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Abstract. Motivated by the need to formalize generation of fast run-
ning code for linear algebra applications, we show how an index-free,
calculational approach to matrix algebra can be developed by regard-
ing matrices as morphisms of a category with biproducts. This shifts
the traditional view of matrices as indexed structures to a type-level
perspective analogous to that of the pointfree algebra of programming.
The derivation of fusion, cancellation and abide laws from the biprod-
uct equations makes it easy to calculate algorithms implementing matrix
multiplication, the kernel operation of matrix algebra, ranging from its
divide-and-conquer version to the conventional, iterative one.
From errant attempts to learn how particular products and coproducts
emerge from biproducts, we not only rediscovered block-wise matrix com-
binators but also found a way of addressing other operations calculation-
ally such as e.g. Gaussian elimination. A strategy for addressing vector-
ization along the same lines is also given.

1 Introduction

Automatic generation of fast running code for linear algebra applications calls
for matrix multiplication as kernel operator, whereby matrices are viewed and
transformed in an index-free way [1]. Interestingly, the successful language SPL
[2] used in generating automatic parallel code has been created envisaging the
same principles as advocated by the purist computer scientist: index-free ab-
straction and composition (multiplication) as a kernel way of connecting objects
of interest (matrices, programs, etc).

There are several domain specific languages (DSLs) bearing such purpose
in mind [2, 3, 1]. However, they arise as programming dialects with poor type
checking. This may lead to programming errors, hindering effective use of such
languages and calling for a “type structure” in linear algebra systems similar to
that underlying modern functional programming languages such as Haskell, for
instance [4].

It so happens that, in the same way function composition is the kernel op-
eration of functional programming, leading to the algebra of programming [5],
so does matrix multiplication once matrices are viewed and transformed in an
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index-free way. So, rather than interpreting the product AB of matrices A and
B as an algorithm for computing a new matrix C out of A and B, and trying to
build and explain matrix algebra systems out of such an algorithm, one wishes
to abstract from how the operation is carried out. Instead, the emphasis is put
on its type structure, regarded as the pipeline A �B (to be read as “A after B”),
as if A and B were functions

C � A �B (1)

or binary relations — the actual building block of the algebra of programming [5].
In this discipline, relations are viewed as (typed) composable arrows (morphisms)
which can be combined in a number of ways, namely by joining or intersecting
relations of the same type, reversing them (thus swapping their source and target
types), and so on.

If relations, which are Boolean matrices, can be regarded as morphisms of a
suitable mathematical framework, why not regard arbitrary matrices in the same
way? This matches with the categorical characterization of matrices, which can
be traced back to Mac Lane [6], whereby matrices are regarded as arrows in a
category whose objects are natural numbers (matrix dimensions):

A �

<@@@@@>
a11 . . . a1n

� � �

am1 . . . amn

=AAAAA?m�n

m n
Aoo (2)

Such a category MatK of matrices over a field K merges categorical products
and coproducts into a single construction termed biproduct [6]. Careful analysis
of the biproduct axioms as a system of equations provides one with a rich palette
of constructs for building matrices from smaller ones. In [7], for instance, we
outlined an approach to matrix blocked operation stemming from one particular
solution to such equations, which in fact offers explicit operators for building
block-wise matrices (row and column-wise) as defined by [8].

In the current paper we elaborate on [7] and show in detail how block-
driven divide-and-conquer algorithms for linear algebra arise from biproduct
laws emerging from the underlying categorial basis. In summary, this paper
gives the details of a constructive approach to matrix algebra operations leading
to elegant, index-free proofs of the corresponding algorithms. As happens with
state-of-the-art algebra of programming, the whole framework is fully typed,
enabling parametric type checking of matrix combinators.

2 The Category of Matrices MatK

Matrices are mathematical objects that can be traced back to ancient times,
documented as early as 200 BC [9]. The word “matrix” was introduced in the
western culture much later, in the 1840’s, by the mathematician James Sylvester
(1814-1897) when both matrix theory and linear algebra emerged.

