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Abstract
This paper is concerned to the cardiac arrhythmia classification

by using Hidden Markov Models. The types of beat being selected
are normal (N), premature ventricular contraction (V) which is
often precursor of ventricular arrhythmia, and two of the most
common class of supra-ventricular arrhythmia (S), named atrial
fibrillation (AF) and atrial flutter (AFL). The approach followed in
this paper is based on the supposition that atrial fibrillation, atrial
flutter and normal beats are morphologically similar except that the
former does not exhibit the P wave, while the later exhibits several
P waves following the QRS.  Regarding to the HMM modelling
this can mean that these three classes can be modelled by HMM’s
of similar topology and sharing some similar parameters excepting
the part of the HMM structure that models the P wave. This paper
shows, under that underlying assumption, how this information can
be compacted in only one HMM, increasing the classification
accuracy by using MMI (Maximum Mutual Information) training,
and saving computational resources at run-time decoding. This
paper also shows that the similarities among normal, atrial
fibrillation and atrial flutter beats, which main difference is the lack
or repetitions of the P wave, can be taken into consideration to
improve the classifier performance by using MMI training, in a
single model/triple class framework, which is similar of having
three different models sharing several parameters. The algorithm
performance was tested by using the MIT-BIH database. Better
performance was obtained comparatively to the case where one
different HMM models each class when using MLE (Maximum
Likelihood Estimation) training alone.
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1. Introduction

The electrocardiogram (ECG) provides fundamental information
about the electrical instability of the heart and is the most important
biosignal used by cardiologists for diagnostic purposes. Frequently
continuous monitoring over an extended period of time is required
in order to increase the understanding of patients’ cardiac
abnormalities. Such situations require continuous monitoring by
the physicians or alternatively the aid of an automated arrhythmia

detection equipment, which can be able to identify different types
of arrhythmias.

This problem of cardiac arrhythmia detection can be viewed as
a pattern recognition problem, since it is possible to identify a
finite number of different patterns (arrhythmias).

Hidden Markov models have been successfully applied to
pattern recognition problems in applications spanning automatic
speech recognition [1], image segmentation [2], ECG modeling [3]
and cardiac arrhythmia analysis [4].

The most common approach regarding HMM training is finding
the stochastic distribution that best fits the data. However, a better
approach, which is more robust to noise and other sources of
variability is based on the maximization of differences among
classes, and is known as discriminative training. Discriminative
training can be achieved by using mutual information among
classes. Maximum Mutual information training is one of such
techniques that simultaneously increases the likelihood of the
model for which the training data belongs to, while the likelihood
of the competing models is decreased.

The approach followed in this paper emphasizes the differences
among classes in a selective way such that a restrict part of the
model, and so, a limited amount of parameters are effectively
responsible for modeling these differences. The idea is that if two
classes have some state sequence similarities and the main
morphological differences occur only in a short time slice, then
setting appropriately internal state model transitions can model the
differences between classes. These differences can be more
efficiently emphasized by taking advantage of the well known
property of MMI training of HMM’s, which typically makes more
effective use of a small number of available parameters as
confirmed in [7] in the scope of the automatic speech recognition.
By this reasoning the selected decoding class can be chosen on the
basis of the most likely state sequence, which characterizes the
most likely class. In this framework, classes morphologically not
too similar are modeled by different HMM’s by using MLE
training alone since one property of MMI training is that training
data for which the probability of being generated by one existing
model is much greater than the probability of being generated by
anyone of the others, have negligible contribution to the
reestimated values. Hence we are implicitly assuming that for not
very similar classes fitting the data by an appropriate model can be
more advantageous than try to improve differences among classes
given a set of models. In counterpart for classification of very



similar classes, modeling differences among classes can be more
efficient than trying to fit the data by an appropriate statistical
parametric model.

2. ECG Features Extraction

ECG observations were obtained from the segmentation of the
original signal with straight line segments which goal is to decrease
the amount of linear redundancy, as described in [3]. In [3] it is
suggested for features a bi-dimensional vector where the
components are respectively the amplitude of the starting point and
the duration of the line segment. However, as reported in [5], these
features are very sensitive to baseline wander, DC drift and heart
rate variation. DC drift can be cancelled by using differential
amplitude between the starting and ending points, and heart rate
variability can be attenuated by normalizing the line segment
duration by the R-R interval, as reported in [5]. Therefore we
adopted the features suggested in [5]. The R-R interval is computed
by using the well known Gritzali algorithm [6], which is also used
jointly with a valley detector for beat synchronization. As the used
HMM´s are connected in a left to right order, synchronization of
the cardiac cycle according to the initial state probability is
required especially for training purposes.  For decoding this
synchronization is only necessary for the first cardiac cycle since
HMM’s are provided with a feedback transition from the last to the
first state.

