EngenhariaSísmicaarte&construção206.doc

## Engenharia Sísmica

#### Análise experimental

### Novas soluções estruturais sujeitas acções cíclicas

"Análise experimental de paredes de alvenaria de blocos de betão leve sob acções cíclicas no plano" é o título de um trabalho de investigação experimental realizado na Universidade do Minho. Trata-se de um tema actual e de interesse para o panorama nacional económico e habitacional, tendo sendo baseado no surgimento da Regulamentação europeia. A normalização focada, Eurocódigos 6 e 8, promovem o interesse pelo processo de dimensionamento de estruturas de alvenaria e o seu comportamento quando sujeitas a acções sísmicas.

Neste trabalho efectua-se uma análise dos resultados experimentais obtidos em paredes de alvenaria simples, armadas e confinadas executadas com blocos de betão leve, sujeitas a acções cíclicas no plano. É feita uma discussão comparativa da resposta em termos dos modos de rotura e dos padrões de fendilhação verificados com o incremento gradual de deslocamentos horizontais por ciclo e dos resultados carga-deslocamento obtidos experimentalmente com a consequente determinação de diagramas teóricos para comparação das soluções construtivas.

# 1. INTRODUÇÃO

Na construção de novos edifícios residenciais em Portugal, tem sido utilizada quase sempre a tecnologia do betão armado, sendo em edifícios industriais vulgar o recurso a soluções metálicas. As paredes de alvenaria têm sido usadas quase exclusivamente como o material de preenchimento de estruturas reticuladas de betão armado ou mesmo em aço, justificada pela falta de conhecimento do processo tecnológico e dos planos de estudos de formação nas escolas de engenharia, direccionados essencialmente para as técnicas relacionadas com o betão armado.

Contrariamente, em diversos países as aplicações em alvenaria estrutural, confinada ou armada, têm vindo a ter uma implementação crescente garantindo uma solução economicamente vantajosa e com características de resistência a acções horizontais e de verificação de condições de controlo de ocorrência de fendilhação asseguradas.

Esta realidade actual foi precedida nas décadas anteriores de investimentos científicos e programas de avaliação experimental consideráveis com o objectivo de avaliar a) a contribuição de cada componente da alvenaria no seu comportamento global, b) as formas de aplicação de acções horizontais e c) os seus efeitos no plano em paredes de alvenaria simples, confinadas ou armadas, para alem de d) estudos de simulação numérica do comportamento de paredes.

Como resultado, foram sugeridos *i*) modelos de dimensionamento, tendo-se verificado uma *ii*) consequente adaptação dos processos tecnológicos de aplicação, e a *iii*) reformulação de materiais com o desenvolvimento de novos blocos para paredes com função estrutural, e a *iv*) formulação de modelos de simulação do comportamento mecânico de paredes sujeitas a acções sísmicas. Como exemplo, na Tabela 1 referem-se alguns trabalhos e sua área de aplicação relativos ao desenvolvimento desta técnica construtiva.

Tendo sido considerado como um desafio para a futura construção a nível nacional, e procurando ser uma forma de justificar a aposta neste sistema construtivo, quer no aspecto tecnológico quer a nível económico, a Universidade do Minho em parceria com empresas de prefabricação de elementos para aplicação em paredes de alvenaria, tem vindo a realizar estudos experimentais de caracterização mecânica e física de materiais e de paredes de alvenaria sujeitas a acções combinadas no plano.