The traditional way of viewing matrices as rectangular tables (2) of elements
or entries (the “container view”) which in turn are other mathematical objects
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such as e.g. complex numbers (in general: inhabitants of the field K which un-
derlies MatK), encompasses as special cases one column and one line matrices,
referred to as column (resp. row) vectors, that is, matrices of shapes

v �

<@@@@@>
v1

�

vm

=AAAAA?
and w � �w1 . . . wn�

What is a matrix? The standard answer to this question is to regard matrix A
(2) as a computation unit, or transformation, which commits itself to producing
a (column) vector of size m provided it is supplied with a (column) vector of
size n. How is such output produced? Let us abstract from this at this stage and
look at diagram

m n
Aoo 1

voo

w

gg

arising from depicting the situation in arrow notation. This suggests a pictorial
representation of the product of matrix Am�n and matrix Bn�q, yielding a new
matrix C � �AB�m�q with dimensions m � q, as follows,

m n
Aoo qBoo

C�A�B

gg (3)

which automatically “type-checks” the construction: the “target” of n qBoo

simply matches the “source” of m n
Aoo yielding a matrix whose type m qoo

is the composition of the given types.
Having defined matrices as composable arrows in a category, we need to define

its identities [6]: for every object n, there must be an arrow of type n noo

which is the unit of composition. This is nothing but the identity matrix of size

n, which we will denote by n n
idnoo . For every matrix m n

Aoo , one has

idm �A � A � A � idn n

A

��

n
idnoo

A

��A}}{{
{{

{{
{{

m m
idm

oo

(4)

(Subscripts m and n can be omitted wherever the underlying diagrams are as-
sumed.)

Transposed matrices. One of the kernel operations of linear algebra is transpo-
sition, whereby a given matrix changes shape by turning its rows into columns

and vice-versa. Type-wise, this means converting an arrow n m
Aoo into an
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arrow m n
AT

oo , that is, source and target types (dimensions) switch over.
By analogy with relation algebra, where a similar operation is termed converse
and denoted AX, we will use this notation instead of AT (which misleadingly
suggests a kind of exponential) and will say “A converse” wherever reading AX.
Index-wise, we have, for A as in (2):

AX
�

<@@@@@>
a11 . . . am1

� � �

a1n . . . amn

=AAAAA?
n m

AX

oo

Instead of telling how transposition is carried out index-wise, again we prefer
to stress on (index-free) properties of this operation such as, among others,
idempotence and contravariance:

�AX�X � A (5)
�A �B�X � BX

�AX (6)

Bilinearity. Given two matrices of the same type m n
M,Noo (i.e., in the same

homset of MatK) it makes sense to add them up index-wise, leading to matrix
M �N where symbol � promotes the underlying element-level additive operator
to matrix-level. In fact, matrices form an Abelian category : each homset in the
category forms an additive Abelian (ie. commutative) group with respect to
which composition is bilinear:

M � �N �L� � M �N �M �L (7)
�N �L� �K � N �K �L �K (8)

Polynomial expressions (such as in the properties above) denoting matrices built
up in an index-free way from addition and composition play a major role in
matrix algebra. This can be appreciated in the explanation of the very important
concept of a biproduct which follows.

Biproducts. In an Abelian category, a biproduct diagram for the objects m,n is
a diagram of shape

m
i1

// r
π1oo π2 //

n
i2

oo

whose arrows π1, π2, i1, i2 satisfy the identities which follow:

π1 � i1 � idm (9)
π2 � i2 � idn (10)

i1 � π1 � i2 � π2 � idr (11)

Morphisms πi and ii are termed projections and injections, respectively. From the
underlying arithmetics one easily derives the following orthogonality properties
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(see e.g. [6]):

π1 � i2 � 0 , π2 � i1 � 0 (12)

One wonders: how do biproducts relate to products and co-products in the
category? The answer in Mac Lane’s [6] words is as follows:

Theorem 2: Two objects a and b in Abelian category A have a product in A iff
they have a biproduct in A. Specifically, given a biproduct diagram, the object
r with the projections π1 and π2 is a product of m and n, while, dually, r with
i1 and i2 is a coproduct. In particular, two objects m and n have a product in
A if and only if they have a coproduct in A.

