Mantle-like Sr–Nd isotope composition of Fe–K subalkaline granites: the Peneda–Gerês Variscan massif (NW Iberian Peninsula)

A. C. Mendes and G. Dias
Department of Earth Sciences, University of Minho, Campus de Gualtar, 4710–057 Braga, Portugal

ABSTRACT

The Peneda–Gerês massif is one of the most representative NW Iberian late- to post-orogenic Variscan granitic plutons. It resulted essentially from the subsynchronous emplacement, at 290–296 Ma, of two granitic magmas of Fe–K subalkaline affinity, with primitive isotopic composition: $\text{Sr}_1 = 0.703$–0.707 and $\epsilon\text{Nd}_1 = -1.5$ to -2.4. An origin by mantle input followed by mantle–crust interactions is proposed, implying the contribution of a less enriched mantle component than that involved in the genesis of synorogenic hybrid granitoids of Mg–K subalkaline affinity. A less voluminous aluminopotassic and isotopically more evolved magma ($\text{Sr}_1 = 0.708$–0.709 and $\epsilon\text{Nd}_1 = -3.5$ to -3.9) with little or no mantle input was also generated, suggesting the involvement of lower crust materials. Therefore, this study suggests an input of juvenile magmas in late Variscan times, the mantle-like isotope signature of Fe–K granitic magmatism being clearly related to a geodynamic setting of extensional processes, large-scale uplift and thinning.

Terra Nova, 16, 109–115, 2004

Introduction

The central and western Iberian Peninsula constitutes an extensive segment of the west European Variscan Fold Belt, the Iberian Massif. The geological evolution of this segment has been previously described in detail (e.g. Bard et al., 1980; Iglesias et al., 1983; Ribeiro et al., 1983, 1990; Matte, 1986, 1991; Ribeiro and Pereira, 1986; Lagarde et al., 1992; Dias and Ribeiro, 1995; Rey et al., 1997). Tectonic characteristics of the European Variscides are those of a classical subduction–collision belt that originates from the convergence, obduction, subduction and collision of the North Africa and the Gondwana continents, with minor intermediate blocks. In the NW Iberian Massif, three main ductile deformation phases, D1, D2 and D3, are usually considered responsible for the structural development of this part of the Variscan belt (Noronha et al., 1979; Dias and Ribeiro, 1995). The D1 and D2 deformation phases correspond to the collisional stage of the Variscan orogeny, and the D3 deformation phase is related to post-thickening extensional tectonics.

The Iberian Massif is noteworthy for regard to the abundance and variety of granitoids, largely represented in the most internal zone, the Central Iberian Zone as defined by Julivert et al. (1974). These were emplaced mainly during the post-collisional stage of the Variscan orogeny and were classically subdivided into ‘older granites’ and ‘younger granites’ (Schmerthorn, 1956; Oen, 1958, 1970). The classification has been substantially refined and is now based on the emplacement age relative to the last Variscan ductile deformation phase D3 (Ferreira et al., 1987; Pinto et al., 1987; Dias et al., 1998): (1) pre-orogenic (580–480 Ma); (2) synorogenic, subdivided into pre-D3 (~380–345 Ma), syn-D3 (319–313 Ma), late-D3 (311–306 Ma), late-to-post-D3 (~300 Ma); and (3) late-to-post-orogenic (post-D3; 296–275 Ma).

Most granites described in this paper are K-rich calc-alkaline rocks to the point that some no longer meet the original criteria of Peacock (1931) for calc-alkaline rocks and are formally alkali-calcic or subalkaline (as used in the French literature). The nomenclature of Rossi and Chevremont (1987) will be used here to distinguish different K-rich granitic associations. Depending on the relative whole-rock proportions of K, Al, Mg and Fe, we use the terms: aluminopotassic, which stands for peraluminous S-type granites; Mg–K subalkaline, which stands for high-K calc-alkaline to alkali-calcic monzonitic series (with abundant sphaene, hornblende and vaugnerites); and Fe–K subalkaline, which stands for high-K evolved alkali-calcic granites with high Fe/Mg ratio (type location: Ploumanac’h, Brittany, France).