| Ano  | Autor              | Aplicação           | Bloco    | Campo de investigação                                     |  |
|------|--------------------|---------------------|----------|-----------------------------------------------------------|--|
| 1973 | Meli               | Alvenaria confinada | Cerâmico | Resistência ao corte; Ductilidade; Absorção de energia    |  |
| 1974 | Williams/Scrivener | Comportamento       |          | Frequência de acções cíclicas de corte; ductilidade.      |  |
|      |                    | mecânico            |          |                                                           |  |
| 1980 | Hamid/Dreysdale    | Alvenaria simples   | Cerâmico | Parâmetros de degradação de rigidez;                      |  |
|      |                    |                     |          | Evolução da fendilhação; Dissipação de energia            |  |
| 1983 | Woodward/Rankin    | Alvenaria simples   |          | Comportamento sísmico                                     |  |
| 1986 | Hidalgo/Luders     | Alvenaria armada    |          | Ensaios cíclicos; Efeito do reforço em juntas horizontais |  |
| 1988 | Tomaževič/Lutman   | Comportamento       | Cerâmico | Resposta sísmica; Resistência ao corte;                   |  |
|      |                    | mecânico            | e Betão  | Modos de rotura; Dissipação de energia                    |  |
| 1988 | Mann/Müller        |                     | Cerâmico | Formulações para o cálculo da resistência ao corte        |  |
| 1989 | Yancey/Scribner    | Alvenaria armada    |          | Comportamento sísmico                                     |  |
| 1990 | Paulson/Abrams     | Construtibilidade   |          | Resposta estática e a resposta dinâmica                   |  |
| 1990 | Moghaddam          | Alvenaria simples   | Cerâmico | Modelos de cálculo da força de corte                      |  |
| 1992 | Sanchez e al.      | Alvenaria confinada | Betão    | Efeito de acções cíclicas;                                |  |
|      | Astroza e al.      | Alvenaria armada    |          | Efeito do reforço.                                        |  |
| 1992 | Shing/Noland       | Alvenaria armada    |          | Efeito da percentagem de armaduras horizontal             |  |
| 1992 | Magenes            | Comportamento       | Cerâmico | Comportamento ao corte                                    |  |
|      |                    | mecânico            |          |                                                           |  |
| 1994 | Fattal/Todd        | Alvenaria armada    |          | Estudos numéricos e experimentais;                        |  |
|      |                    |                     |          | Influencia da percentagem de armadura horizontal          |  |
| 1996 | Lourenço           | Comportamento       |          | Aplicação e modelação numérica                            |  |
|      |                    | mecânico            |          |                                                           |  |
| 1997 | Tomaževič/Lutman   |                     |          | Parâmetros de cálculo da resistência ao corte             |  |
| 2003 | Oliveira           | Alvenaria simples   | Pedra    | Efeito de juntas secas                                    |  |
| 2003 | Bosiljkov          | Alvenaria simples   | Cerâmico | Efeito do tipo de juntas na resistência ao corte          |  |
| 2004 | Elgawady           | Alvenaria simples   |          | Reforço; modos de rotura; Resistência ao corte            |  |
| 2005 | Vasconcelos        | Alvenaria simples   | Pedra    | Resistência ao corte; Degradação de energia               |  |

Tabela 1 – Investigação em alvenaria estrutural, com caracterização sísmica.

Com a entrada em vigor dos novos regulamentos de dimensionamento espera-se uma inovação e uma optimização do processo tecnológico de construção em alvenaria e o aparecimento de novos materiais. Em Portugal e até ao presente, não existia nenhum regulamento nacional sobre construção em alvenaria que desempenhasse um papel similar aos regulamentos de estruturas de aço e de betão armado. Certamente novas técnicas de construção deverão surgir, designadamente, estruturas de alvenaria simples e confinadas. Consequentemente, o comportamento e os danos estruturais em paredes de alvenaria devem ser previstos no dimensionamento sísmico e na construção e devem permitir aumentar a resistência sísmica dos edifícios.

## 2. DESCRIÇÃO DA CAMPANHA EXPERIMENTAL

Foram construídas paredes com diferentes tipologias de soluções construtivas: paredes de alvenaria simples, armadas e confinadas, à escala 1:2, sendo avaliado o efeito da utilização de armadura de junta horizontal. Na Figura 1 apresentam-se os esquemas dos tipos de alvenaria analisados, e respectivas dimensões.

Os blocos de betão leve utilizados no programa de ensaios, com dimensões nominais de 200mm×143mm×100mm, foram obtidos por corte de um bloco do sistema construtivo "Isolbloco", de forma a ser representativo em escala (meia altura, meia largura e meio comprimento). O sistema "Isolbloco" é produzido normalmente pela indústria nacional, com características térmicas garantidas, tendo o bloco principal as dimensões nominais de 400mm×320mm×200mm. Na Figura 2, apresenta-se um esquema genérico dos blocos utilizados sendo visível a sua relação de escala com o bloco principal.