The diagram and definitions below depict how products and coproducts arise
from biproducts (the product diagram is in the lower half; the upper half is the
coproduct one):

m

n

R

>>}}}}}}}}}

i1
// n � p

�R S �
OO

π1oo π2 // p
i2

oo

S

``AAAAAAAAA

t

U

``AAAAAAAAAA
� U

V
�

OO

V

>>~~~~~~~~~~

�R S � � R � π1 � S � π2 (13)

�U
V
	 � i1 �U � i2 � V (14)

By analogy with the algebra of programming [5], expressions �R S � and �U
V
	

will be read “R junc S” and “U split V ”, respectively. What is the intuition
behind these combinators, which come out of the blue in texts such as e.g. [8]?
Expressed in terms of definitions (13) and (14), axiom (11) rewrites to both

� i1 i2 � � id (15)

�π1

π2
	 � id (16)

somehow suggesting that the two injections and the two projections “decom-
pose” the identity matrix. On the other hand, each of (15,16) has the shape
of a reflection corollary [5] of some universal property. Below we derive such a
property for �R S �,

X � �R S �� �X � i1 � R
X � i2 � S

(17)

from the underlying biproduct equations, by circular implication:

X � �R S �
� � identity (4) ; (13) �
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X � id � R � π1 � S � π2

� � (11) �
X � �i1 � π1 � i2 � π2� � R � π1 � S � π2

� � bilinearity (7) �
X � i1 � π1 �X � i2 � π2 � R � π1 � S � π2

� � Leibniz (twice) �
��X � i1 � π1 �X � i2 � π2� � i1 � �R � π1 � S � π2� � i1�X � i1 � π1 �X � i2 � π2� � i2 � �R � π1 � S � π2� � i2

� � bilinearity (8) ; biproduct (9,10) ; orthogonality (12) �
�X � i1 �X � i2 � 0 � R � S � 0

X � i1 � 0 �X � i2 � R � 0 � S

� � trivia �
�X � i1 � R

X � i2 � S

� � Leibniz (twice) �
�X � i1 � π1 � R � π1

X � i2 � π2 � S � π2

� � Leibniz �
X � i1 � π1 �X � i2 � π2 � R � π1 � S � π2

� � as shown above �
X � �R S �

The derivation of the universal property of �U
V
	,

X � �U
V
	� �π1 �X � U

π2 �X � V
(18)

is (dually) analogous.

Parallel with relation algebra. Similar to matrix algebra, relation algebra [10,
5] can also be explained in terms of biproducts once morphism addition (11)
is interpreted as relational union, object union is disjoint union, i1 and i2 as
the corresponding injections and π1,π2 their converses, respectively. Relational
product should not, however, be confused with the fork construct [11] in fork



Matrices As Arrows! 7

(relation) algebra, which involves pairing. (For this to become a product one has
to restrict to functions.)

In the next section we show that the converse relationship (duality) between
projections and injections is not a privilege of relation algebra: the most intuitive
biproduct solution in the category of matrices also offers such a duality.

3 Chasing biproducts

Let us now address the intuition behind products and coproducts of matrices.
This has mainly to do with the interpretation of projections π1, π2 and injec-
tions i1,i2 arising as solutions of biproduct equations (9,10,11). Concerning this,
Mac Lane [6] laconically writes:

“In other words, the [biproduct] equations contain the familiar calculus of ma-
trices.”

In what way? The answer to this question proved more interesting than it seems
at first, because of the multiple solutions arising from a non-linear system of
three equations (9,10,11) with four variables. In trying to exploit this freedom
we became aware that each solution offers a particular way of putting matrices
together via the corresponding “junc” and “split” combinators.

