waste valorization proposal combined with power production
R Ippoliti, M P Contento and F Cioffi

Sustainable use of recycled materials in building construction
Ch F Hendriks, J G Vogtlander and A Fraaij

Removal of gypsum plaster by the use of microwaves
L Gerlach, J Eibl and L Stempniewski

A closed material cycle for concrete, as part of an integrated process for the reuse of the total flow of C&D waste
E Mulder, J Blaakmeer, L Tamboer and T G Nijland

Shrinkage and creep of recycled concrete interpreted by the porosity of their aggregate
J M Gomez-Soberon, J C Gomez-Soberon and L A Gomez-Soberon

Road concrete from wastes of industry
S I Pavlekno

THEME 5 DESIGN AND CONSTRUCTION

Keynote Paper
Sustainable concrete construction - Issues for developing countries
S A Reddi, Gammon India Limited, India

Performance based durability design
J Bijen

Durability field investigation of an abandoned concrete bridge
M S Mirza and L Amleh

Safety assessment of constructions made of reinforced concrete considering microcrack formation
S V Elizarov and A V Benin

A delivery system for sustainable concrete construction
M E Brander
Durability of lime stabilised earth blocks 645
A Guettala, H Houari, B Mezghiche and R Chebili

Cement stabilised laterite sub-base material 655
R Jauberttie, C Lanois, J Cisse, N Diouf and F Rendell

Recycling of waste bricks in the fabrication of dune sand concrete 665
L Azzouz, M Boughicha and S Kenai

Predicting strength properties of fine cementless ash-slag concrete 675
S I Pavlenko, M V Lukhanin and N N Tkachev

THEME 6 ECONOMICS FOR SUSTAINABILITY

Keynote Paper
Economics, sustainability and concrete 683
D Pocklington, British Cement Association, and J Glass, Oxford Brooks University, United Kingdom

Structural performance of lightweight reinforced beams containing periwinkle shells as coarse aggregate 695
F Falade and F Tella

Assessing concrete technology innovation using value engineering (ACTIVE) 703
J Glass, B Baiche and M Jenks

Properties of a low cost concrete formulated with a desert dune sand and calcareous filler 711
A Balli, M L Benmalek and M Queneudec

Treatment and valorisation of oilfield wastes (cuttings) in civil engineering construction 721
R Boutemeur, N Boutemeur, N Benoumechiara and A Balli

Pulverized coal combustion dry bottom ash for Portland cement concrete rigid pavements 729
N Ghafouri

Behaviour of limestone sand based concrete with variable filler content 739
Z Guemmadi, B Toumi and H Houari

Roller compacted concrete (RCC) - strength and permeability of horizontal joints 751
A Camelo, B Aguiar and B Ribeiro

Teaching a concrete subject in a fluid environment: Innovative methods of teaching civil engineering students about concrete technology and durability in a climate of diminishing funding for universities. 761
L J Lee and R J Wheen

Closing Paper
Green concrete - a life cycle approach 771
M Glavind and C Munch-Petersen, Danish Technological Institute, Denmark

Late Papers
Selection of concrete constituents by electro-hydraulic comminution 787
E Linss and A Müller

Recycling concrete: Towards a holistic approach 797
F P Glasser and N Grant

Properties of Tyre Rubber Ash Mortar 805
N M Al-Akhras and M M Smadi

Congress Closing Paper
Concrete: Vade Mecum 815
P C Hewlett, British Board of Agrément, UK