Por ensaios de compressão realizados, a resistência normalizada à compressão do bloco obtida foi de 5,70 MPa. Na construção das paredes foi usada uma argamassa pré-doseada de 10 MPa de resistência à compressão.

Os elementos de betão das paredes de alvenaria confinada foram executados com um betão de 31,5 MPa de acordo com ensaios de compressão realizados em cubos executados para o efeito na data de montagem das paredes. Na Figura 2c) apresenta-se a disposição de armaduras ( $f_{yk} = 400$  MPa) utilizadas na alvenaria confinada.

Nas paredes de alvenaria armada foi usada uma armadura de junta horizontal treliçada Murfor $\mathbb{R}$  produzida pela Bekaert, com 2 varões longitudinais  $\phi 5$  mm ( $f_{yk} = 550$  MPa) espaçados de 100 mm.



W2.1 - alvenaria simples JVNP W2.2 - alvenaria armada JVNP

W2.3 alvenaria simples JVP

W2.4 - alvenaria confinada JVNP W2.5 - alv. confinada armada JVNP W2.6 - alv. conf. c/ arm. ancorada JVNP





Figura 2 - a) Blocos de betão leve do sistema construtivo; b) blocos de betão leve de dimensão reduzida utilizados no programa de ensaios; c) pormenor das armaduras de confinamento das paredes confinadas.

As paredes foram ensaiadas num sistema de ensaio, Figura 3, em que a viga de base foi fixada ao piso de reacção através de sistemas de ligação apropriados, procurando a evitar qualquer movimento ou deformação exterior à parede. A acção vertical foi imposta através de um actuador hidráulico de 350 kN, programado manter constante a carga vertical. Entre o actuador e a viga de distribuição da carga vertical foram colocados rolamentos cilíndricos para reduzir o atrito induzido pelos movimentos laterais da parede. A acção cíclica horizontal foi imposta através de um actuador hidráulico de 250 kN fixado a uma viga de posição horizontal ajustável existente no muro de reacção.



Figura 3 – Sistema de ensaio de carga e procedimento de ensaio utilizados.

Antes da realização dos ensaios de corte para os quais foram definidos procedimentos de ensaios de forma a originarem a rotura da parede, realizaram-se ensaios para a determinação do módulo de elasticidade e do coeficiente de Poisson. As paredes foram instrumentadas com a colocação LVDT's, Figura 4, para ser feito o registo da evolução de valores de deslocamentos e das forças induzidas, representativos do comportamento das paredes quer relativamente a esforços axiais, quer a acções horizontais de corte.



Figura 4 – Instrumentação das paredes para avaliação: a) módulo de elasticidade, coeficiente de Poisson e rotações; b) comportamento das paredes nos ensaios de corte.

Os ensaios de corte foram realizados para níveis de compressão constantes e de valor 0,90 MPa, equivalentes aos níveis de tensão a que usualmente as paredes estão sujeitas no seu período de utilização, ou seja, cerca de 30 % da sua resistência característica à compressão, sendo esta obtida pela expressão regulamentar:

$$f_k = K \times f_b^{0,7} \times f_m^{0,3} \tag{1}$$

Em que:

K = 0.45 - Constante definida no EC6 para unidades de betão corrente assentes com argamassa convencional.

 $f_b = 5,70$  MPa - Valor médio normalizado da resistência à compressão dos blocos utilizados no programa, obtido experimentalmente.

 $f_m = 10,0$  MPa - Valor da resistência à compressão da argamassa, obtido experimentalmente.

A acção horizontal foi induzida à parede com controlo de deslocamentos a velocidade constante de 0,60  $\mu mm/s$ . Para cada incremento de amplitude de deslocamentos horizontais foram programados dois ciclos de deslocamento por amplitude para avaliação da resistência e do nível de degradação de rigidez.