In Variscan times a rapid and drastic change occurred at about 300 Ma, between a compressive ductile tectonic regime (phase D3) associated with calc-alkaline, Mg–K subalkaline and aluminopotassic plutonism and a brittle deformation phase (phase D4), which controlled the emplacement of Fe–K subalkaline plutons (Dias et al., 1998). In the past decade there has been an increasing interest on this Fe-K subalkaline plutonism. However, Sr–Nd isotope data on this type of plutonism in the European Variscides are scarce. The nature of possible source reservoirs is still a matter of debate. According to Bonin et al. (1998), post-orogenic suites originate from enriched and not depleted mantle sources and their present compositions are a mixture of major mantle contribution and various crustal components. Debou and Lemmet (1999) consider that these rocks are hybrid, originating from subcontinental enriched mantle of lamproitic affinity and sialic crust. For Pupin and Persoz (1999) and Pupin (2000), the
characteristics of the inherited zircons indicate a mixing–mingling process of two coeval magmas, one subsolvus alkaline and the other calc-alkaline. In this paper we present and discuss peculiar features and petrogenetic inferences on this type of plutonism, using the Peneda–Gerês granitic massif as a case study. This is one of the most representative and well-known late- to post-orogenic plutons in the Iberian Massif. The isotopic data are compared with available data on other Iberian late- to post-orogenic plutons.

Geological setting, petrography

The Peneda–Gerês massif outcrops in an area of c. 40 km (N–S direction) × 20 km (E–W direction), across the border between northern Portugal and Spain, in the Central Iberian Zone (Fig. 1). It is a discordant massif having intruded syn-D3 and late-D3 granites and Silurian metasedimentary rocks. U–Pb geochronological data indicate an emplacement age of 290–296 Ma (Dias et al., 1998). It is composed of six main contemporaneous granitic
units, three of which are roughly concentric (Fig. 1; Mendes, 2001). The most extensive and external unit is the Gerês granite. This is a porphyritic coarse- to medium-grained, slightly rose-coloured biotite monzogranite. Towards the interior of the massif, this granite adjoins the Pauflito granite. The latter is a porphyritic medium-grained biotite monzogranite whose porphyritic character disappears and grain size decreases towards the innermost unit, the Illa granite, which is a two-mica fine-grained monzogranite. In the Gerês granite, which is a two-mica fine-grained slightly porphyritic biotite monzogranite, primary muscovite in the Illa granite, primary muscovite in the Gerês granite, primary muscovite in the Gereș granite, which is a porphyritic medium-grained biotite monzogranite whose porphyritic character disappears and grain size decreases towards the innermost unit, the Illa granite, which is a two-mica fine-grained monzogranite. In the Gerês granite, which is a porphyritic medium-grained biotite monzogranite whose porphyritic character disappears and grain size decreases towards the innermost unit, the Illa granite, which is a two-mica fine-grained monzogranite.

Table 1

<table>
<thead>
<tr>
<th>Rb (p.m.m)</th>
<th>Sr (p.m.m)</th>
<th>87Rb/86Sr (2ε)</th>
<th>87Sr/86Sr</th>
<th>Sm (p.m.m)</th>
<th>Nd (p.m.m)</th>
<th>147Sm/144Nd (2ε)</th>
<th>143Nd/144Nd</th>
<th>87Sr/86Sr*</th>
<th>εNd*</th>
<th>T_{DM} (Ga)</th>
</tr>
</thead>
</table>

