Microprocessors and Microsystems 22 (1999) 523-534

MICROPROCESSORS AND

MICROSYSTEMS

Fuzzy logic speed control of an induction motor

Jaime Fonseca™, Jodo L. Afonso, Jilio S. Martins, Carlos Couto

Department of Industrial Electronics, Minho University, Largo do Pago, 4709-Braga Codex, Portugal

Received 30 January 1998; received in revised form 31 August 1998; accepted 7 October 1998

Abstract

This paper describes the use of fuzzy logic techniques to control the speed of a three-phase induction motor. The use of Matlab/Simulink
and fuzzyTECH MCU96 as software development tools for system design is emphasised. Hardware implementation is based on a standard
16/32-bit microcontroller, without the need of any additional components for the fuzzy logic controller. The system performance is evaluated
in comparison with a traditional PI control scheme. Both simulation and experimental results are presented. © 1999 Elsevier Science B.V.

All rights reserved.

Keywords: Real-time control; Fuzzy logic; Induction motor; Slip control

1. Introduction

Fuzzy logic control is one of the most interesting fields
where fuzzy theory can be effectively applied. Fuzzy logic
techniques attempt to imitate human thought processes in
technical environments. In doing so, the fuzzy logic
approach allows the designer to handle efficiently very
complex closed-loop control problems, reducing, in many
cases, engineering time and costs [1,2]. Fuzzy control also
supports nonlinear design techniques that are now being
exploited in motor control applications [3,4,5]. An example
includes the ability to distribute gain over a range of inputs
in order to avoid the saturation of the_control capability.
Software based implementations of these techniques have
been mainly used in industrial automation for relatively
slow processes. Fast fuzzy control usually requires the use
of a specific hardware processor.

Initially fuzzy control was found particularly useful to
solve nonlinear control problems or when the plant model
is unknown or difficult to build. In this article it will be
shown that these techniques can also be useful in applica-
tions where classical control performs well. Fuzzy Logic
allows a simpler and more robust control solution whose
performance can only be matched by a classical controller
with adaptive characteristics, much more difficult to imple-
ment.

This article reports work that is being done in order to
apply fuzzy techniques to control the speed of an induction
motor. A conventional PI slip controller, implemented with

* Corresponding author. Tel.: 51 53 615010; fax: 351 53 615046.

a standard microcontroller, was used as a reference and as a
starting point. The goal here is, by simple software modifi-
cation, to replace the PI scheme by a fuzzy controller and try
to improve its performance. Attention will be focused on the
use of software development tools that support fuzzy and
neurofuzzy design (fuzzyTECH), and simulation (Matlab/
Simulink), rather than on the details of induction motor
control.

From the application of fuzzy control arises two
problems: how to select the fuzzy control rules and how
to set the membership functions. Two approaches are
normally used to accomplish this task. One consists of
acquiring knowledge directly from skilled operators and
translate it into fuzzy rules. This process, however, can be
difficult to implement and time-consuming. It happens quite
often that the operator is not able to express his knowledge
of the process explicitly and accurately. As an alternative
fuzzy rules can be obtained through machine learning tech-
niques, where the knowledge of the process is automatically
extracted or induced from sample cases or examples. Many
machine learning methods developed for building classical
crisp logic systems can be extended to learn fuzzy rules. A
recently very popular machine learning method is Artificial
Neural Networks (ANN), which have been developed to
mimic biological neural systems in performing learning
control and pattern recognition. Another machine learning
method is the Genetic Algorithms (GA) approach intro-
duced by Holland [6]. Genetic algorithms are adaptive and
probabilistic search algorithms, based on natural selection
and natural genetics.

The use of these self-learning techniques were tried for

0141-9331/99/$ - see front matter © 1999 Elsevier Science B.V. All rights reserved.

PIl: S0141-9331(98)00110-0

524

J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534

L~
e

@ | CONTROLLER

A
21 .0 B o
=

O DT -=0om<Z—

Fig. 1. Slip control scheme for an induction motor voltage-source inverter drive.

this case but the results were not yet very convincing, and
for that reason will not be covered in this contribution.
Because this is a well-known control case the fuzzy control
rules and the membership functions were selected based on
empirical methods.