## 3. ANÁLISE E DISCUSSÃO DE RESULTADOS

Por sair do âmbito desta comunicação, não é feita a apresentação detalhada de resultados relativos ao módulo de elasticidade, coeficiente de Poisson e da rotação verificada no decorrer dos ensaios. Refere-se somente que os valores médios do módulo de elasticidade variaram de 6,8 a 8,1 GPa para paredes de alvenaria simples e armada, sendo superiores para paredes de alvenaria confinada, com variação de 8,3 a 10,0 GPa. Para o coeficiente de Poisson obtiveram-se valores médios para paredes de alvenaria simples e armada entre 0,14 e 0,19.

Nos pontos seguintes é feita a apresentação de resultados comparativos para as diferentes soluções relativamente aos mecanismos de rotura e ao comportamento mecânico.

### 3.1. Mecanismos de rotura e padrões de fendilhação.

Com a determinação do deslocamento horizontal obtém-se um outro parâmetro de previsão do comportamento de paredes sujeitas a acções horizontais, o *drift*. Este valor representa a relação entre a deformação lateral e a altura da parede. A avaliação da resposta de cada parede relativamente a deslocamentos horizontais foi feita para cada ciclo de deslocamento máximo aplicado, permitindo assim avaliar a evolução do dano por ciclo.

#### Paredes de alvenaria simples:

Na Figura 5 apresenta-se um aspecto geral dos modos de rotura verificados nas paredes de alvenaria simples submetidas a ensaio. De um modo geral não se registaram fendas significativas para deslocamentos horizontais induzidos de cerca de 1,0 mm, sendo que a fenda diagonal correspondente à máxima força de corte ocorreu para valores médios na ordem de 2.5 mm e de 4 mm, para paredes simples sem e com armadura de junta respectivamente. Após a abertura da fenda diagonal por rotura frágil numa das direcções (W2.1 e W2.2), o comportamento geral foi de pouca distribuição da fendilhação na outra direcção, tendo sido possível verificar-se a formação de fendas na forma de X. A formação de corpos rígidos efectua uma transferência de tensões nos cantos produzindo nestas secções um nível de concentração de tensões originado danos significativos nos blocos (esmagamento localizado por compressão).



Figura 5 – Aspecto genérico dos padrões de fendilhação das paredes simples.

Nas paredes de alvenaria simples reforçadas com armadura horizontal de junta (W2.3), embora sem preenchimento da junta vertical com argamassa, verificou-se um nível de degradação mais uniforme em ambas as direcções, sendo caracterizada por um padrão de fendilhação de distribuição homogénea, progressiva nos ciclos correspondentes ao aumento do deslocamento horizontais e consequentemente da força de corte. Numa das paredes, verificou-se um efeito de deslizamento da base juntamente com o

efeito de corte, traduzido pela formação de fendas horizontais por quebra da resistência de aderência da ligação bloco-argamassa.

## Paredes de alvenaria confinadas:

Na Figura 6 apresentam-se um aspecto geral dos modos de rotura verificados nas paredes de alvenaria confinadas submetidas a ensaio. Não se registaram fendas significativas para deslocamentos horizontais induzidos de cerca de 1,5 mm, sendo que a fenda diagonal correspondente à máxima força de corte ocorreu para valores médios na ordem de 3,0 mm e de 5,6 mm, para paredes confinadas sem e com armadura de junta respectivamente. Refira-se que estes valores são meramente indicativos para servirem de base de comparação.



Figura 6 - Aspecto genérico dos padrões de fendilhação das paredes confinadas.

Nas paredes de alvenaria confinada com armadura de junta horizontal (W2.5 e W2.6), verificaram-se níveis de degradação mais acentuada do que nas paredes sem armadura (W2.4), acontecendo uma maior solicitação dos elementos de confinamento à tracção. Este esforço é visível pela fendilhação dos elementos verticais resultantes ao nível dos estribos da armadura de confinamento. Tendo por base os valores dos deslocamentos últimos registados e a distribuição da fendilhação verificou-se que a dissipação de energia nas paredes de alvenaria confinada com reforço horizontal é superior quando comparada com as paredes confinadas sem reforço. O efeito da amarração é igualmente benéfico nessa melhoria de ductilidade, bem como na distribuição do padrão de fendilhação.