Our inspection of solutions started by reducing the “size” of the objects
involved and experimenting with the smaller biproduct depicted below:

1
i1

// 1 � 1
π1oo π2 //

1
i2

oo

The “puzzle” in this case is more manageable,

¢̈̈̈̈
¦̈̈̈̈
¨̈¤

π1 � i1 � �1�
π2 � i2 � �1�
i1 � π1 � i2 � π2 � �1 0

0 1	
yet the set of solutions is not small. We used the Mathematica software [12] to
solve this system by inputting the projections and injections as suitably typed
matrices leading to a larger, non-linear system:

¢̈̈̈̈
¨̈̈̈̈̈
¨̈¦̈̈̈
¨̈̈̈̈̈
¨̈̈¤

�π11 π12 � � � i11
i12

	 � �1�

�π21 π22 � � � i21
i22

	 � �1�
� i11
i12

	 � �π11 π12 � � � i21
i22

	 � �π21 π22 � � �1 0
0 1	

This was solved using the standard Solve command obtaining the output pre-
sented in Figure 1, which offers several solutions. Among these we first picked the
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sol � Solve��pi1.i1 �� I1,pi2.i2 �� I1, i1.pi1 � i2.pi2 �� I2��sol � Solve��pi1.i1 �� I1,pi2.i2 �� I1, i1.pi1 � i2.pi2 �� I2��sol � Solve��pi1.i1 �� I1,pi2.i2 �� I1, i1.pi1 � i2.pi2 �� I2��
Solve::svars � Equations may not give solutions for all "solve" variables. ee
��i21 �

1
π21

, i22 � �
π11i12

π21
, π12 �

1
i12

, i11 � 0, π22 � 0� ,

�i21 � �
π12i11

π22
, i22 �

π22�π12π21i11
�π22�2

, π11 �
π22�π12π21i11

π22i11
, i12 � �

π21i11
π22

��

Fig. 1. Fragment of Mathematica script

one which purports the most intuitive reading of the junc and split combinators
— that of simply gluing matrices vertically and horizontally (respectively) with
no further computation of matrix entries:

π1 � �1 0� π2 � �0 1�
i1 � �10	 i2 � �01	

Interpreted in this way, �R
S
	 (14) and �R S � (13) are the block gluing matrix

operators which we can find in [8]. Our choice of notation — R above S in the
case of (14) and R besides S in the case of (13) reflects this semantics.

The obvious generalization of this solution to higher dimensions of the prob-
lem leads to the following matrices with identities of size m and n in the appro-
priate place, so as to properly typecheck:

π1 � m m � n
� idm 0 �

oo , π2 � n m � n
�0 idn �

oo

i1 � m � n m

<@@@@@>

idm

0

=AAAAA?oo , i2 � m � n n

<@@@@@>

0
idm

=AAAAA?oo

By inspection, one immediately infers the same duality found in relation algebra,

πX

1 � i1 , πX

2 � i2 (19)

whereby junc (13) and split (14) become self dual:

�R S �X
� � (13) ; (6) �

πX

1 �R
X
� πX

2 � S
X
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� � (19) ; (14) �
�RX

SX 	
This particular solution to the biproduct equations captures what in the

literature is meant by blocked matrix algebra, a generalization of the standard
element-wise operations to sub-matrices, or blocks, leading to divide-and-conquer
versions of the corresponding algorithms. The next section shows the exercise
of deriving such laws, thanks to the algebra which emerges from the universal
properties of the block-gluing matrix combinators junc (17) and split (18). We
combine the standard terminology with that borrowed from the algebra of pro-
gramming [5] to stress the synergy between blocked matrix algebra and relational
algebra.

4 Blocked Linear Algebra — calculationally!

Further to reflection laws (15,16), the derivation of the following equalities from
universal properties (17,18) is a standard exercise in (high) school algebra, where
capital letters A, B, etc. denote suitably typed matrices (the types, ie. dimen-
sions, involved in each equality can be inferred by drawing the corresponding
diagram):

– Two “fusion”-laws:

C � �A B � � �C �A C �B � (20)

�A
B
	 �C � �A �C

B �C
	 (21)

– Four “cancellation”-laws:

�A B � � i1 � A , �A B � � i2 � B (22)

π1 � �A
B
	 � A , π2 � �A

B
	 � B (23)

– Three “abide”-laws 3: the junc/split exchange law

� �A B �
�C D � 	 � ��A

C
	 �B

D
		 � �A B

C D
	 (24)