Gerês

G16 299.10 39.80 21.81 0.795652 (22) 4.83 21.25 0.1374 0.51244 (7) 0.70379 -1.51 1.05

G63 275.40 84.20 8.74 0.742146 (33) 6.28 26.83 0.1416 0.512412 (7) 0.70638

G1 242.62 79.30 8.85 0.740919 (15) 0.70364

G11 253.50 81.98 8.96 0.741175 (16) 6.53 29.65 0.1331 0.512437 (20) 0.70344

Ap16† 2.35 127.31 0.054 0.703572 (14) 0.70334

Ap63‡ 1.87 131.12 0.041 0.703802 (20) 0.70363

Pauflito

M52 216.70 134.60 4.67 0.725682 (34) 5.72 28.92 0.1196 0.512371 (10) 0.70641

M64 299.10 39.80 21.81 0.795652 (22) 4.83 21.25 0.1374 0.51244 (7) 0.70379 -1.51 1.05

M21 242.62 79.30 8.85 0.740919 (15) 0.70364

Illa

MM5 267.60 59.70 13.01 0.760574 (29) 3.24 17.14 0.1142 0.512359 (21) 0.70689 -2.39 1.11

MM8 238.70 96.70 7.16 0.735676 (31) 5.72 27.33 0.1265 0.512385 (11) 0.70613 -2.34 1.11

MM1 267.37 77.07 10.03 0.747992 (19) 4.18 17.14 0.1447 0.512195 (15) 0.70660 -2.35 1.11

Carris

F9 237.80 94.00 7.34 0.735112 (70) 6.69 29.59 0.1326 0.512420 (10) 0.70482 -1.88 1.07

F45 283.80 87.10 9.44 0.744185 (28) 6.64 30.52 0.1316 0.512416 (9) 0.70523 -1.92 1.08

F501 352.72 99.89 10.21 0.747395 (59) 7.02 34.34 0.1236 0.512399 (7) 0.70526 -1.96 1.08

F503 259.16 77.82 9.52 0.744323 (15) 0.70504

Covas

5.3 436.54 11.31 112.40 1.037822 (22) 18.39 5.61 0.1846 0.512535 (7) 0.70304 -1.56 1.05

5.35 364.67 13.88 77.81 0.747395 (59) 7.02 34.34 0.1236 0.512399 (7) 0.70526 -1.96 1.08

Calvos

6.22 306.66 51.06 17.49 0.781287 (40) 7.02 34.34 0.1236 0.512399 (7) 0.70526 -1.96 1.08

10.3 477.91 80.99 9.37 0.751224 (36) 31.18 6.57 0.1274 0.512303 (22) 0.70923 -3.92 1.23

Analytical techniques

Analytical data were obtained at the CRPG (Nancy, France). Major and trace element compositions of 54 samples from the six granite units were determined by ICP-AES and ICP-MS (data available upon request; Mendes, 2001). Sr and Nd isotopic data are determined by ICP-AES and ICP-MS.

Geochemistry

The six Peneda–Gerês granitic units are Si-rich and K-rich (SiO2 = 71.2–76.5%, K2O/Na2O = 1.1–1.6, K2O + Na2O = 7.5–8.5%) with a slightly metaluminous to peraluminous character (Al2O3/K2O + Na2O + 2CaO).
nantly between ~4 and 40] and flattened REE patterns [(La/Yb)N between 2 and 12]. Some compositional characteristics are illustrated in Fig. 2. These reveal different chemical compositions for five of the six granites, as the Carris granite presents an identical composition to the Paufito granite. An evolutionary continuity is observed between the two innermost units of this massif, the Paufito and Illa granites, the latter representing the more evolved compositional end. The Covas granite has a very evolved composition, which is in accordance with its hololeucocratic nature. The Gerês, Paufito, Illa and Calvos granites present significant internal chemical–mineralogical evolutions (Fig. 2).

Sr and Nd isotopic data are reported in Table 1 and are illustrated in Fig. 3 together with the isotopic composition of other NW Iberian plutonic rocks. For the Gerês granite a whole-rock Rb-Sr isochron yields an age of 296 ± 6 Ma and a (87Sr/86Sr)0 ratio of 0.7035 ± 0.0010 (MSWD = 0.08; four samples). For the Paufito and Illa granites a whole-rock Rb-Sr isochron yields an age of 292 ± 6 Ma and a (87Sr/86Sr)0 ratio of 0.70819 ± 0.00058 (MSWD = 0.26; six samples). The Rb-Sr and U-Pb geochronological data are in agreement. The U-Pb isotopes yielded ages of 296 ± 2 Ma (monazite) and 297 ± 7 Ma (zircon) for the Gerês granite, whereas an age of 290 ± 2.5 Ma (zircon) was obtained for the Paufito granite (Dias et al., 1998). The low (87Sr/86Sr)0 ratio of the Gerês granite was confirmed by Rb-Sr isotope data from two pure apatite concentrates (Table 1). In terms of Sr and Nd composition, the six granitic units form four compositional groups (Table 1; Fig. 3). The Gerês and Covas granites present the same isotope composition, with (87Sr/86Sr)0 between 0.7030 and 0.7038, and εNd0 between −1.51 and −1.57. The Paufito and Illa granites also present the same composition: (87Sr/86Sr)0 from 0.7061 to 0.7069 and εNd0 between −2.34 and −2.39. The Carris granite has an intermediate composition between these two groups: (87Sr/86Sr)0 between 0.7048 and 0.7053, εNd0 between −1.88 and −1.96. The Calvos granite yields the most evolved isotope composition: (87Sr/86Sr)0 between 0.7076 and 0.7092, εNd0 between −3.49 and −3.92. The model ages TDM vary between 1.2 Ga for the Calvos granite and 1.1 Ga for the other granites. Additionally, a 1.2-Ga inherited component has been found in U-Pb zircon analysis of the Carris granite (Dias et al., 1998).
Petrogenesis

