Building an integrated

Proceedings JENCT

P. Sousa

Building an integrated communication environment

Pedro Sousa <pns@Quminho.pt>

Rui J.P. José <rui@uminho.pt>

Anténio Costa <costa@uminho.pt>

Vasco Freitas® <vi@uminho.pt>

Abstract

Over the past few years, WWW has become the
most successful information service on the Inter-
net. This can be partially justified by the level of
integration achieved by client software: an easy
to use Interface based on hyper-link navigation
and a common naming convention (URLs) well
supported by a multi-protocol machine (HTTP,
FTP, ete).

This cut-of-the-box solution fulfills most of
user needs, since the integration design process
privileged the most commonly used set of servi-
ces.

A lock backwards also brings up another
example of success through integration: The BBS
paradigm of communication. Traditional BBSs,
successfully join small cornmunities of users with
common interests, offering them a way to share
information, talk to each other (chat), send and
receive private e-mail messages, and participate
in open discussions using public messages.

This paper shares the authors’ recent expe-
rience in the design and development of a com-
munication environment with BBS-like functio-
nalities, which is based upon WWW technology.
Relevance is given to server side integration: a
common set of data and configuration files, a set
of administrative procedures and tools centered
upon an HTTP server.

Since many ather types of on-line services may
have similar requirements, in this paper the em-
phasis Is on analyzing the implementability of
those communication models under WWW tech-
nology.

I. Introduction

This paper intends to share some of the expe-
rience gained in the design and kmplementation
of a Bulletin Board System (BBS) based upon
WWW technology and tools.

In the BBS paradigm of communication a cen-
tralised system offers small communities of users

*author for correspondence

with common interests, a way to share informa-~
tion, talk to each other (chat), send and receive
private e-mail messages and participate in open
discussions using public messages. A BBS forum
simply consists of a special interest group within
the BBS community of users. Owerall, the BBS
is a set of fora.

Although the project had to take into conside-
ration several topics specific to BBS systems such
as forum management, the organization of image
libraries and user information, interface design,
and so on, the emphasis of this paper is neither on

- the final product nor on any BBS specific issues

but rather on presenting the main technological
issues raised by the attempt to place functionali-
ties like exchanging public and personal messages,
file transfer or chat on a single integrated WWW
service.

II. The MARDUK service

The service aims to integrate a set of functio-
nalities with the purpose of creating a community
communication environment. In such an environ-
ment, the service would act as the tool that mana-

ges the exchange of information thus creating the

recessary conditions for people in a given forum
to access available information, discuss problems
and actively contribute to the process of commu-
nication.

It was apparent that such an objective could
be achieved by putting together a set of Internet
servers like HTTP{1], FTP, News or E-Mail and
thence integration would be viable at the level of

- the individual user interface by means of a multi-

143-1

protocol browser being adopted as the universal
client for all those services.

This level of integration, however, wounld not
be enough. Integration had to be built at the ser-
ver side as well, which would involve replacing the
lot of independent tools by a single server provi-
ding not only the full set of functionalities but
alsc management functions and access control.

The resulting server, which has been named
MARDUK, was implemented, in its first version,
by a set of CGI scripts and data files enabling an
HTTP server to support centrally all the speci-




Building an integrated

fyed functionalities.

In its second version, currently under develop-
ment, a customised HTTP server is being built to
allow a more robust and flexible solution. One of
the main reasons for the move towards a proprie-
tory server is the the fact that using CGI imposes
several limitations upon the way the overall archi-
tecture works. The next section briefly discusses
such limitations.

III. CGI limitations

The Common Gateway Interface (CGI), is
a standard for interfacing external applications
with HITP servers. This mechanism has been
successfully used to create gateways and, in ge-
neral, to allow access to information which is not
on static pages or files. It was therefore the ob-
vious starting solution for the implementation.

‘This approach, however, has revealed a series
of limitations:

o Although CGI interds to be a standard for
the interface between an HTTP server and
another program, it is in fact no more than
an agreement between server implementors
and therefore some small differences can be
found from one implementation to another.

One of such differences concerns authenti-
cation. The current CGI interface speci-
fication only defines two environment va-
riables (AUTH_TYPE, REMOTE_USER),
which are clearly insufficient. Some servers
allow CGI scripts to fully handle authentica-
tion, but each one uses its own environment
varizbles for that purpose. -

This small difference may be enough to
create problems when trying to migrate CGI
scripts to other HTTP servers.