3 Neologism “abide” (= “above and beside”) was introduced by Richard Bird [13] as a
generic name for algebraic laws in which two binary operators written in infix form
change place between “above” and “beside”, e.g.

a

b
�

c

d
�

a � c

b � d
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which tells the equivalence between row-major and column-major construc-
tion of matrices (thus the four entry block notation on the right), and two
blocked addition laws:

�A B � � �C D � � �A �C B �D � (25)

�A
B
	 � �C

D
	 � �A �C

B �D
	 (26)

The laws above are more than enough for us to derive standard linear algebra
rules and algorithms in a calculational way. As an example of their application
we provide a simple proof of the rule which underlies divide-and-conquer matrix
multiplication:

�R S � � �U
V
	 � R �U � S � V (27)

We calculate:

�R S � � �U
V
	

� � (14) �
�R S � � �i1 �U � i2 � V �

� � bilinearity (7) �
�R S � � i1 �U � �R S � � i2 � V

� � �-cancellation (22) �
R �U � S � V

As another example, let us show how standard block-wise matrix-matrix multi-
plication (MMM),

�R S
U V

	 � �A B
C D

	 � � RA � SC RB � SD
UA � V C UB � V D

	 (28)

relies on divide-and-conquer (27):

��R
U
	 � S

V
		 � ��A

C
	 �B

D
		

� � junc-fusion (20) �
���R

U
	 � S

V
		 � �A

C
	 ��R

U
	 � S

V
		 � �B

D
		

� � divide and conquer (27) twice �
��R

U
	 �A � � S

V
	 �C �R

U
	 �B � � S

V
	 �D 	
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� � split-fusion (20) four times �
��R �A

U �A
	 � � S �C

V �C
	 �R �B

U �B
	 � � S �D

V �D
		

� � blocked addition (26) twice �
�� R �A � S �C

U �A � V �C
	 � R �B � S �D

U �B � V �D
		

� � the same in block notation (24) �
� RA � SC RB � SD
UA � V C UB � V D

	

5 Calculating Triple Nested Loops

By putting together the universal factorization of matrices in terms of the junc
and split combinators, one easily infers yet another such property handling four
blocks at a time:

X � �A11 A12

A21 A22
	�

¢̈̈̈̈
¦̈̈̈̈
¨̈¤

π1 �X � i1 � A11

π1 �X � i2 � A12

π2 �X � i1 � A21

π2 �X � i2 � A22

Alternatively, one may generalize (13,14) to blocked notation

�A11 A12

A21 A22
	 � i1 �A11 � π1 � i1 �A12 � π1 � i1 �A21 � π1 � i2 �A22 � π2

which rewrites to

�A11 A12

A21 A22
	 � �A11 0

0 0	 � �0 A12

0 0 	 � � 0 0
A21 0	 � �0 0

0 A22
	

once injections and projections are replaced by the biproduct solution found in
Section 3.

Iterated Biproducts. It should be noted that biproducts generalize to finitely
many arguments, leading to an n-ary generalization of the (binary) junc / split
combinators. The following notation is adopted in generalizing (13,14):

A � �A1 . . . Ap � � 9
1BjBp

A � ij �
p

Q
j�1

A � ij � πj (29)

A �

<@@@@@>
A1

�

Am

=AAAAA?
� 7

1BjBm

πj �A �

m

Q
j�1

ij � πj �A (30)
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Note that all laws given so far generalize accordingly to n-ary splits and juncs.
In particular, we have the following universal properties:

X � 9
1BjBp

Aj � �
1BjBp

X � ij � Aj (31)

X � 7
1BjBm

Aj � �
1BjBm

πj �X � Aj (32)

Further note that m,p can be chosen as large as possible, the limit taking place

when blocks Ai become atomic. In this limit situation, a given matrix m n
Aoo

is defined in terms of its elements Ajk as:

A �

<@@@@@>
a11 . . . a1n

� � �

am1 . . . amn

=AAAAA?
� Q

1BjBm
1BkBn

ij � πj �A � ik � πk � ?
1BjBm
1BkBn

πj �A � ik (33)

where >1BjBm
1BkBn

abbreviates 61BjBm81BkBn — equivalent to 81BkBn61BjBm by

the generalized exchange law (24).
Our final calculation shows how iterated biproducts “explain” the traditional

for-loop implementation of MMM. Interestingly enough, such iterative imple-
mentation is shown to stem from generalized divide-and-conquer (27):

C � A �B

� � (33), (29) and (30) �
� 7
1BjBm

πj �A� � � 9
1BkBn

B � ik�
� � generalized split-fusion (21) �
7

1BjBm

�πj �A � � 9
1BkBn

B � ik��
� � generalized either-fusion (20) �
7

1BjBm

� 9
1BkBn

πj �A �B � ik�
� � (29), (30) and generalized (21) and (20) �
7

1BjBm

� 9
1BkBn

�� 9
1BlBp

πj �A � il� � � 7
1BlBp

πl �B � ik���
� � generalized divide-and-conquer (27) �
7

1BjBm

� 9
1BkBn

� Q
1BlBp

πj �A � il � πl �B � ik��
As we can see in the derivation path, the choices for the representation of A

and B impact on the derivation of the intended algorithm. Different choices will
alter the order of the triple loop obtained. Proceeding to the loop inference will
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involve the expansion of C and the normalization of the formula into sum-wise
notation:

?
1BkBm
1BjBn

πj �C � ik � 7
1BjBm

� 9
1BkBn

� Q
1BlBp

πj �A � il � πl �B � ik��

� � (33), (29) and (30) �
7

1BjBm

� 9
1BkBn

πj �C � ik� � 7
1BjBm

� 9
1BkBn

� Q
1BlBp

πj �A � il � πl �B � ik��
At this point we rely on the universality of the junc and split constructs (31,32)
to obtain from above the post-condition of the algorithm:

�
1BjBm

� �
1BkBn

�πj �C � ik � Q
1BlBp

πj �A � il � πl �B � ik��
This predicate expresses an outer traversal indexed by j, an inner traversal

indexed by k and what the expected result in each element of output matrix C
is. Thus we reach three nested for-loops of two different kinds: the two outer-
loops (corresponding to indices j, k) provide for navigation, while the inner loop
performs an accumulation (thus the need for initialization):

for j � 1 to m do
for k � 1 to n do

C�j��k�� 0
for l � 1 to p do

C�j��k�� C�j��k� �A�j��l� �B�l��k�
end for

end for
end for

Different matrix memory mapping schemes give rise to the interchange of
the j, k and l in the loop above [14]. This is due to corresponding choices in the
derivation granted by the generalized exchange law (24), among others.

Other variants of blocked MMM (28) such as e.g. Strassen’s or Winograd’s
[15] rely mainly on the additive structure of MatK and thus don’t pose new
challenges. However, whether such algorithms can be better explained in more
structured, biproduct-based derivations is a matter of future research.

6 Related Work

The formulation of categories of matrices can be traced back to [6] and [16], where
the focus is either on exemplifying additive categories and on the relationship
between linear transformations and matrices. No effort on exploiting biproducts
calculationally is present, let alone algorithm derivation.

Bloom et al [8] make use of what we have identified as the standard biproduct
(enabling blocked matrix algebra) to formalize column and row-wise matrix join
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and fusion. Instead of a calculational approach to linear algebra algorithmics,
the emphasis is on iteration theories which matricial theories are a particular
case of. Furthermore this work makes use of other algebraic properties of MatK

which we aim to encompass later.
Other categorial approaches to linear algebra include relative monads [17],

whereby the category of finite-dimensional vector spaces arises as a kind of Kleisli
category. Efforts by the mathematics of program construction community in the
derivation of matrix algorithms include the study of two-dimensional pattern
matching [18]. An account of work on calculational, index-free reasoning about
regular and Kleene algebras of matrices can be found in [19].

7 Conclusions and Current Work

A comprehensive calculational approach to linear algebra algorithm specifica-
tion, transformation and generation is still missing. However, the successes re-
ported by the engineering field in the automatic library generation are a good
cue to the feasibility of such an approach.