## 3.2. Evolução dos ensaios e ajustamento de procedimentos e do sistema de ensaio.

Interessa desde já afirmar que a evolução dos ensaios foi tomada como um desafio interessante pelo facto deste ser um primeiro trabalho a nível nacional, na caracterização do comportamento mecânico para alvenaria nova sujeita a acções de corte.

Com o decorrer dos ensaios houve necessidade de adaptar quer o procedimento de ensaio, no sentido de ser aplicado um deslocamento por ciclo capaz de garantir a avaliar de forma mais correcta a evolução do dano e a capacidade resistente da parede. Inicialmente desconhecia-se o comportamento que as paredes de alvenaria de blocos de betão leve teriam, muito embora se pudesse ter por referência valores de *drift* para paredes de alvenaria de blocos de betão corrente. No ensaio da parede de teste, parede W2.2.0, foi utilizada inicialmente uma menor tensão de compressão verificando-se de forma esperada valores significativos de tracção. Posteriormente, no programa de ensaios das paredes, foi utilizado um valor de tensão de compressão, equivalente a 30% da resistência à compreensão e de valores que simulam a tensão de serviço no período de vida da estrutura.

Relativamente à evolução do dano por ciclos verificou-se uma menor disparidade do comportamento das paredes confinadas quando comparada com as soluções de alvenaria simples, Figura 7a) e Figura 8a). Este facto justifica-se pelo comportamento mais irregular deste tipo de paredes e pela adequação que foi

necessária realizar quer nos procedimentos de ensaio e quer no reforço do sistema de ensaios. A parede de teste W2.2.0 foi submetida a um procedimento de ensaio com menor tensão de compressão e com um maior número de ciclos associados a menores incrementos de *drift*, verificando-se a rotura ao procedimento 17 enquanto que nas restantes a rotura aconteceu para ciclos anteriores. No entanto, para a generalidade das paredes a rotura ocorreu para uma amplitude de deslocamento equivalente, verificando-se uma semelhança da relação da distorção resultante por deslocamento máximo imposto em cada ciclo. O grupo das paredes reforçadas com armadura de junta horizontal, grupo W2.3, apresenta uma variabilidade de resultados da  $\gamma_{distorção}$  vs  $d_{h por ciclo}$  comparada com o grupo de paredes simples, justificada pela referida ocorrência de deslocamentos da viga de base no ensaio da parede W2.3.1. Este efeito originou uma rotura mista de corte e deslizamento sendo que na parede W2.3.2 a rotura foi essencialmente por corte. Esta diferença verifica-se graficamente por uma menor relação  $\gamma_{distorção}/d_{h por ciclo}$ , Figura 7b). Tendo em conta os valores médios obtidos, verifica-se uma maior tendência da rotura surgir para deslocamentos negativos.

Nas paredes confinadas, verificou-se uma evolução do dano similar para os diferentes grupos, seguindo uma linha de tendência, Figura 8a). Após um comportamento linear carga horizontal - deslocamento horizontal as diferentes paredes confinadas tiveram uma resposta crescente de acordo com os incrementos de deslocamentos horizontais por ciclo, verificando-se uma relação muito próxima entre estes deslocamentos e a distorção ocorrida, Figura 8b).



Figura 7 – Resultados experimentais em paredes simples: a) distorção por ciclo e b) deslocamento máximos verificados no ultimo ciclo.



Figura 8 – Resultados experimentais em paredes confinadas: a) distorção por ciclo e b) deslocamento máximos verificados no ultimo ciclo.

A irregularidade do comportamento das paredes de alvenaria simples *vs* alvenaria confinada verifica-se também pela relação entre a distorção obtida e os deslocamentos máximo induzidos à parede, Figura 9. De uma forma global pode afirmar-se que as paredes confinadas corresponderam a amplitudes semelhantes de deslocamentos horizontais impostos, positivos e negativos, não se verificando esse facto nas paredes de alvenaria simples.



Figura 9 - Distorção vs deslocamento horizontal aplicado em a) paredes simples e b) paredes confinadas.