CGl-scripts accept input data from servers
through sidin and return output data th-
rough stdoul. However, sidin and stdout are
usually opened in text mode, which means
that carriage-return-line-feed (CR-LF) com-
binations are translated into a single line-
fead (LF) on some non-UNIX operating sys-
tems. These conversions are adequate for
text data but completely inappropriate, and
even destructive, over binary data.

In order to have binary CGI output, such as
image files, there must be a special care in
avoiding such translations.

For each HTTP request a new instance of
the CGI program is run. This is not a
problem for simple and small scripts, but
for long and complex programs, performance

Proceedings JENCT

P. Sousa

problems may arise because, eventually, they
will take longer to load and initialize data
structures.

The problem of initializing internal dat@‘*f
structures, iike the ones used for authenti-
cation, message indexing or logging, is par-
ticularly important and performance issues
must not be forgotten when planning their
implementation on a CGI program.

During the initial phase of development, noi so
much attention was payed to these limitations.
There was the feeling that performance degra-
dation would be unavoidable, but not relevant.
The other problems were not known at all at that
time. However, as soon as the first results were
made available, it started to be clear that the CGI
constraints could not be ignored at all and design
decisions would have to take them into serious
consideration.

The first of the limitations pointed out above,
was also the first to be noticed. The software was
being writen for the Windows NT system, and
an HTTP server was chosen for that platform.
Fortunately the server allowed for CGI scripts

" to manipulate authentication resources, in a non-

portable way however, since the CGI specification
does not address this subject.

The dynamical generation of HTMLI2, 3] pa-
ges by the the CGI script revealed the problem of
passing binary data image files through the CGI
interface. With special care on header generation
and changing the open mode of stdout to binary,
it was possible to overcome this small drawback,
but in an unclear and unportable way.

In order to support storage and retrieval of au-
thentication and access control information, a re-
lational database was planned and a selected com-
mercial database product was used. The schema
design required three tables. Since all user re-
quests had to be validated, at least one database
access was needed for each request, but more of
ten several accesses were actually performed.

Incorporating database access into the CGI
script soon revealed serious performance pro-
blems. Opening the database was really the most
time consuming operation, due to some heavy
and unavoidsble initialization procedures. The
overhead introduced was measured: 10 seconds

. minimum for a single table ! (This value is ob-

143-2

viously hardware dependent). Since the overhead
is proportional to the number of tables, it has
serious implications in the service response time.

Of course, the need for a relational database
for this particular type of information is questio-
nable. Small structured text files would do in this




Building an integrated

CGI

Q

cormunication

CGL between
requesting and CGI
some database i
infonnatiqn client

requests

Database
service

server handies
permanent
connection
with database

set of tables

] Y

Figure 1: The database server

case, but what to say if its use becomes really ine-
vitable? On the other hand it might be argued
that several seconds are really bearable in data-
base access. A possible answer may take into con-
sideration the need for such access. If an user is
trying to obtain information which is on a da-
tabase he will probably be more tolerant to the
delay than if he is performing sorme simple request
which only uses the database for authentication
purposes.

A new solution was therefore needed in order
to keep the database as planned without affec-
ting performance. It involved the development of
a server which would handle all database mani-
pulations and be permanently active to answer
database access requests. After this was done the
delay overhead became irrelevant since it only oc-
curs at boot time. The CGI retrieves and stores
information by sending appropriate requests to
this server. Figure 1 illustrates this strategy.

IV. Integration issues

The integration into MARDUK of all the func-
tionalities required to create the proposed com-
munication environment, has raised several tech-
nological issues which will now be addressed.

IV.A. Autheniication and Access

Most HTTP servers support mechanisms for
authentication and access control. Although
some of those mechanisms are very flexible and
extensive they are not adequate to be used
for conirolling access to the MARDUK server.
There are several reasons why specific mecha-
nisms should be implemented:

Proceedings JENC7

143-3

P. Sousa

» The typical protection mechanism of an
HTTP server deals with entities like divec-
tories, files and password files. By creating a
specific protection mechanism one can deal
with higher level entities like fora, users or
messages thus making management a more
comprehensive task.

Having a custom database is essential to
support such protection schema but it can
also constitute the base for supporting many
other extra functionalities like specific log-
ging, information related to user preferences
on accessing the service or service manage-
ment by custom tools.