3. Hidden Markov Models
3.1Model Structure

In the pattern recognition paradigm each class of beat is
represented by a separate model and after decoding, the class for
the which the probability (likelihood) of occurrence is greater is
selected. Since the ECG is characterized by a time sequence waves
occurring almost always in the same order which reflects the
sequential activity of the cardiac conduction system an HMM
structure where the states are connected in a left-to-right order was
adopted. In [3] it is shown that a full connected HMM is eventually
more appropriate for HMM modeling since the beat sequence
reproduced by this kind of HMM is almost perfect. However, it is
well known that classification in the pattern recognition paradigm
does not need necessarily of modeling all the class features, so
though a left-to-right model may not be the more adequate, it is
structurally appropriated from an heuristic point of view and can
capture the most relevant features concerned to classification
purposes. Self transitions in each state allow to model different
durations in the waveform segment, which frequently occurs even
for the same healthy subject.  Figure 1 shows the model structure
for the atrial fibrillation, atrial flutter and normal beats. Our
reasoning is based on the assumption that an AF beat is similar in
morphology to a normal beat without the P wave which can be
modeled by a transition probability that not pass through the state
(6) which models the P wave. Similarly, atrial flutter beats exhibit
several repetitions of the P wave after the QRS complex which can
be modeled by inserting a transition from the state that models the
S wave (2) directly to the state that models the P wave (6). At the
end of the decoding stage the recognized class can be selected by
searching (backtracking) the most likely state sequence. This
structure can be seen as three separate HMM’s sharing the most
parameters, which is a frequently adopted approach concerned to

speech recognition applications. Although this parameter sharing
procedure can be seen as a poor beat modeling in the sense that
eventually different features are forced to be similar, it certainly
reinforces the discrimination if some discriminative training
technique is used, since the discriminative power is given by a
limited amount of parameters, just the pdf associated with the
transitions that differ among classes. As the remaining parameters
remain inalterable they are only important for selecting these three
classes from the other ones, in the present case the premature
ventricular beats. The separation between these three classes can
be increased by using an efficient discriminative training as MMIE
obtained on the basis of the parameters associated with the intra-
class differences. It is very important to note that this approach
reinforces the HMM distance among different model structures
while the distance of HMM’s in the same structure (those that
share parameters) are obviously decreased. However it is believed
that an appropriate discriminative training can efficiently separate
the classes modeled by the same HMM. Although a recognition
system fully trained by using the MMIE approach can be more
effective it surely needs a much degree of computational
requirements in both training and run time decoding.

States from 1 to 7 are concerned to the ECG events R, S, S-T, T, T-
P, P, P-R and ai,j are the state probability transition from state i to
state j.

Figure 2 shows the model structure adopted for premature
ventricular contraction beats which have the similarity with AF
beats of do not exhibit the P wave, however these two classes of
cardiac beats are morphologically very different, therefore it is not
plausible that they can share a significant amount of model
parameters. Hence, according to the established state event
allocation, a model with less one state (lack of P wave) can be
appropriated.

3.2 Probabilistic model of observations

The output probability density function, which defines the
conditional likelihood of observing a set of features when a
transition trough the model takes place, is usually a multivariate

Figure 1. HMM topology adopted for modelling normal
(N), atrial fibrillation (AF) and atrial flutter (AFL) beats.
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Figure 2. HMM topology adopted for modelling
premature ventricular contraction (V) beats.
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Gaussian mixture for the most engineering applications involving
hidden Markov models. Although other pdf can be used, usually it
is assumed that a mixture with a sufficient amount of Gaussian
components can efficiently fits other kind of distributions. Hence,
the probabilistic model assigned to observation vectors is a bi-
variate Gaussian probability density function since the observation
vectors have only 2 components. The components of observation
vectors are assumed to be independents and identically distributed
(iid) hence the joint likelihood occurrence is given by the product
of two Gaussian functions. These probability density functions are
associated with the transitions which configures a Continuous
Density Hidden Markov Model (CDHMM) Mealy machine and are
given by
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where G(…) stands for bi-variate normal distribution with mean
vector  and covariance matrix for the ith mixture component and
transition ut given respectively by iut , and iut , . As the

components of observation vector are assumed iid G(…) function
in equation (1) is simply the product of two Gaussian functions.
The mixture coefficients iut

b , satisfy, for each transition ut , to
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so that, equation (1) is a probability density function.
In our experiments the observations were modelled by three

components in the Gaussian mixture (C=3) in order to fit best data
with multimodal distributions.