#### 3.3. Diagramas força de corte - deslocamento horizontal.

A avaliação do comportamento de paredes submetidas a ensaios de corte feita através da determinação de parâmetros, dos quais se destacam, a resistência máxima ao corte, deslocamentos horizontais, ductilidade e a degradação da energia de deformação. Com os valores obtidos foi feito o traçado dos diagramas experimentais *H-d* para cada parede sendo identificados os pares de valores característicos (ocorrência da primeira fissura significativa  $d_{cr}$ , força de corte máxima  $H_{max}$  e deslocamento lateral máximo  $d_{max}$ , bem como os valores de inversão do sentido da acção). Na Figura 10 apresentam-se os diagramas experimentais de uma das paredes de cada grupo, bem como a respectiva envolvente e valores característicos. Refira-se que estes diagramas correspondem aos modos de rotura apresentados na Figura 5 e Figura 6, respectivamente.



Figura 10 – Esquema dos diagramas experimentais de alguns ensaios de corte e respectivas envolventes.

Estes diagramas permitem visualizar a evolução do comportamento de cada tipo de solução construtiva ensaiada, verificando-se uma simetria mais eficiente e uma melhor ductilidade nos resultados das paredes

confinadas relativamente às paredes simples. Observa-se ainda, tal como foi referido em **3.2**, que as paredes de alvenaria confinada obtêm uma resposta mais regular para cada ciclo de deslocamento horizontal aplicado.

Procurando efectuar uma comparação do comportamento das diferentes soluções, mesmo que a nível teórico, e na tentativa de obter parâmetros de referência, foi feita a representação do diagrama bi-linear para cada solução. Este diagrama é obtido pela igualdade entre a área do diagrama experimental, ou seja, entre a área equivalente à energia de deformação verificada e a área do diagrama bi-linear. A capacidade da deformação é avaliada em termos de deslocamentos horizontais ocorridos e da ductilidade da parede,  $\mu$ . Após o traçado do diagrama teórico para cada parede foram deduzidos os valores do deslocamento teórico elástico linear,  $d_e$ , deslocamento teórico máximo,  $d_u$ , e da força teórica máxima de corte,  $H_u$ , sendo os resultados agrupados de acordo com as tipologias de paredes submetidas a ensaio. A rigidez elástica equivalente da parede,  $K_e$ , é obtida pela relação entre o par de valores experimentais correspondentes à ocorrência de primeira fissura ( $H_{cr}$ ,  $d_{cr}$ ), ou entre o par de valores teórico que define o troço linear no diagrama bi-linear ( $H_u$ ,  $d_e$ ). A ductilidade é definida como a relação entre  $d_u$  e  $d_e$ . Apresentam-se as expressões utilizadas para o traçado do diagrama bi-linear a partir dos valores experimentais:

$$K_e = \frac{H_{cr}}{d_{cr}}; \ A_{diag.\exp.}^{envolvente} = \frac{H_u \times d_e}{2} + H_u \times (d_{\max} - d_e); \ K_e = \frac{H_u}{d_e}; \ \mu = \frac{d_u}{d_e}$$
(2)

Na Figura 11 apresenta-se um esquema genérico da representação do diagrama bi-linear teórico *vs* diagrama experimental, e como exemplo, os diagramas teóricos para um dos grupos de paredes analisadas. Neste caso é apresentado o diagrama bi-linear para o grupo de paredes confinadas sem armadura de junta horizontal.



Figura 11 – Diagramas carga-deslocamento: a) experimental vs bi-linear teórico; b) diagrama bi-linear.