Controlling the access mechanism is a man-
datory requirement should session control be
an essential funcionality.

The lack of standards on access protection
profiles for HTTP servers makes the adop-
tion of a common protection scheme very dif-
ficult.

In the MARDUK server the Basic Authentication
Scheme]l] has been used for user authentication.
The only difference being that on the server side
the process is not handled by the HT'TP server
but by CGJ which receives the necessary authen-
tication information. For this to be possible an
HTTP server which passes such information to
CGI is necessary.

IV.B. Session support

The existence of user sessions is a common
concept in many on-line services. A user session
is a period of time during which the user is con-
nected to the service and is delimited by login
and logout procedures. Delimiting user sessions
can be useful in several ways:

» it provides an easy answer to the question
"Whe is logged in?”. That information can
be used to initiate talks or other interactive
services.

the knowledge of a user’s typical behavior
within a session may be an important mea~
sure of interface adequateness. Avoiding for
now the possibility of personalized adapta-
tive interfaces, one may at least think of spe-
cialshort cuts for each user.

statistical data, with adequate granularity,
can be made available both to users and to
administrators either with informal or formal
. objectives. Illegal or irregular access can also
be more easily detected.




Building an integrated

Supporting user sessions becomes a difficult task
due to the nature of the HTTP protocol which is
stateless and not oriented to connections. Each
request is self-contained and independent and
there is not a clear beginning or end of the user
interaction with the server.

The implementation of a mechanism to sup-
port user sessionl must take into consideration the
authentication method being used. A possible so-
lution for the Basic Authentication Scheme will
be presented.

In this implementation the login procedure
corresponds to the action of accessing for the first
time, since browser activation, any protected do-
cament in the MARDUK server. When this hap-
pens the browser will prompt the user for his
name and password keeping it for further accesses
to the same realm. When the server receives an
authenticated request it will check whether that
user is already set as being logged in and if he
isn’t will set him as such. Since the user will ne-
ver perform a session logout, the server always
remembers his last access so that via a timeout
mechanism it will eventually consider the user has
being logged off as from the time of that access.

This is a simple but not very effective solution
with some important disadvantages:

+ There is no clean way of providing a lo-
gout mechanism. The browser will keep a
password for each realm. This is clearly a
potential problem of security specially in en-
vironments like for example schools were a
terminal is shared by several users.

» For the same reason a clean mechanism of
re-authentication cannot be provided either.

o Prom the service point of view there can ne-
ver be a clear idea on what the limits of a ses-
sion are. The view of sessions on the user side
may be completely different from the view on
the server side.

¢ Since the process of prompting the user for a
password is handled by the browser, there is
no control over it and an adequate interface
cannot be created.

Some alternatives are currently being studied to
overcome these problems. A potential improve-
ment could be achieved by using dynamic realms.
When a user logs in he receives a realm indication
which was generated for him and for that session.
As usual the browser will keep the password and
will continue to use it for accessing that realm.
But when either the user gives a logout instrue-
tion or some timeout is reached the server will

Proceedings JENCT

P. Sousa

mark the user as being logged off and will gene-
rate a new realm for the next session. If a new
request is issued using the same authentication
information the server will detect that the user is
not logged in and will issue a new challenge in-
dicating the new realm to be used. The browser
will then prompt the user to re-enter the authen-
tication data. This solution, however, requires
full control of realm processing which cannot be
achieved unless the HTTP server is customised.

A completely different approach can be fol-
lowed should authentication be done outside
HTTP. In such a situation the login procedure
is performed by filling in a form. The informa-
tion is sent to the server which will then generate
a temporary authorization key that will be placed
on the HTML pages it generates. When a link is
followed, the key is sent over to the server which
will in turn generate a new one to be placed on
the returned page. Since a much tighter control
is available it becomes a lot easier to create login
and logout procedures.

IV.C. File Transfer

This section addresses the question of how to
support file transfer within the HTTP protocol.
The objective, which would not be realised by the
use of FTP tools, is to provide a fully integrated
file transfer.

A basic functionality of the MARDUK server
is the existence of a structured repository of in-
formation made of HTML documents, images and
several other file types. Users can read this repo-
sitory but they also expect to be able to contri-
bute by incorporating their materials into it.