Index of Authors 831

Subject Index 833
INDEX OF AUTHORS

Aguiar, B 751-760
Ahmad, K 161-170
Al-Akhraz 805-814
Al-Harthy, A S 411-418
Al-Khaitat, H 303-312
Amleh, L 617-676
Antiohios, S 107-116
Apygys, Z 419-428
Arakawa, K 311-322
Arafat, M 23-32
Arazoo, L 381-392
Arazoo, L 665-674
Bathe, B 475-484
Bal, A 703-710
Batulin, B S 711-720
Baris, G 731-782
Benazzouk, A 199-204
Benin, A V 205-212
Bonsalek, M L 355-362
Benosechmiara, N 671-720
Bhatnagar, S 721-728
Bijen, J 403-410
Bijen, J 57-66
Bhalonker, J 605-616
Bouchea, M 555-562
Boutemeur, N 660-674
Boutemeur, R 721-728
Boutemeur, R 721-728
Brand, E M 721-728
Brennan, P 673-644
Caffarelli, P 241-252
Cameli, A 253-262
Cameli, A 751-760
Chanorakinsk, E 205-212
Claudbery, M A 23-32
Chibili, R 645-654
Cioffi, F 523-534
Cioia, F 131-138
Costello, M P 655-664
Cooke, N 523-534
Curney, L J 241-252
Curney, L J 419-428
De Vries, J 187-198
Debbas, L 383-392
Dhiri, R K 420-438
Dhoor, N 655-664
Dreesen, R 335-344
Dubre, V 345-354
Ehli, J 545-354
Elizarov, S V 627-636
Endo, T 323-334
Falade, F 695-702
Fernandez, O I 77-86
Fowler, R 67-76
Franji, A J A 187-198
Gatto, M 291-304
Gersch, L 535-544
Ghodameri, N 323-334
Gharbi, S 391-402
Ghoreguie, M 545-554
Ghesvand, D 345-354
Ghossou, N 729-738
Ghosh, J 733-382
Gil, J 475-484
Gilas, F P 797-804
Glaish, M 13-22
Gomes-Soberon, J C 771-786
Gomes-Soberon, J M 563-576
Gomes-Soberon, L A 563-576
Goni, S 95-106
Gouds, C 475-484
Goring, P G 439-456
Grant, N 797-804
Gudden, A M 171-176
Groppo, J G 223-230
Groth, H 485-494
Gummadhi, Z 739-750
Guerrero, A 95-106
Guerrero, A 645-654
Guettada, A 429-438
Halliday, J E 611-170
Happel, M N 305-312
Hayes, C P 391-402
Heindrich, H F 291-304
Hewlett, P C 535-344
Hodis, T 815-830
Houari, H 465-474
Houari, H 645-654
Ionescu, A 739-750
Ippolito, R 465-474
Irapas, A 523-534
Ireland, A 77-86
Irie, M 253-262
Ishida, H 323-334
Jankovic, K 211-260
Jasper, R 131-138
Jasper, R 655-664
ROLLE R COMPACTED CONCRETE (RCC) –
STRENGTH AND PERMEABILITY OF HORIZONTAL JOINTS

J L B Aguiar  A M R O Camelo
University of Minho  Hidronuno
A C B S Ribeiro
National Civil Engineering Laboratory
Portugal

ABSTRACT. Roller compacted concrete is a very dry material consolidated by the use of a powerful external vibratory compaction. It can be defined as concrete of no-slump consistency in its unhardened state that is transported, placed and compacted using earth and rockfill construction equipment. Properties of hardened RCC are similar to those of conventional placed concrete. This material is mainly used in gravity or arch/ gravity dams on which RCC construction methodology, by concrete layers, involves a high number and an extensive area of horizontal joints. These joints are the weakest part of RCC in terms of sliding stability and uplift. This study analyses the influence of different parameters on the properties of the joints, namely the influence of cimentitious material content (150-230 Kg/m²), percentage of fly ash (30-60%), and maturity of concrete. The results obtained show the importance of knowing the performance of the joint versus time elapsed between the compaction of the upper and lower layer.

Keywords: Roller Compacted Concrete (RCC), Layers of RCC, Lift joints, Unconfined shear strength, Tensile strength, Permeability, Maturity, Costs.

J L B Aguiar is a civil engineer and Associated Professor in the Department of Civil Engineering at the University of Minho. His PhD Thesis and research focuses the study of bond properties in the interface between different materials.

A M R O Camelo is civil engineer and responsible of Department of Construction Materials in a design company owned by the electricity utility of Portugal (EDP), specialised on concrete dam construction.

A C B S Ribeiro is a civil engineer and Researcher of the National Civil Engineer Laboratory (LNEC) specialised on construction materials. His PhD Thesis focuses the study of mixtures and characteristics of roller compacted concrete applied to dam construction.
INTRODUCTION

Roller Compacted Concrete for gravity or arch/gravity dams involves a high number of horizontal joints which is the result of the special technique used for compaction of the successive horizontal layers with a very big area in the total volume of the dam. The most common thickness used for compacted layer has been 300 mm which means that we have 3.3 m³ of joint area each cubic meter of placed concrete [1],[2],[3].