Na Tabela 2 são apresentados os resultados da análise efectuada. Para percepção da evolução da resposta de cada tipo de solução construtiva, apresenta-se na Figura 12 os diferentes diagramas bi-lineares, permitindo assim realizar uma comparação qualitativa do comportamento mecânico de cada um dos grupos.

| Grupos  | Ke      | $H_{max}$ | d <sub>e</sub> | $H_u$ | $d_u$ | ductilidade |
|---------|---------|-----------|----------------|-------|-------|-------------|
| Paredes | (kN/mm) | (kN)      | (mm)           | (kN)  | (mm)  | μ           |
| W2.1    | 70.43   | 80.94     | 0.86           | 60.49 | 4.83  | 5.62        |
| W2.2    | 77.42   | 88.85     | 0.82           | 63.31 | 5.26  | 6.43        |
| W2.3    | 53.60   | 93.11     | 1.32           | 70.75 | 7.26  | 5.50        |
| W2.4    | 72.58   | 95.02     | 0.95           | 69.12 | 6.93  | 7.27        |
| W2.5    | 52.53   | 113.73    | 1.51           | 79.53 | 9.68  | 6.39        |
| W2.6    | 58.64   | 121.75    | 1.61           | 94.54 | 10.12 | 6.28        |

 $\frac{100}{2}$ 

Tabela 2 – Resultados médios experimentais comparativos.

Figura 12 – Avaliação qualitativa por grupos de paredes: diagramas bi-lineares.

De acordo com resultados esperados, as paredes de alvenaria confinada são caracterizadas por um comportamento mais dúctil, e com valores de resistência ao corte superiores comparativamente a soluções em alvenaria simples. Pelos resultados obtidos relativamente à força de corte teórica, verifica-se um comportamento semelhante entre soluções de alvenaria simples reforçada com armaduras de junta horizontal e alvenaria confinada com o pano de alvenaria sem qualquer reforço.

A ductilidade, e de forma correspondente o nível de deterioração das paredes armadas com armaduras de junta, é bastante superior comparativamente a paredes não armadas. Paralelamente, verifica-se um aumento da resistência ao corte da alvenaria com a colocação de armaduras de junta em paredes de alvenaria.

# 4. CONCLUSÕES

Dos resultados dos ensaios cíclicos realizados em paredes de alvenaria de blocos de betão leve, conclui-se que em fase linear de carga deslocamento o comportamento é similar para as diferentes soluções construtivas. Os mecanismos de rotura e os padrões de fendilhação obtidos dependem da colocação de armadura de junta horizontal e da existência de elementos de confinamento executado de forma solidário ao pano de alvenaria.

Apesar de algumas dificuldades verificadas no decorrer dos trabalhos, e embora não haja uma linha de tendência confirmada do comportamento de paredes de alvenaria simples, foi possível concluir que estas revelam um comportamento de menor ductilidade relativamente a paredes de alvenaria confinada e que a relação de resistências teóricas é de cerca de 75 %.

Nas paredes confinadas verifica-se uma notória distribuição crescente dos modos de fendilhação com a evolução da acção horizontal imposta em cada ciclo, e uma elevada capacidade de deformação com perda de resistência após o nível de carga máximo, o mesmo não acontecendo para as paredes simples. Devido ao modo de rotura frágil deste tipo de solução, alguns ensaios foram finalizados por razões de segurança impedindo obter o comportamento global de degradação da carga.

A colocação de armaduras de junta melhora a resistência ao corte da parede, seja esta simples ou confinada, garantindo uma maior distribuição da fendilhação.

Conforme referido em **3.2**, este trabalho foi considerado um desafio para o conhecimento do comportamento de paredes de alvenaria nova e com materiais de produção nacional, esperando-se que estas soluções venham a merecer maior credibilidade por parte da comunidade técnica e científica. Justifica-se a continuação de estudos de investigação desta solução construtiva pelo facto de ser económica, ter actualmente regras de dimensionamento baseadas na regulamentação europeia, e pela necessidade de diversificar a construção de novos edifícios residenciais e/ou industriais em Portugal.

A bibliografia pesquisada para apoio na redacção do texto é apresentada com detalhe em Gouveia, J.P; Lourenço, P. B – "Análise experimental de paredes de alvenaria de blocos de betão leve sob acções cíclicas no plano. Sísmica 2007 – 7º Congresso de Sismologia e Engenharia Sísmica, FEUP e SPES, Porto, 2007.

> João P. GOUVEIA E. Professor Adjunto Inst. Sup. Eng. Coimbra Coimbra - Portugal jopamago@isec

Paulo B. LOURENÇO Professor Catedrático Universidade do Minho Guimarães - Portugal pbl@civil.uminho.pt