Giving users the possibility to read this repo-
sitory presents no major problems. Users can ea-
sily browse the HTML pages, see their images and
download existing files. Attention must be paid
however to the fact that the MARDUK server
uses the (Gl interface. As mentioned in section
I11. if the stdio and stdout of the CGI is not ope-
ned in binary form then images and other binary
files will not pass safely through the interface un-
less encoding mechanisms are nsed. This same
problem occurs in the opposite direction when fi-
les are to be uploaded.

Uploading, however, presents some additional
problems. Even though the POST method of the
HTTP protocol can be used for that purpose and
the server may be prepared to handle it, there is
no clean method for generating such request from
a WWW browser. These browsers do not pro-
vide users with the means for selecting the files
he wants to submit. Another important feature
would be the possibility of the server to express

143-4




Building an integrated

file upload requests to the client. A form based so-
lution for this problem which extends the HTML
language by adding the FILE option to the TYPE
attribute of the INPUT element is proposed in
[4]. When the form is submitted, all its data, in-
cluding the file, is posted to the server. For the
moment, browsers do not support such feature
yet. -

The solution was to build a custom client just
to perform file uploading. The main reason for
this approach has been o provide a selution for
the file upload problem without having to wait for
technological evolution, but other features were
added.

The client asks the user about the file that he
wants to transmit, his identification, the destina-
tion forum where the file is to be placed and some
extra options that will be explained latter. After
that, an HT'TP message is constructed specifying
the POST method and the CGI that handles the
request. Additional information (such as forum
identification, user identification, and so on) is
placed in the URL[5]. The body of the HTTP
message will be the contents of the file. The mes-
sage is then prepared to be sent to the server.

On the server side the CGI only needs to ex-
tract the body of the HT'TP message and, if the
user has the required permissions, place it in the
destination forum.

In the particular case of an HTML document
transfer it is possible to select of a Follow Links
option. Using this option the user only needs
to introduce the identification of the main page
which he wants to transrnit and all local pages re-
ferred in the document will also be transmitted.
This feature is implemented by using a local ro-
bot which performs a recursive references search
algorithm. Every non-local or repeated references
will be discarded by the client.

IV.D. Public Messages

A discussion list is a space for the exchange
of public messages within a group of people. Du-
ring the planning phase, several approaches for
supporting this functionality were considered but
discarded as ineffective in face of the integration
requirements.

The first of these approaches has been the
use of a mailing list. But mailing lists have a
fundamental difference from the kind of messa-
ging system envisaged. Messages are sent to the
user’s mailbox. The desired functionality is that
of a discussion group to which users may pop-in
when they want to and not a redirection mecha-
nism that bombs the user’s mailbox with messa-

Proceedings JENC7

P. Sousa

ges from all the lists he is participating in.

To solve this problem, a variant to the mailing
list has also been considered, in which messages

* are not sent to the user but archived and aceessed

143-5

with a front-end on the WWW browser.

In any case the existence of a mailing Hst im-
plies the existence of a mailing system and its cor-
respondent set of management information which
would compromise the desired integration.

Another possible approach for implemeniing
public messages is the Usenet News system. Al-
though this would correspond in terms of functio-
nality to the intended service and some WWW
browsers support direct access to NN'TP servers,
integration would again be compromised. Just as
it happened in the mailing list solution the need
for an extra system, in this case a local NNTP
server, and correspondent management informa-
tion would make it very difficult to support some
essential requirements like an integrated access
control.

Considering that mailing lists and newsgroups
can not be adequately integrated into the MAR-
DUK service and that such situation is not expec-
ted to change in the short term, a choice has been
made to implement a custom public messages sys-
tem (PMS). Only by creating this self-contained
system inside the MARDUK server would the ne-
cessary level of integration with the other compo-
nents of the server be achieved.

Using the HTTP protocel for this purpose pre-
sents no major problems. The user composes its
messages using a HTML form, selects the sub-
mit button and the message is then posted to the
HTTP server which will deliver it to the PMS
module. The PMS module, which is the mo-
dule responsible for all the messages management
functionalities like for example storing them and
maintaining indexes, will then perform the ne-
cessary access control verifications. The use of
forms to compose and submit messages provides
a better control of that process than using the in-
terfaces of WWW browsers or mail applications:

o The possibility of creating an adequate in-
terface which may even be adapted to the
context or to the user.

o The possibility of providing several default
values for the fields in the form.

The chief advantages of the customised approach
are a complete integration with the other services
and the possibility of including #dditional featu-
res like attachments, off-line reading or a form
based interface.