The granites of the Peneda–Gerês massif belong to the ferriferous association of Debon and Le Fort (1988). They display a subalkaline affinity in the X vs. Or*-MM* multicationic diagram of La Roche et al. (1980), with the exception of the Calvos granite, which presents an aluminopotassic affinity. Furthermore, other typological indicators (zircon morphology, biotite composition) point to an Fe–K subalkaline nature for the Gerês, Paufito and Illa granites (Mendes and Dias, 1996).

Geochemical and isotopic data suggest that the granitic units of the Peneda–Gerês massif resulted from the synchronous emplacement of three intrusive magmas (Gerês–Covas, Calvos and Paufito–Illa–Carris) that evolved independently. In fact, the geochemical data suggest that the Paufito and Illa granites are co-magmatic. Based mainly on the Sr and Nd isotope data, a co-magmatic origin can also be postulated for the Gerês and Covas granites. The distinct isotope signatures of these two sets of units and of the Calvos granite suggest that they were derived from different magmas. With regard to the Carris granite, its isotope and mineralogical (biotite composition) point to an Fe–K subalkaline nature for the Gerês granite and the nearby Paufito granitic unit, although its whole-rock geochemistry is similar to the Paufito granite. Note that the Carris granite occurs as various hectometric bodies in the Gerês granite. Furthermore, there is field evidence of mingling processes at the contact between the two granites. The isotope signature of the Carris granite may possibly not correspond to a primary character, which may have been modified by diffusive transfer between the original magma (probably the same as that of the Paufito granite) and the more evolved surrounding magma (that of the Gerês granite).

The internal composition variations presented by the Gerês–Covas granites, Calvos granite and Paufito–Illa granites are most probably the result of fractional crystallization processes in which minerals such as plagioclase, quartz, biotite, K-feldspar and zircon played a major role (Mendes, 2001). Two models are briefly examined for the genesis of the Peneda–Gerês pluton: (i) the purely crustal origin model and (ii) the model of mantle input. Compositions of the least evolved samples are similar to those of melts produced experimentally from metagreywackes or felsic metaigneous protoliths, but different from melts of pelitic and mafic metaigneous sources (for a review see Patiño Douce, 1999, and references therein).