This article is organised as follows: Section 2 introduces
the induction motor slip control scheme, Section 3 describes
the use of development tools in system design, in Section 4
simulation results are presented, while experimental results
are reported in Section 5, with conclusions in Section 6.

2. The induction motor speed control
2.1. Slip control

With the exception of high performance drives, induction
motor speed can be controlled through a simple slip control
scheme like the one presented in Fig. 1 [7,8]. The machine is
fed by a voltage-source pulse width modulated (PWM)
inverter (block C), which is a power converter that produces
three phase AC voltages that can be varied both in
frequency and amplitude. Rotor speed @ is measured
using a digital tachometer (T) and compared with speed
reference w s

Assuming that fast response is not required, a linear
approximation of the induction motor steady state model
can be used [9]. The motor output torque is almost

proportional to the slip frequency w, which is the difference
between the motor supply frequency @, and motor speed.
However, slip frequency must be limited so that the motor
model is valid. In doing so, a limit to both peak torque and
stator current is indirectly set.

In this conventional control scheme, the speed error
(we = Wy — w) is input to a PI controller (block A)
which sets the motor slip frequency. PID controllers are
usually avoided because of the noise generated by the
commutation of the inverter switches. Stator frequency is
obtained by adding the slip frequency to rotor speed, and
stator voltage (U,) is set accordingly to a predefined
U,Jw, =~ constant law (block B), so that motor flux is kept
at its nominal value. Voltage and frequency values are then
input to the voltage source inverter.

This article presents an alternative to the implementation
of the controller block A using fuzzy logic. Both approaches
are detailed and evaluated in the following pages.

2.2. The drive arrangement

A 1 kW three-phase induction motor fed by a voltage
source type inverter was used in the experiments. The inver-
ter was implemented using a 6 IGBT power module, A
standard Intel 80C196KD microcontroller performs the
control algorithm and generates the PWM waveforms for
the IGBT motor drive inverter.

The system control hardware is based on the 196KD

196kD Target board
REV 1.2 PWM Driving
— -— | Signals signals — =
: HS0.0 - R YT N
; v HSO.1 p Inverter » PWM .___{\ IM
Speed demand 1 = HS02 piInterface __y| Inverter)
(Serial Port) i a g [o
o & !
> & 6 P27 TENABLE I
8 5)
] = R W
T2CLK <¢——— Encoder] /’1?)‘
HSL1} Interface | N~
R o '
Development Kit of
____INTEL .

Fig. 2. Simplified diagram of the hardware implementation.

J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534 525

Reference

Motor Speed
Acquisition

|
Slip Controlier
(Pl or Fuzzy)

AN

Sets Frequency
and Amplitude of
Voltage

|

Generates
PWM
Waveforms

T

Displays
Variables
Relevant to
Monitoring |

Fig. 3. Drive flow chart.

Target Board Rev1.2. It is a simple development kit from
INTEL, which includes a 20 MHz 80C196KD microcon-
troller, 32 kB of RAM, a ROM for a small monitor, and a
serial interface. No fuzzy processors or any other specific
hardware was used to implement the fuzzy logic controller.
As shown in Fig. 2 very little extra circuitry was added to
the Target Board: just two circuits, one to interface with the
IGBT power inverter (Inverter Interface) and another to
interface with the digital tachometer (Encoder Interface).
The Inverter Interface circuit receives PWM signals (TTL
levels) from the microcontroller and produces compatible
driving signals to the PWM Inverter (IGBT power module).
This circuit is also responsible for adding dead times to the
driving signals, to avoid short-circuits through IGBTS of a
same branch of the PWM inverter.

The Encoder Interface circuit receives the tachometer
signals and makes them suitable for the microcontroller
digital inputs.

A terminal can be connected to the system through the
microcontroller serial port to set the speed reference and to
monitor some of the control variables.

2.3. Software structure

The software structure can be described according to the
flow chart presented in Fig. 3. After the initialisation of
some internal variables, there is an endless loop where the
speed reference is read and the motor speed is acquired from
the tachometer. The speed error (the difference between
reference speed and motor speed) is then computed and
used as input to the slip controller (fuzzy logic or PI control-
ler). The controller sets the motor slip frequency which
allows the amplitude and frequency voltage to be computed
according to the block diagram in Fig.1. These values are
input to the software module that synthesises the PWM
waveforms. Finally, some relevant control variables are
displayed for monitoring purposes.