In this paper we have presented a formalization of matrices as categorial
morphisms (arrows) in a way which relates categories of matrices to relation
algebra and program calculation. Our case study — matrix multiplication — is
dealt with in an elegant, calculational style whereby its divide-and-conquer and
triple nested loop algorithmic implementations were derived.

The notion of a categorial biproduct is at the heart of the whole approach.
Using the category of matrices and its biproducts the conversion from the declar-
ative definition of a matrix to its indexed version is made possible thanks to the
properties of projections and injections, as shown in the derivation of the triple
for-loop.

We plan to carry on this work in several directions. The background of our
project is the formalization of the SPL language [2] and, in this respect, work
has only started. However in its beginning, our biproduct-centered approach is
already telling us what to do next, as happens for instance with the biproduct
nature of the gather/scatter matrices of the SPIRAL system [20].

Next in the plan we want to exploit other solutions to the biproduct equa-
tions, while checking which “chapters” of linear algebra [16] they are able to
constructively explain. Think of Gaussian elimination, for instance, whose main
steps involve row-switching, row-multiplication and row-addition, and suppose
one defines the following transformation t catering for the last two, for a given
α:

t � � n noo � � � n � n moo �� � n � n moo �
t�α, �A

B
	� � � A

αA �B
	

(Thinking in terms of blocks A and B rather than rows is more general; in this

setting, arrow n n
αoo means n n

idoo with all 1s replaced by αs.) Let us
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analyze the essence of t by using the blocked-matrix calculus in reverse order :

t�α, �A
B
	� � � A

αA �B
	

� � (28) in reverse order �
� 1 0
α 1	 � �A

B
	

� � divide-and-conquer (27) �
� 1
α
	 �A � �0

1	 �B
It can be shown that the last expression, which has the same shape as (14), is
in fact the split combinator generated by another biproduct, parametric on α:

π�

1 � �1 0 � , π�

2 � ��α 1 �
i�1 � � 1

α
	 , i�2 � �0

1	
In summary, this biproduct, which extends the one studied earlier on (they
coincide for α �� 0) provides a categorial interpretation of one of the steps of
Gaussian elimination. We are currently investigating its role in a constructive
proof of the corresponding, well-known algorithm, which we lay down recursively
as follows, using block-notation (24):

ge � � 1 � n 1 �moo �� � 1 � n 1 �moo �
ge � x M

N Q
	 � �x M

0 ge�Q �
N
x
�M� 	

ge x � x

In particular, we want to provide a calculational alternative to the FLAME-
styled derivation of the algorithm given in e.g. [3].

Last but not least, we want to address vectorization calculationally. The
linearization of an arbitrary matrix into a vector is a data refinement step.
This means finding suitable abstraction/representation relations [21] between
the two formats and reasoning about them, including the refinement of all matrix
operations into vector form.

The first part of the exercise proves easier than first expected: vectorization
is akin to exponentiation, that is, currying [4] in functional languages. While
currying “thins” the input of a given binary function by converting it into its
unary (higher-order) counterpart, so does vectorization by thinning a given ma-

trix n km
Moo into kn m

vecMoo , where k is the “thinning factor” [7]. (For
m � 1, vecM is a column vector — the standard situation [22].) Once again,
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our approach relies on capturing such a relationship by a universal property

X � vecM � M � ε � �idaX� k � n k � �k � n� ε // n

m

vecM

OO

k �m

idka�vecM�
OO

M

::uuuuuuuuuu

where a denotes Kronecker product 4, granting vec as a bijective transforma-
tion. So its converse unvec is also a bijection, whereby ε � unvec id. Put in
other words, we are in presence of an adjunction between functor FX � idk aX
and itself. Taking advantage of this mathematical framework [23] in calculating
the whole algebra of vectorization will keep the authors busy for a while [24].

Broadening scope, an aspect that needs investigation is how this “non-stand-
ard” treatment of matrices (data structures represented as arrows, as opposed
to datatypes as objects) combines with theories of the rest of programming. For
instance, its application to the emerging field of linear algebra of programming
[25] and its combination with the monadic framework of [17] are topics for future
research.
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