The number of lifts on which treatment could be avoided is a very important economic question. For instance, during the construction of Willow Creek Dam, for a total of 263 lifts placed, only 22 were treated as “cold joints”[1].

The quality of the interface between layers depends on several factors. Some of them are related to the quality of mixture, as [4],[5]:

- gradation of the mixture and maximum size of the aggregates;
- cementitious materials content;
- setting time of the mixture,

and others are related to the conditions of placement of the RCC, as:

- the temperature of the mixture;
- the time elapsed between the compaction of the lower and upper layer;
- the concrete cure (mainly on the surface)
- the roughness of the surface of the lower layer, for “cold joints”;
- energy of compaction;
- time between spreading and initial of compaction;

This work only analyses the influence of the time elapsed between the compaction of the lower and upper layer on the quality of the joint.

This paper describes the laboratory research made during the design of a gravity dam (130 m height above foundation) for evaluation of shear and tensile strength and waterproofing properties of lift joints. The influence of maturity of concrete surface was studied in RCC mixtures made with different cementitious content and using the “in situ” available aggregates (granite).

RESEARCH SIGNIFICANCE

The treatment of horizontal joints may represent an important additional cost to dam construction, which could be avoided if a correct evaluation of the mechanical and impervious properties were made before the works starts, taking into account the design specifications and the works schedule.

Two extreme situations can occur on internal horizontal joints [6],[7]:

a) absence of joint – does not exist physical and chemical heterogeneity along the surface, i.e., it occurs a physical inter penetration of paste and aggregates and the hydration of the cementitious material of both layers proceed without occurrence of interfaces paste-paste;

b) very weak transition zone on the joint - the concrete of the upper layer does not penetrate into the lower layer and low level of hydration bond occurs (“cold joints”) [2].

In common practices the quality of the joint is somewhat between these two extremes.

The usual specifications for joint quality does not include the measurements of the significant properties to ensure the accomplishment of the design.

The knowledge of the behaviour of concrete related to maturity is a very important step for better specifications on tender documents

MATERIALS

Components of RCC

Portland Cement (CEM 1 – 42.5R as specified on EN 197-1);
Siliceous Fly Ash (conforming EN 450);
Set retarder admixture;
Potable water;
Crushed-granitic aggregates.

RCC Mixtures

Nine RCC mixtures were tested (Table 1). The total cementitious material content were 150Kg/m³, 190 Kg/m³, 230 Kg/m³ respectively for concrete 1, 2 and 3. The PFA content were 30%, 45% and 60% respectively for concrete A, B and C.

| Table 1 Mixtures tested - quantities per cubic meter |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| CONCRETE        | A1              | A2              | A3              | B1              | B2              | B3              | C1              | C2              | C3              |
| Cement, kg/m³   | 105             | 133             | 161             | 83              | 105             | 126             | 60              | 76              | 92              |
| Fly Ash, kg/m³  | 45              | 57              | 69              | 67              | 85              | 104             | 90              | 114             | 138             |
| C.A. 19/38 mm, kg/m³ | 656          | 655             | 653             | 656             | 655             | 653             | 656             | 655             | 631             |
| C.A. S/19 mm, kg/m³ | 492         | 527             | 594             | 497             | 534             | 602             | 503             | 572             | 608             |
| Fine Agg., kg/m³ | 897             | 827             | 750             | 887             | 815             | 734             | 876             | 793             | 719             |
| Water, kg/m³    | 134             | 135             | 137             | 134             | 135             | 137             | 134             | 136             | 138             |
| Admixture, %pw | 0.4             | 0.4             | 0.4             | 0.4             | 0.4             | 0.4             | 0.4             | 0.4             | 0.4             |

The gradation of each class of the aggregates and concrete is shown in Figure 1.

The consistency of the mixtures were in the range of 15s to 30s VeBe, measured according ASMT C 1170, Method A [8].

The initial setting time of mixture A3 with the highest cement content and lowest percentage of PFA(30%), measured according ASTM C 403 [9], was 7h30m.
Test Programme and Methods

For each RCC mixture samples were prepared in two layers according the procedure described in ASTM C 1176 [10]. The compaction of the upper layer of the unjointed samples was performed immediately after the compaction of the lower layer. The compaction of the upper layer of the jointed samples was made after different periods of time of the end of compaction of the lower layer. The concrete of the two layers were produced from different batches. Table 2 shows the testing programme, including properties measured and procedures of the tests.