The main objective of this article is the slip controller
block implementation, which will be discussed in the next
sections. The code for this block was automatically gener-
ated by fuzzyTECH (for the case of the fuzzy controller).
This code includes the fuzzification of the input variables,
the inference process (execution of the activated rules), and
the defuzzification process (production of the output vari-
able). The PI controller was implemented using C language.

The main control loop, which performs the data acquisi-
tion, the fuzzy controller and the PWM waveform genera-
tion, runs within 5.1 ms sampling time in the 80C196KD
microcontroller with a 20 MHz clock. The fuzzy slip
controller execution time for the same processor is 2.5 ms.

All the other software blocks will not be detailed here.
They were also developed by the authors, mainly in C
language, with some fast routines written in assembly
language.

3. Control system design
3.1. Development tools

3.1.1. Matlab/Simulink

Matlab is a high-level language oriented toward engineer-
ing and scientific applications. It has evolved over a ten-year
history to become a popular, flexible, powerful, yet simple
language. It has served as an effective platform for more
than twenty toolboxes supporting specialised engineering
and scientific applications, covering areas from symbolic
computation to digital filter design, control theory, fuzzy
logic, and neural nets. It is to be used interactively, and
supports also the ability to define functions and scripts,
and dynamically links with C and Fortran programs. Recent
trends in the Matlab language have focused on an object

526 J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523—534

Load
Data Torque
. 1/Te . a@—.«x
| %(- +
<y - M s+1/Te 3)
Sumi Wrmax Dly Motor um Motor_ Sum2
Integrator
A B ¢ ‘@
Load
Zero-Order
L Mean Hold
: Squared— [' 1 F Mux w
o Workspace
From D MSE Clock R "
Workspace E NCD block

Fig. 4. Simulink block diagram for motor model identification.

oriented graphics capability that permits a rich Graphical
User Interface (GUI) construction [10,11].

Simulink is built on top of the Matlab. It is an interactive
environment for modelling and simulating a wide variety of
dynamic systems, including linear, nonlinear, discrete-time,
continuous-time, and hybrid systems. It combines the power
and ease-of-use of an application package with the flexibil-
ity and extensibility of a language. The user can build block
diagram models with click-and-drag operations, change
model parameters on-the-fly, and display results ‘live’
during a simulation. This tool is also a uniquely open
system, allowing to choose, adapt, and create software and
hardware components to suit each application [10,12].

Together, Simulink and Matlab provide an ideal inte-
grated environment for developing models, performing
dynamic system simulations, and designing and testing
new ideas.

3.1.2. The nonlinear control design toolbox

The Nonlinear Control Design (NCD) toolbox operates
with Matlab and Simulink to provide a powerful time-
domain-based optimisation technique for designing linear
and nonlinear control systems [13].

Controller designs are developed as block diagram
models in Simulink. Constraints are specified interactively
using a powerful graphical interface. As a result, attaining
performance objectives and optimising tuneable parameters
becomes an easy and intuitive process. The NCD toolbox
automatically converts time-domain constraints and time
responses into an optimisation problem, and then solves
the problem using state-of-the-art algorithms, thereby
tuning the selected model parameters.

Many of the automatic control design methods commonly
used today (e.g., LQG/LTR and Hoo) require that the plant
and controller be approximated by linear models. In
contrast, the NCD toolbox uses a new approach to compu-
ter-aided control system design (CACSD) that allows you to

directly tune parameters in nonlinear systems. Plants and
controllers can be continuous-time, discrete-time, or hybrid.
Controllers can take any form, including PID, state feed-
back, observer-based, or decentralised. The main features of
the NCD toolbox can be summarised as follows:

e Any plant or control structure modelled with Simulink
can be used, including linear/nonlinear, continuous/
discrete/hybrid, single-input/single-output (SISO), or
multi-input/multi-output (MIMO).

e Operation is fully automated, so there is no need to write
additional code.

¢ Constraints can be placed on any output signals, includ-
ing actuators, command tracking outputs, and distur-
bance measurements.