Middle and lower crust protoliths with an appropriate Sr–Nd isotopic composition were checked from the available data on the pre-Variscan basement of the Iberian massif (Beetsma, 1995; Villaseca et al., 1998, 1999; Villaseca and Herreros, 2000). These data do not match the more primitive isotopic composition of the Peneda–Gerês granites, except for the peraluminous Calvos granite. Felsic peraluminous granulites from the lower crust that occur as metaigneous xenoliths in the Spanish Central...
System \([{^{87}Sr/^{86}Sr}_300\) and \(eNd_{300}\) dominantly in the range 0.706–0.713 and \(-2.6\) to \(-8.2\), respectively] are potential sources for the Calvos granite. For this granite the following features also support a major crustal contribution: moderately to highly peraluminous composition; aluminopotassic affinity; occurrence of Al- and Fe-rich biotites; absence of mafic microgranular enclaves and occurrence of surmaccaceous enclaves. The \(T_{DM}\) model ages at 1.2 Ga indicate that, just as in other zones of the European Variscan chain, a portion of continental crust was present at least since the mid Proterozoic. For the other granites, with a slightly metaluminous to peraluminous character, evidence such as the occurrence of mafic microgranular enclaves, mantle-like isotope compositions and absence of crustal protoliths with an appropriate isotopic composition can be explained by the contribution of mafic mantle-derived magma(s). Sr–Nd isotope data do not exclude interaction processes between mafic mantle-derived magmas and the continental crust, mainly for the Paufito–Illa–Carris granites (Fig. 3). These processes of contamination with crustal materials may account for the occurrence of a heterogeneous zircon core population with calc-alkaline and aluminous characteristics in the Paufito–Illa granites (Mendes, 2001). Therefore, we propose that the Fe–K subalkaline granites of the Peneda–Gerês pluton are the products of mantle input followed by mantle–crust interaction. It must be noted that, at least for the Gerês and Covas granites, the mantle component would have a more depleted isotopic signature than the enriched mantle-derived melts involved in the genesis of synorogenic hybrid granitoids in NW Portugal (Fig. 3; Dias and Leterrier, 1994; Dias et al., 2002).

The majority of the late- to post-orogenic Variscan granites in NW Iberia are dominantly of Fe–K subalkaline affinity, with isotopic composition in the range \((^{87}Sr/^{86}Sr) = 0.703–0.707\) and \(eNd = -1.0\) to \(-2.5\) (e.g. Fernandez, 1991; Silva, 1995; Martins, 1998; Fig. 3), corresponding dominantly to mantle-like isotope compositions. The isotopic composition of these granites is less evolved than that of the synorogenic granites in the region \((^{87}Sr/^{86}Sr) > 0.7064\) and \(eNd < -4.4\), involving aluminopotassic, calc-alkaline and Mg–K subalkaline associations. This compositional contrast is clearly associated with a drastic change in tectonics, from a compressive tectonic regime to extensional processes, large-scale uplift and thinning, which occurred in late Variscan times.

This study strongly suggests an input of juvenile magmas in late- to post-orogenic Variscan context. Based on these results and previous studies (Dias et al., 2002) we emphasize the occurrence of a major and continuous crustal growth event in late Variscan times (290–320 Ma) leading to the genesis of composite calc-alkaline and subalkaline plutons, largely represented in the Iberian Massif.

Conclusions

The Peneda–Gerês granitic massif, one of the most representative late- to post-orogenic plutons in the Iberian Massif, is the result of the emplacement of three coeval (290–296 Ma) and independent magma batches. Fe–K subalkaline magmas with primitive Sr–Nd isotopic compositions are predominant. For these magmas an origin by mantle input followed by mantle–crust interactions is suggested, implying the contribution of a less enriched mantle component than that involved in the genesis of synorogenic hybrid granitoids of Mg–K subalkaline affinity. A less voluminous aluminopotassic and isotopically more evolved magma with little or no mantle input was generated, suggesting the involvement of lower crust materials (metagreywackes and/or felsic meta-igneous rocks).

A comparison among late- to post-orogenic Fe–K subalkaline granites of NW Iberia reveals that this type of plutonism presents a similar isotopic signature, globally weakly evolved, in the range \((^{87}Sr/^{86}Sr) = 0.703–0.7069\) and \(eNd = -1.0\) to \(-2.5\). This rather primitive composition is in contrast with that of the synorogenic granitic plutonism in the region \((^{87}Sr/^{86}Sr) > 0.7064\) and \(eNd < -4.4\), involving aluminopotassic, calc-alkaline and Mg–K subalkaline associations. This compositional contrast is clearly associated with an extensional processes, large-scale uplift and thinning, which occurred in late Variscan times.

Acknowledgements

This work was carried out at the CCA-CT research unit (University of Minho, Portugal). We wish to thank J. Leterrier for his assistance at the CRPG (Nancy, France) and for fruitful discussions. Comments and suggestions by François Bussy and Jürgen F. von Raumer are greatly appreciated and have contributed to the improvement of the final version.

References

Received 13 August 2003; revised version accepted 21 February 2004