3.3 Training procedure

The Estimation of HMM parameters from a set of representative
training data can be done by using the Baum-Welch algorithm
which is based on the decoding of all the possible state sequence,
or alternatively by using the Viterbi algorithm which is based on
the most likely state sequence [1]. Since the HMM structure shown
in figure 1 can model 3 different classes on the basis of the most
likely state sequence, the Viterbi algorithm seems to be more
appropriate for this kind of decoding strategy, once that after
decoding, the most likely state sequence can be known by an
appropriate backtracking procedure.

The frame state allocation regarding the ECG events described
in the first paragraph after figure 1 can be forced by setting (to one)
the initial probability of the first state in the initial state probability
vector and resetting all the other initial state probabilities, and also
synchronizing the ECG feature extraction to begin in the R wave.
This kind of synchronization is needed for this HMM topology
where the initial state must agree with the R wave. However if a
back transition from the last to the initial state is added this
synchronization is necessary only for the first ECG pulse decoding.
The last state regarding AFL beats is state 6, so back transitions
from state 7 to state 1 and from state 6 to state 1 are required. The
synchronization between ECG beats and the HMM model is
facilitated by the intrinsic difference between the last and first
state, since the last state models an isoelectric segment or P wave
(AFL) (weak signal) while the first state models the R wave which
is a much strong signal. In other words if the HMM is in state 7 (or

6 for AFL beats) modeling an isoelectric segment (or a week wave)
the happening of a strong R wave tends to force a transition to state
one which helps in model/beat synchronization.

The model structure of figure 2 which models premature
ventricular contraction beats is trained by using the conventional
MLE procedure in the Viterbi framework, which goal is to
maximize iteratively the following probability density function
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where Y is the observation sequence, S the most likely state
sequence and λ the set of HMM parameters. The model
reestimation formulas can be found in [1]. This usual parameter
estimation technique maximizes iteratively the model parameters
that best fit the training data.

Another reasonable training objective would be to maximize the
mutual information between the training sequence and the
corresponding observation sequence given the set of existing
models. This training criterion leads to the maximization of the
following probability density function
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The most important thing that can be immediately observed from
this objective function is that maximizing it is equivalent to
enforcing discrimination against all competing models.
Unfortunately one of the main difficulties associated with the use
of MMIE estimation in HMM’s is the non-existence of closed-form
reestimation formulas similar to those available for MLE. So a
common solution is to resort to some form of gradient descent or
alternatively relying on efficient reestimation techniques which
main virtue is not as much their proofs of guaranteed convergence
as their effectiveness in practice given that convergence is reached
in a few (typically less than 10 and often 2 or 3) iterations.  One
such technique was proposed in [8] for discrete distributions and
adapted in [7] for continuous distributions and was selected to be
used in the ambit of this paper.

As different state sequence model different classes in the same
HMM a suited training procedure can be used, taking into
consideration that this model structure is similar to a structure with
three HMM’s sharing a significant amount of parameters. The
approach followed in this paper was to compact this representation
in only one HMM saving computational resources at run-time
decoding. The adopted training strategy must accommodate both
the MMIE training and parameter sharing, or in other words an
MMIE training procedure in only one HMM platform with
capabilities to model three classes must be required. This
compromise was obtained by estimating the shared parameters in
the MLE sense. This procedure emphasizes that the shared
parameters can be estimated on the basis in which the data fits best
the model. For this propose a set of 20 normal beats was presented
to the HMM structure shown in figure 1 with a5,7 and a2,6 set to
zero which means that the pdf parameters associated with these
transitions were not trained. The Viterbi algorithm was used for
training and testing purposes [1]. At a second training step 10 AF
beats and 10 N beats were presented for training, in the MMIE
sense, the parameters not shared by these two classes, just the ones
associated with the transitions a5,7 a5,6 a6,6 a6,7. All the other
parameters are shared between these two classes and are not



updated at this phase. Finally 10 AF (or N) beats and 10 AFL beats
were presented for training, in the MMIE sense, the parameters
associated with transition a2,6 while all the remaining parameters
are not updated at this phase. This MMIE selective training
emphasizes that differences between AFL and the other two classes
are saved in the model parameters associated with states 3, 4 and 5
and also transition a2,6 while differences between N and AF beats
are saved in the model parameters associated with sate 6 and also
transition a5,7. This training strategy was shown much better
performance that if at the second training step we present to the
model 10 AF, 10 N and 10 AFL beats and retrain the parameters
associated to states 3, 4 and 5. Obviously, in this case differences
between AFL and the other beat classes are poorly modeled.