® Monte Carlo methods can be used to increase system
robustness for problems with plant uncertainty.

e The optimization solver can be stopped at any time,
thereby enabling access to intermediate solutions.

e There are no limits on the number of tuneable para-
meters, which can be scalars, vectors, or matrices.

* An automatic overachieving option attempts to adjust the
response so that it passes through the midpoint of the
constraints.

3.1.3. The fuzzyTECH MCU-96 Edition

The fuzzyTECH MCU-96 Edition was used to design the
fuzzy logic controller. It is a full graphical tool that supports
all design steps for fuzzy system engineering: structure
design, linguistic variables, rules definition, and interactive
debugging. Moreover, this tool generates C-code with opti-
mised assembly functions to the Intel MCS-96 microcon-
trollers family and others [14,15]. It also produces Mcode,
which can be used for system representation in simulation
and mathematical software packages.

Within the fuzzyTECH tool it is possible to use the
NeuroFuzzy Module which allows the automatic generation

J. Fonseca et al. / Microprocessors and Microsvstems 22 (1999) 523-534

527

Figure No. 1: System: id, Dutput: 1

1501

Response
2

1

constraint/

L 1 L

0.6

Time (s)

08 1

Fig. 5. NCD constraint editor dialog box.

of membership functions and rules, as well as their optimi-
sation towards the data sets. It uses a modified error back
propagation algorithm to train the rules and the membership
functions of a fuzzy logic system.

The user does not need to worry about the details of the
algorithm because these tools work as an intelligent assis-
tant to the design, helping to generate and optimise member-
ship functions and rule bases from sample data.

3.2. Model Identification using the NCD toolbox

The induction motor model was obtained, as a first
approximation, using standard tests (no-load, DC, and lock-
edrotor tests). The NCD package was then used as an iden-
tification tool to fine-tune the motor parameters obtained
experimentally. The basic idea is to compare experimental
data obtained from the motor open-loop speed response to a
step in stator frequency, with the simulated signal assuming
the same input and the motor model with the parameters
obtained experimentally (Fig. 4). If the parameters are
correct then both signals should agree.

The usual approach to perform system identification

ptimization Parameters

involves constraining some function of error signals. In
this example, the ‘‘Mean Squared Error’” block (E) is
used to compare (subtract) the experimental and simu-
lated data. The ‘‘From Workspace’’ Simulink block (D)
is used to import the observed motor speed data into the
system. .

The error signal, as defined above, will always be posi-
tive, and the goal of the NCD optimisation algorithms is to
drive it as close to zero as possible (it should always be zero
if the motor parameters were correct). For that purpose
constraints are adjusted with the help of the ““NCD
Constraint Editor dialog box’’, as depicted in Fig. 5.
Constraints are set to zero before the input step in stator
frequency (at 0.4 s), and to a value close to zero after that.

The parameters, which are tuneable for optimisation,
must be defined before starting the optimisation. This can
be done through the ‘‘Optimisation Parameters Dialog
Box’’, as shown in Fig. 6.

The parameters adjusted in this case were the motor elec-
trical time constant (7,), the motor-load inertia (J) and the
system delay (Dly). The initial values for these parameters
were obtained experimentally.

;
- 1o[x]i

Fig. 6. Optimisation parameters dialog box.

528

J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534

>

>

error Anti Windup Gain1

I

error1 Discrete-Time
Integrator

[

Proportional

Ne| 1
==
Saturation1 Slip

Fig. 9. PI Controller block diagram expanded.

The evolution of the optimisation process in terms of the
error signal can be followed in Fig. 5. At the beginning the
signal is far from zero (the first curve is even out of range
which is irrelevant in this case) but it approaches minimum
values (within the specified constraints) as the optimisation
process is carried out and the motor parameters are tuned to
its optimal values.

The merits of using the NCD toolbox are obvious when
the measured and the simulated motor speed responses are
compared, before and after the parameter identification
process (Fig. 7a,b): at the end both signals are almost
coincident.

The NCD toolbox is very easy to use and performs quite
well, but like any optimisation tool requires a bit of strategy.
It is not a good idea, for instance, to try to adjust all the
parameters at the same time, or to put too much ‘‘pressure’’
on the constraints all the way from the very beginning of the
optimisation procedure.