Building an integrated

IV.E. Electronic Mail

In an integrated community communication
environment, the existence of some mechanism
for interpersonal data exchange is of paramount
importance. Electronic Mail aims at this kind of
service.

Integrating this functionality into the MAR-
DUK server involved the discussion of two diffe-
rent aspects. The first was the kind of interface
to be provided to the users. The other was the
architecture that should be adopted on the server
side.

Considering that the MARDUK server lives in
a WWW environment it was only natural that ac-
cess to the e-mail service be done via the WWW
client which sugested that some HTML form be
presented to the user to allow him to visnalize and
submit messages. However, use of other e-mail
clients should be allowed and the corresponding
mechanisms to integrate this sitnation be catered
for. )

Therefore some practical situations such as
this had to be taken into consideration before de-
ciding on an architecture.

One of them concerns the level of experience of
users that integrate the community. Some might
already have access to an e-mail service before
joining the community, for whom it would make
no sense to force them io a new mailbox in the
MARDUK server. Others might have no previcus
experience with e-mail and even have no mail-
box of their own, for whom the MARDUK server
would have to provide the full service.

The conclusion was that the server had to sup-
port a local repository for the user’s mailboxes
but should not confine the e-mail service to this
functionality only. The required sclution, which
figure 2 illustrates had to be flexible enough to
support the different situations. A WWW client
is used to send and read mail. When reading mail,
the WWW client communicates with the Mail
Reading Module which accesses the user mailbox
on-the-fly and converts its contents into HTML.
When posting mail, the client uses the Mail Sub-
mission Module which contacts the SMTP ser-
ver for posting the message into the community
spool area. This feature can also be made avai-
lable through the use of a mailto URL. Both the
Mail Submission Module and the Mail Reading
Module can coexist in the same CGI which im-
plements the MARDUK functionalities.

The POP. or IMAP server element must be
added to the server platform in order to provide

the possibility of remote access to the community
spool from an IMAP or POP client. This feature

Proceedings JENC7

P. Sousa

POP/IMAP
client

[\

s /
WWW client \

=\ NI :
% Mail ;
. Submission ;
% Il Module ;
. |
h : !
| Mail t
I Reading [
|l Maodule ;
i

Figure 2: Architecture of the e-mail subsystem

can be used if a user wants to read his messages
without entering the MARDUK environment.

Depending on policy, the communication
between the community SMTP server and other

" external e-mall servers is possible. This feature

allows the exchange of e-mail messages between
users with a local mailbox and users with exter-
nal ones. Members of the community are free to
use other external mailboxes.

Again, depending on policy, a closed e-mail
environment can be established. In this case all
users are forced to a local mailbox and communi-
cation is restricted to the members of the commu-
nity. For that purpose it suffices to turn off per-
missions for external access by the SMTP com-
munity server.

IV.F. Ioteractive services

A services like Multi-user Chat can be viewed
as a textual conferencing system where users can
virtually meet sach other and have synchronous
conversations. This kind of interactive services is
very appealing and therefore important. Howe-
ver, its full integration in the WWW is rather
complicated as the HT'TP protocol is asynchro-

" nous and designed for unidirectional communica-

143-6

tion.

Nevertheless some features of the HTML lan-



Building an integrated

guage may be used to advantage, for instance, the
possibility to invoke a telnet session and thence
to have a connection to a multi-user talk daemon.
Other possibility is the configuration on the local
Web Client of some MIME types that when recei-
ved by the client will originate the local execution
of a specific chat client which in turn contacts a
server which provids the corresponding service.

Both solutions can be followed in crder to sup-
port synchronous sessions but they share a com-
mon problem which is the availability of specific
clients (like telnet or chat) correctly installed on
the user’s side.

More fundamental than the solutions to the
problems raised is the fact that they are nof real
integrating solutions, the WWW being only used
for calling external entities which handle the rest
of the session. Nevertheless they constitute a first
approach towards integration.

Its possible that newer versions of the HTTP
protocol will address this kind of problems. There
are, for example, some client pull implementa-
tions which provide for an automatic page refresh
mechanism. With such a facility it is possible
that, after having received a HTML document,
the WWW client periodically generates a new re-
quest of the document to the server. This feature
sugests a possibility to overcome some of the dif-
ficulties raised by the asynchronism and unidirec-
tionality properties of the HTTP protocol.

