Isolation and molecular cloning of γ-terpinene synthase gene from *Thymus caespititius*

Ana Sofia Lima¹, Carla Oliveira², Lucília Domingues², Helena Trindade¹

¹Faculty of Sciences of University of Lisbon, Plant Biology Department, Institute for Biotechnology and Bioengineering, Centre of Plant Biotechnology, C2, Lisbon, Portugal; ²IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, University of Minho, Braga, Portugal

Thymus caespititius Broth., commonly known as ‘tormentelo’ or ‘erva-úrsula’, is a Lamiaceae aromatic species endemic of the NW Iberian Peninsula, and of the Azores and Madeira archipelagos characterized for high essential oil chemical variability [1, 2]. As part of an ongoing effort to isolate genes involved in scent production on different chemotypes, genomic characterization of exon and intron numbers, sizes and placement, of a putative gene encoding a monoterpene synthase, γ-terpinene synthase (*TcTPS2*), was performed on chemically distinct *T. caespititius* accessions collected at Azorean islands and in the Mainland Portugal. In *Origanum vulgare* TPS2 is responsible for the first step of the ‘cymyl’-pathway, giving rise to phenolic terpene isomers thymol and carvacrol and related compounds [3]. Being these terpenes the main components in two of the chemotypes of *T. caespititius*, the present work aims at showing the expression of *TcTPS2* in *Thymus*. *T. caespititius* mRNA was isolated from aerial parts collected during the flowering stage and a homology based RT-PCR strategy was used to clone the *TcTPS2* gene. One cDNA clone (*TcTPS2*-D1) was chosen to perform the heterologous expression in *Escherichia coli* for further characterization. A BLASTP search on GenBank revealed 27 to 93% of similarity of the cloned *TcTPS2* gene to other known terpene synthases genes from different members of other Lamiaceae species. Full-length His•Tag *TcTPS2*-D1 cDNA was ligated to the vector pET-29a(+) for protein expression. Recombinant TPS2 was detected in *E. coli* cultures by SDS-PAGE with the predicted molecular weight (67 kDa). The best soluble protein production was obtained for cultures induced with 0.2 mM of isopropyl-1-thio-b-d-galactopyranoside (IPTG) for 19h at 20°C in a rotary shaker. Scale-up protein production is in progress, and further purification as well as enzymatic assays will be performed. Herewith reported for the first time for the genus *Thymus*, these cloning and expression approaches will contribute to elucidate the function of these *TPS* genes.