3.3. Controller Design

In order to evaluate the merits of the fuzzy logic techni-
ques compared to a classical approach, the induction motor
slip controller of Fig. 1 was implemented first using PI
control, and then fuzzy logic. "

3.3.1. Optimising PI controller parameters using the NCD
toolbox

Fig. 8 presents the system block diagram used to perform
the PI controller simulations in the Simulink environment.
The ¢‘Zero-Order Hold block’” is used to set the simulation
sampling time equal to 5.1 ms, which is the value used in the
practical implementation. Note that because of slip limita-
tion, which introduces a nonlinearity at the controller
output, a PI with an anti-windup mechanism (Fig. 9) must
be used [16].

The PI controller was first designed through a classical
control approach (root-locus). Then the NCD toolbox was
used to optimise its response to a speed reference step and to
minimise the speed variation when a torque disturbance is
applied. The procedure was identical to the one described
for the motor model identification. The main difference is
that there is no need to produce error signals here:
constraints are just set to shape the desired speed response
in terms of rise, fall and settling times, and overshoot values
(Fig. 10). The tuneable parameters were the proportional
gain (K), the integral gain (1/Ty), and the antiwindup gain
(1/Ty).

3.3.2. The fuzzy logic approach
The fuzzyTECH MCU-96 Edition used to develop this
work covers the following steps of a fuzzy logic design:

l Figure No. 1: System: aw_z, Output: 1

Cile - Edit Ophon: Dpheizater Style

(V]
0
c
o
Q
@
o]
84

Fig. 10. NCD block for optimisation of PI controller parameters.

J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534 529

#% Project Editor

Input Interfaces

Rules Block

SpeedErr

MIN

SpeedErrVar

Slip_Inc

MAX

— $! W o e —

Fig. 11. Fuzzy logic controller structure.

project, linguistic variables, rules definition, and interactive
debugging [14,15,17]. The use of the NeuroFuzzy Module
to automatically generate the membership functions and
rules was tried, but in this case, as stated in the introduction,
the results were not very useful. Therefore, the selection of
the rules and the tuning of the membership functions were
mostly done by trial and error.

3.3.2.1. Project definition The first step when using the
fuzzyTECH is to define the structure of the controller by
means of the project editor window. Here one can define the
inputs and outputs of the fuzzy logic system and how they
should interact. The project editor displays the controller
structure and allows the designer to directly access
linguistic variables and rule definitions. Fig. 11 presents
the fuzzy logic controller structure for the induction motor
slip control system.

The small blocks on the left side are the input interfaces,
which also contains the fuzzification of the input values. The
large block in the middle of the screen is the rules block,
which contains an independent set of fuzzy logic rules. The
small block on the right side is the output interface, which
contains the defuzzification method. The Project Editor also
allows the access to all parts of the fuzzy logic system. A
double click on the rule block, for example, opens an editor
for the rules contained therein.

3.3.2.2. Linguistic variables definition The next step of the
controller design is the definition of the linguistic variables.
The graphic interface of the development tool allows the
designer to easily create the most suitable linguistic
variables and membership functions for the application.
Fig. 12 shows the input and the output membership
functions. The input membership functions are defined
taking into account the motor speed error (SpeedErr) and
the speed error variation (SpeedErrVar). The motor slip
increment (Slip_Inc) is the output membership function.
Triangular Membership Functions (MFs) were employed
for the inputs and Singleton Membership Functions (which
can be considered as a special case of Triangular MFs) were
employed for the output. SpeedErr uses 3 MFs: Negative
(N), Zero (ZE) and Positive (P). SpeedErrVar is described

with 5 MFs: Negative Large (NL), Negative Small (NS),
Zero (ZE), Positive Small (PS) and Positive Large (PL). The
output Slip_Inc uses 7 MFs: Negative Large (NL), Negative
Medium (NM), Negative Small (NS), Zero (ZE), Positive
Small (PS), Positive Medium (PM) and Positive Large (PL).

The method of defuzzification used was the CoM (Center
of Maximum), which considers only the maximum value
positions of the MFs. In this case the use of Singleton or
Triangular MFs for the output produces the same results.