Table 2 Testing programme for all mixtures – tests, number of samples and procedures

<table>
<thead>
<tr>
<th>TESTS</th>
<th>TYPE OF SPEC.</th>
<th>NUMBER OF SPECIMENS</th>
<th>TEST PROCEDURE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength (unjointed)</td>
<td>(')</td>
<td>2 2 2</td>
<td>[11]</td>
</tr>
<tr>
<td>Tensile strength (unjointed)</td>
<td>(')</td>
<td>2 2 2</td>
<td>[12](Figure 2)</td>
</tr>
<tr>
<td>Tensile strength (jointed at 3h, 5h, 8h and 12h)</td>
<td>(')</td>
<td>2 2 2</td>
<td>[12](Figure 2)</td>
</tr>
<tr>
<td>Unconfined shear strength (unjointed)</td>
<td>(')</td>
<td>2 2 2</td>
<td>[13](Figure 3)</td>
</tr>
<tr>
<td>Unconfined shear strength (jointed at 3h, 5h, 8h and 12h)</td>
<td>(')</td>
<td>2 2 2</td>
<td>[13](Figure 3)</td>
</tr>
<tr>
<td>Water penetration (unjointed)</td>
<td>(')</td>
<td>--- 2</td>
<td><a href="'">14</a></td>
</tr>
<tr>
<td>Water penetration (jointed at 3h, 5h, 8h and 12h)</td>
<td>(')</td>
<td>--- 2</td>
<td>---</td>
</tr>
</tbody>
</table>

Notes: (') cylinder specimens φ=150mm, h=300mm; (') cube specimen a=150mm; (') cube specimen a=200mm; (') See text below.

The water penetration test was made according reference [8], using a 2.5 bar pressure during 48 hours.

The two specimens moulded for determination of the depth of penetration under water pressure were not measured in the same way. While in the first specimen, the measurement of depth of penetration was made in a perpendicular plane to the joint, in the second specimen the measurement was made in the plane of the joint. The pressure was applied in the direction to the joint. This procedure permits to observe the different paths of the water penetration in the joint itself and in the neighbourhood of the joint. Behind the depth of penetration, it was also measured the saturated area.

RESULTS AND DISCUSSION

Table 3 shows the results of tensile and shear strength and water penetration. Figures 4-6 shows the compressive strength results.

Figure 4 Compressive Strength, Mixes A1, B1, C1
Tensile Strength

Figure 7 shows the jointed tensile strength average values as percentage of the unjointed tensile strength.

The average of the decrease of tensile strength is not very significant until 8h. After this period of time the tensile strength it can be observed a significant drop, which is correlated with the initial setting time of concrete.

The lower values obtained at 3 and 5h, when compared with the unjointed samples, can be attributed to the decrease on the workability of the concrete of the lower layer which difficult the inter penetration of both layers. This can be observed of Figure 8 that shows the failure surface at different maturity for A3 mix, at 0h, 3h and 5h, where it can be seen the loss of roughness with time.

Shear Strength

Figure 9 shows the jointed shear strength average values as percentage of the unjointed shear strength.

The values show the same trend that was observed in tensile strength tests. However at 1 year age the decrease is smaller than at other ages. This is probably due to the higher rigidity of the paste which allows different stress distribution on specimens. The applied tangencial force can be supported by a bridging effect which interest a thicker portion of concrete in the neighbourhood of the joint.
Table 3 Tests results (mean of 2 specimens except for water penetration)