V. Conclusions

This project provided anm insight into the is-
sues raigsed by the design and implementation of
an integrated communication environment based
upon the BBS paradigm of communication using
WWW technology. The analysis of the particu-
lar aspects discussed concerning the requirements
that the system must satisfy shows that a com-
plete and clean integration is not yet possible thus
making it necessary to use ad-hoc solutions which
do not completely fulfill the desired level of inte-
gration. However, the fast progress in WWW te-
chnology is constantly providing developers with
new solutions but is also leading them to perma-
nent redesigns.

In such an evolving environment, todays solu-
tions may quickly become outdated and a balance
must therefore be decided between developing ad-
hoc solutions that work today and waiting for new
system specifications and standards. The consi-
deration of this principle and the foresight of the
short term technological developments which are
expected in WWW technology as well as the costs
of implementing particular ad-hoc solutions, led

Proceedings JENCY

143-7

P. Sousa

the project to the specific choices in the way the
different functionalities were to be supported.

The crucial strategic decision was the mbve
towards the development of a customised, dedica-
ted, HTTP server instead of combining an exis-
ting standard HTTP server with a set of CQls.
Only this way could the CGI limitations referred
in section IIL. be completely overcome. The extra
effort introduced by this decision is now paying
back with the increase in size, features and com-
putational work of the MARDUK server.

VI.

(1} T. Berners-Lee, R. T. Fielding, and H. Frys-
tyk Nielsen. Hypertext Transfer Protocol
- HTTP/1.0. INTERNET-DRAFT, HTTF
Working Group, October 1995. Work in Pro-
gress from the HTTP Working Group of the
IETF,
<URL:ftp://nic.nordu.net/internet-
drafts/draft-ietf-http-v10-spec-04.5xt >,

References

[2

—n

T. Berners-Lee and D. Connolly. Hyper
text Markup Language - 2.0. RFC 1866,
MIT/W3C, November 1995,
<URL:ftp:/ /funet fi/rfc/:fc1866.2>.

Dave Raggett. HyperText Markup Lan-
guage Specification Version 3.0. INTERNET-
DRAFT, HTMIL Working Group, March
1995. Work in Progress from the HTML Wor-
king Group of the IETF,
<URL:ftp://nic.nordu.net/internet-
drafts/draft-ietf-html-specv3-00.txt>.

E. Nebel and L. Masinter. Form-based File
Upload in HTML. RFC 1867, Xerox Corpo-
retion, November 1995,

<URL:ftp:/ /funet.fi/rfc/rfc1867.Z>.

T. Berners-l.ee, L. Masinter, and M. Mc-
Cahill. Uniform Resource Locators (URL).
RFC 1738, CERN, Xerox Corporation, Uni-
versity of Minnesota, December 1994,
<URL:ftp:/ /funet.fi/rfe/rfc1738.2>.

Author Information

Pedro Sousa graduated in Systems and Infor-
matics Engineering in 1995 at the University of
Minho, Portugal, and is currently studying for
a Masters degree in informatics. Since his final
graduate year he has been with the Computer
Communications Group of the University of Mi-
nho where he has been colaborating in the current
project. ~

Rui José has recently joined the Department
of Informatics of the University of Minho as an




Building an integrated

Assistant Lecturer. He graduated in Systems and
Informatics Engineering in 1993 and received his
Masters degree in 1995 both at this University.
He has been involved in several projects on X.500,
WWW and Information Services.

Anténio Costa is Assistant Lecturer in Com-
puter Comunications at the University of Minho,
Portugal. He graduated in Systems and Informa-
tics Engineering in 1992 at this University and co-
laborated in the operations of the national R&D
network (RCCN} until 1994. His main interests
are network information services and protocols.
He has been involved in several R&D projects un-
der contract with the Computer Communications
group in this area.

Vasco Freitas is Associate Professor of Com-
puter Communications at the University of Mi-
nho, Portugal. He graduated in electromic and
telecommunications engineering in 1972 at the
University of Lourengo Marques and received his
M.Sc. and Ph.D. degrees from the University
of Manchester (UK) in 1977 and 1980 respecti-
vely, From 1989 until 1994, he was in charge of
the establishment and management of the Por-
tuguese R&D Network (RCCN). He represented
this network in the RARE Association, DANTE
and Ebone from their beginnings until 1994. Cur-
rently, his interests concern networked informa-
tion services and protocols and the specification,
modelling and prototyping of communication pro-
tocols. '

Proceedings JENC7

143-8