During the definition of linguistic variables, the develop-
ment tool allows the user to define two representations for
the variables: the ‘‘shell value’’ and the ‘‘code value’’. The
shell values are the ‘‘real-world’’ values that the variables
represent. They are only used to display actual data with the
tool. The code values are the 16-bit internal values that the
microcontroller uses to calculate results and range from 0 to
62535 (16bit representation).

3.3.2.3. Rules definition Fig. 13 shows the fuzzy controller
rules. They were set according to the understanding of the
behaviour of the system. One set of rules (rules 1, 2 and 10,
11) is included to provide rapid response to a large speed
error (SpeedErr). In this case the slip increment (Slip_Inc) is
large or medium (it is positive or negative depending on the
error sign). Another set of rules (3, 4 and 8, 9) avoids motor
speed overshoot: Slip_Inc is medium or small and its sign
depends on the sign of SpeedErr and SpeedErrVar. Rules 5,
6 and 7 are included to maintain the speed error near zero
(steady state rules): here the Slip_Inc is either small or zero
and its sign depends on SpeedErr.

The fuzzy development tool with its spreadsheet rule
editor offers an easy way to examine and define the suite
of rules. It also permits the definition of rule aggregation
(MIN and MAX operators are available) and rule composi-
tion (MAX and BSUM). For this application the operators
used were MIN for aggregation and MAX for composition.
The Degree of Support (DoS) for all rules, that is, the rule
weight in the composition process, has been set to 1.

As stated before, the defuzzification method applied in
this case was the CoM. In control applications CoM is most
commonly used because the output value represents the best

530 J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534

Fig. 12. Fuzzy logic controller Membership Functions: (a) SpeedErr; (b) SpeedErrVar, (c) Slip_Inc.

compromise of all inferred results, with high computational
efficiency.

3.3.2.4. Interactive debugging This feature allows the user
to visualise the entire fuzzy logic inference graphically. All
the editors used for designing the system also display the
computation results. It is possible to see how the input
values are fuzzified, which rules fire to what degree, and

how the fuzzification is computed. The most important issue
is that most parts of the system can be modified while one
can see how this affects the performance. If, for instance, the
definition point of a membership function is moved, it is
possible to see all the effects of this change on the rules and
on the defuzzification.

To simulate the fuzzy logic control within the Matlab/
Simulink environment, the PI controller block in Fig. 8

J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534 531

f 1 Spreadsheet Rule Editor - RB1

Fig. 13. Spreadsheet rules editor.

was replaced by the ‘‘Fuzzy Controller Block’’, which is
expanded in Fig. 14. Here, block A computes the error
between the speed reference and the actual speed. Block
B computes the error variation. The M-code produced by
the fuzzyTECH MCU-96 tool is invoked by a Matlab func-
tion (M-File represented by block C), having the speed error
and the speed error variation as inputs, and the slip incre-
ment as output. The shadowed blocks (D), implement an
accumulator which produces the motor slip frequency.
The remaining blocks are used for proper scaling and limita-
tion of variables.

As said before (Section 2.3) the code for block C was
automatically generated by the tool for the INTEL 80196
microcontroller used for the system implementation.

4. Simulation Results

The computational simulations compare the behaviour of
PI and fuzzy logic controllers, showing speed and slip
values during motor start-up and in response to a sudden
load change from zero to nominal motor torque value.

First simulations were performed with the motor-load
inertia value for which the PI controller parameters were
optimised, which is the same value of the experimental
implementation. Then the inertia value was modified in

Zero-Order
Hold

Fig. 8. Slip control system block diagram in the Simulink environment.

order to evaluate the controllers sensitivity to system para-
meters changes.

Fig. 15 presents the simulation results for the first inertia
value (J =2x 1072 kg m?). The response for both control-
lers is almost identical, as can be better seen in Fig. 15b,
where the speed scale is expanded. Fig. 16 shows simulation
results with J = 10X 10"> kg m”. In this case the fuzzy
controller response is better: the overshoot values are
smaller and its response is faster.