<table>
<thead>
<tr>
<th>MIX</th>
<th>JOINTS</th>
<th>TENSILE STRENGTH, MPa</th>
<th>SHEAR STRENGTH, MPa</th>
<th>WATER PENETRATION</th>
<th>Depth, mm</th>
<th>Area, cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elapsed Time, hours</td>
<td>28d</td>
<td>90d</td>
<td>365d</td>
<td>28d</td>
<td>90d</td>
</tr>
<tr>
<td>A1</td>
<td>0</td>
<td>0.77</td>
<td>1.23</td>
<td>1.39</td>
<td>1.36</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.64</td>
<td>0.59</td>
<td>0.76</td>
<td>1.06</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.40</td>
<td>0.44</td>
<td>0.42</td>
<td>0.52</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.45</td>
<td>0.57</td>
<td>0.66</td>
<td>0.88</td>
<td>1.04</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.32</td>
<td>0.47</td>
<td>0.57</td>
<td>0.38</td>
<td>0.68</td>
</tr>
<tr>
<td>A2</td>
<td>0</td>
<td>1.12</td>
<td>1.31</td>
<td>1.53</td>
<td>1.67</td>
<td>2.20</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.78</td>
<td>1.19</td>
<td>0.97</td>
<td>1.26</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.37</td>
<td>0.96</td>
<td>0.29</td>
<td>0.23</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.98</td>
<td>0.92</td>
<td>1.07</td>
<td>1.20</td>
<td>1.93</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.48</td>
<td>0.58</td>
<td>0.52</td>
<td>0.18</td>
<td>0.84</td>
</tr>
<tr>
<td>A3</td>
<td>0</td>
<td>1.64</td>
<td>1.58</td>
<td>1.89</td>
<td>2.21</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.32</td>
<td>1.45</td>
<td>1.10</td>
<td>2.88</td>
<td>2.78</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.95</td>
<td>0.73</td>
<td>0.71</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.58</td>
<td>0.35</td>
<td>0.15</td>
<td>0.91</td>
<td>2.03</td>
</tr>
<tr>
<td>B1</td>
<td>0</td>
<td>0.63</td>
<td>0.84</td>
<td>0.91</td>
<td>1.08</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.64</td>
<td>0.77</td>
<td>0.87</td>
<td>0.34</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.64</td>
<td>0.72</td>
<td>0.48</td>
<td>0.37</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.74</td>
<td>0.75</td>
<td>0.66</td>
<td>0.36</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.65</td>
<td>0.60</td>
<td>0.15</td>
<td>0.15</td>
<td>1.13</td>
</tr>
<tr>
<td>B2</td>
<td>0</td>
<td>1.05</td>
<td>1.21</td>
<td>1.27</td>
<td>1.47</td>
<td>1.27</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.89</td>
<td>1.17</td>
<td>1.21</td>
<td>1.14</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.84</td>
<td>0.78</td>
<td>1.15</td>
<td>1.16</td>
<td>1.32</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0.95</td>
<td>0.79</td>
<td>1.17</td>
<td>0.86</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0.55</td>
<td>0.30</td>
<td>0.40</td>
<td>0.62</td>
<td>1.03</td>
</tr>
</tbody>
</table>

Figure 9 Loss of shear strength with time between compaction of upper and lower layer

Water Penetration

The results of the tests for measuring water penetration under pressure are not plotted because, in several cases as we can see in Table 3, the whole sample were saturated before the test of the end (48h). Anyway if we look the results with possible readings we can see important losses of water-tightness even at 3-hours, except for A1 mix. This proves that it would be wise to produce samples for 1 year readings. However it seems clear that permeability of the joints increase with the time elapsed and is relatively more sensible to cementitious content than mechanical properties are.

CONCLUSIONS

The result of this research shows the importance of the previous evaluation on significant properties of the materials during the development of the design. In fact, the design specification would not be satisfied without accurate studies to prevent losses in strength and permeability at joint sections.

As shown in Figure 7 and Figure 9, where it is plotted the medium percentage, for all mixes, the losses of joint strength related to unjointed RCC, we can say that:

- the losses in tensile strength are more significant than in shear strength;
- the reason of the different behaviour between tensile and shear strength could be explain by the influence of roughness and interpenetration of the two layers is more important in shear strength;
- at 1 year age the joint strength after 8 hours of placement of the first layer is still 80% in tensile strength and 95% in shear strength.

Related to the results of water penetration tests, it seems evident the importance of considering an impervious system on the upstream face.

Notes: (*) At 90 days; (**) failure immediately after the jack is released; (****) after 3-8th is the surface of the lateral faces of the specimen was saturated.
In economic point of view, this results shows that it could be well established the limits for the restrictions on planning RCC production and placement without significant influence on Quality Control parameters.

REFERENCES


7. ICOLD COMMITTEE ON CONCRETE FOR DAMS, Treatment of lift surfaces during concrete dam construction, Draft of technical bulletin (not published), 1996.


12. RILEM, CPC 7, Direct Tension of Concrete Specimens, 1975.