Associated to each transition are 15 coefficients, three mixture
coefficients; three mean vectors and three diagonal covariance
matrices for two iid vector components. In this way this HMM can
model efficiently “on average” beats morphologically similar to
normal beats and additionally was specialized in distinguishing
normal from AF from AFL beats. Our results seem to confirm this
reasoning.

Probability state transitions a5,7 and a5,6 are concerned to the a
priori beat probability since they serves as a switch between both
classes modeled by this HMM. Hence for a non-biased model they
must be numerically equal, which means that given an unknown
beat the a priori probability of being an N beat is the same that of
being an AF beat. Therefore these two model parameters must be
set as
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in order to set the transition probability from state 5 unitary, as
required for all states, and where a5,5 was trained for normal beats
and was not updated for AF beats since it is a shared parameter.
The same reasoning must be applied to transitions a2,6 , a2,3 and
a2,2.
The model of figure 2 was trained with 20 premature ventricular
beats in the standard way, by using the Viterbi algorithm [1].

Good initial parameter estimates are very important in reaching
the globally optimum parameter estimates. This was accomplished
by manual segmentation of two examples of each considered beat
type. The output mean values were initialised as the sample means
of the associated segments computed for each mixture component
by the K-means algorithm.

4. Experimental Results

Experimental results were evaluated by using the MIT-BIH
database. In order to show the effectiveness of the proposed
algorithm we compared the performance of the algorithm relatively
to the case where 4 totally different HMM’s  model the 4 selected
classes. In this case 2 different models with topology shown in
figure 2 were used to model AF and V beats since both do not
present P wave, so less one state seems to be adequate for
modelling purposes. Normal beats were modelled by the HMM
topology shown in figure 1 where the transition from state 5 to
state 7 was removed. AFL beats were modelled by a three state
HMM since only waves R, S and P need to be modelled. The
HMM training procedure used in this framework was the MLE
with the Viterbi algorithm.

The testing set contains the 106, 119, 123 and 222 records of the
MIT-BIH arrhythmia database and the 04043 record of the MIT-
BIH atrial fibrillation database. The training data of N, V, AF and

AFL beats was taken respectively from the 100, 116, 04126 and
203 records, which means that data for training and testing
purposes was obtained from different patients, which is normally
known as patient-independent analysis. An experimented
cardiologist selected 10 good examples of AF cardiac cycles from
the first two AF episodes of the 04126 record and 10 good
examples of AFL beats from the 1st episode of the 203 record. AF
testing data was selected by the same cardiologist, as good
examples from the 1st and 12nd AF episodes of the 04043 record
where 516 AF cardiac cycles were selected for this purpose.
Similarly 378 AFL beats were selected from the first 30 episodes
of 222 record for testing purposes. The signals were previously
denoised using wavelet based filter and the baseline signal removal
has been eliminated. Additionally corrective MMIE training was
performed. Tables 1 and 2 show the results in a confusion matrix
form for the cases of MMIE and MLE alone training.

Table 1 – The confusion matrix associated to MMIE training
V N AF AFL FP Total Pr+

V 961 1 3 2 25 992 0.97
N 2 4563 0 0 17 4582 1
AF 4 0 512 0 53 569 0.90
AFL 3 0 0 375 16 393 0.95
NR 5 1 7 4
Total 975 4565 522 381 111 6536
Sensitivity 0.99 1 0.98

Table 2 – The confusion matrix associated to MLE training
V N AF AFL FP Total Pr+

V 955 3 3 6 34 1001 0.95
N 4 4526 30 5 12 4577 0.99
AF 10 29 465 12 67 583 0.80
AFL 7 8 10 352 36 414 0.85
NR 6 13 15 8
Total 982 4579 523 383 113 6161
Sensitivity 0.97 0.99 0.89

5. Discussion

This paper suggests that robustness in automatic cardiac
diagnosis can be increased by using MMIE training of HMM’s,
which model beat types of similar morphology. The idea is that it
can be more effective specialising the HMM’s in learning the
differences between beats of similar morphology than learning the
probability distributions that fit best the training data. Although the
experimental results need to be extended specially in the number of
classes to be recognized, which certainly increases the
confusability among beat classes, they support the approach, as
shown by the confusability decreasing between N and AF beats
from table 2 to table 1.
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