The controllers behaviour can be better compared using
standard performance indexes. Table 1 shows the values of
IAE (Integral of Absolute Error) and ITSE (Integral of Time
Squared Error) for the PI and fuzzy controllers, during start-
up and load application conditions. These indexes show that
the fuzzy logic controller performs better than the PI
controller when the motor-load inertia is changed to
J=10%x10"% kg m’.

5. Experimental results

Experimental results were achieved with the induction
motor coupled to an eddy current dynamometer. It was
measured a total inertia value J=2Xx 10" kg m’. In
these experiments the motor is started-up unloaded and
after about 3.0 s the nominal load torque is applied.

Fig. 17 and Fig. 18 show the speed and slip responses for
the PI controller and for the fuzzy logic controller, respec-
tively. These figures confirm that, for this inertia value, the
response is almost identical for both controllers. When
nominal load is applied the motor speed decreases by
about 4.5% before the controllers manage to reestablish
the speed to the reference value, increasing the slip.

The main difference between the PI and fuzzy controller
responses has to do with their sensitivity to speed noise
(which was not considered in the simulations): the fuzzy
logic controller behaviour is clearly better, presenting a
speed ripple of about 2.7% unloaded and 2.0% loaded,
against values of respectively 5.6% and 3.0% for the PI
controller.

Table 2 shows the standard performance indexes for the
measured speed response of the two controllers. The fuzzy
logic controller results are better.

6. Conclusions

An evaluation of fuzzy logic techniques applied to the
control of induction motor was presented.

Both simulation and experimental results confirmed that
the fuzzy logic approach is feasible and can be an interesting
alternative to conventional control, even when the system
model is known and linear.

The implemented fuzzy logic controller presented a
slightly superior dynamic performance when compared
with a more conventional scheme (PI controller with anti-
windup mechanism), namely in terms of insensitivity to

532

J. Fonseca et al. / Microprocessors and Microsystems 22 (1 999) 523-534

D
Wref SpeedErr)
r f(u) M MATLAB | Slip_Inc) ———~‘
9 Function
\: E,.Ro,. Saturation — e = .l _J"L‘_ —bm
-l e i
(A) fuzzy TECH vy zera.(%der Saturation3 Slip
(€)
Saturation2 ~ P3
Error
variation
(B) Memory
Fig. 14. Fuzzy controller block diagram expanded.
(a) (a) - Pl
S0Pz Vel 500 S o
450
450
400 400
- 350 = 350
g3 €300
2)
$ = 2 250
Q
> an © 200
150 150
100 100
50 50
a 0
0 1 z_ 2 a 3 0 2) 6 8 10
Time (s) Time (s)
(b) 525
(b) 505 . 520 - P!
< N Fuzzy
a T ruy T 515 \
a95| | |
[510 k
490 =
) £ 505 | < N
£ 485 5 \
= 500 P Vn
5480 s I~ \'g
g Sags ! I
& 478) J
470 490 (
485) 485 {
480 4% !
" 475
455[) 1 2 3 4 5
Time (s)
(c)
c) 290
18
16
14 e
&
z2 a
210 »
>
8
6
4
-- Fuzzy
2t py J
% 1 2 3 a 5
Time (s) Tirme (S)
Fig. 15. PI and fuzzy controllers simulation response for Fig. 16. PI and fuzzy controllers simulation response for
J=2x 10 kg m (a) Speed; (b) Expanded view of speed; (c) Slip. J = 10 x 10" kg m?% (a) Speed; (b) Expanded view of speed: (c) Slip.

J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534

—_—
)
~

8 8 8 8

Speed (rpm)

o

0,0 1,0 20 3,0 40 50
Time (S)

00 1,0 20 30 40 50
Time (s)

Fig. 17. PI controller experimental results: (a) Speed: (b) Slip.

changes in model parameters and to speed noise. This can be
an important requirement in speed/position control schemes
using electrical machines, namely in robotics.

Some authors claim that fuzzy logic controllers are easier
to tune than conventional ones, and therefore the develop-
ment times are shortened. From the experience of the
authors this statement cannot be supported, at least for
this type of application and with the tuning process done
manually. Progress in research on inachine learning

Table |
Simulation speed response performance —J = 10 X 10° 2 kg m?

Start-up Load application

IAE ITSE IAE ITSE
PI 1.0240 22532 0.0180 0.0162
Fuzzy 1.0182 2.2565 0.0122 0.0100

Table 2
Measured spped response performance —J =2 X 10~ 2 kg m?

STart-up Load application

IAE ITSE IAE ITSE
Pl 0.2506 0.0182 0.0155 0.0014
Fuzzy 0.2191 0.0143 0.0137 0.0012

S33

(@) | 1 |
- o~ 1 t
|
3 l
= R .
®
®
-4 [I .
)
e b
20 30 40 50
Time (8)
(b) B0
20,0
15,0 |
£ 100
o2
» 50
0,0
-5,0
-100 ¢
00 1,0 20 30 40 50
Time (s)

Fig. 18. Fuzzy logic controller experimental results: (a) Speed: (b) Slip.

techniques may change this negative point. A lot should
be expected from the development of these techniques.

Matlab/Simulink and fuzzyTECH proved to be two
compatible and powerful software tools, respectively for
simulation and controller design.

The hardware used to accomplish the system was mini-
mum. No fuzzy processors or any other specific hardware
was used. A standard Intel 80C196KD microcontroller
performs the control algorithms and generates the PWM
waveforms for the IGBT motor drive inverter.

References

[1] 1.M. Mendel, Fuzzy Logic systems for engineering: A tutorial,
Proceedings of the IEEE, 83 3. 1995, pp. 345-377.

[2] R Jager, Fuzzy logic in control, PhD Thesis, Delft university. Holland,
1995.

[3] G.C. Sousa. B.K. Bose. J.G. Cleland, Fuzzy logic based on-line effi-

ciency optimisation control of an indirect vector controlled induction

motor drive, IEEE, Trans. On industrial electronics 42 (2) (1995)

192-198.

J. Fonseca, J.L. Afonso, J.S. Matins, C. Couto, Evaluation of neural

networks and fuzzy logic techniques applied to the control of elec-

trical machines, Proceedings of the 5th UK mechatronics forum inter-

national conference,Portugal, 2. 1996, pp. 15-20.

J.L. Afonso, J. Fonseca, J.S. Martins, C. Couto, Fuzzy logic techni-

ques applied to the control of a three-phase induction motor. ISIE'97-

IEEE International symposium on Industrial Electronics, Guimaraes,

[4

[5

534 J. Fonseca et al. / Microprocessors and Microsystems 22 (1999) 523-534

Portugal, July 7-11, 1997, IEEE Catalog number: 97TH8280, ISBN:
07803-3936-3, pp. 1179-1184.

[6] J.H. Holland, Adaption in natural and artificial systems, Univ. of
Michigan press, Ann Arbor, MI, 1975.

[7]1 C. Couto, J.S. Martins, Control of a voltage source inverter fed induc-
tion motor with on-line efficiency optimisation, IEEE ICIT'94,
Guangzhou, China, 1994, pp. 528-532.

[8] J.S. Martins, Controlo de Velocidade do motor de InduCao Trifasico,
PhD Thesis, University of Minho, Portugal, 1993.

[9] W. Leonard, Control of electrical drives, Springer-Verlag, Berlin
Heidelberg, New York, 1985.

[10] A. Cavallo, R. Setola, F. Vasca, Using Matlab, Simulink and control
system toolbox: A practical approach, Prentice Hall, Europe, UK,

1996.

[11] MATLAB: High-performance Numeric Computation and Visualiza-
tion Software-Reference Guide, The MathWorks Inc.. April 1993.

[12] SIMULINK:The dynamic system simulation software-user’s guide,
MathWorks Inc., April 1993.

[13] A.F. Potvin, Nonlinear control design toolbox, The Math Works Inc.,
1993.

[14] fuzzyTECH reference manual, Inform Software Corporation. GmbH.
1996.

[15] C.V. Altrock, Fuzzy Logic and Neuro Fuzzy applications explained,
Prentice-Hall, UK, 1995, pp. 63-81.

[16] K.J. Astrom, Computer controlled systems, Prentice-Hall, UK, 1990.

[17] P. Guillermin, Fuzzy logic applied to motor control, IEEE Trans. on
industry applications 32 (1) (1996) 51-56.

