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1. INTRODUCTION

In the middle eighties, Kardar, Parisi and Zhang in [7] proposed a phe-
nomenological model for the stochastic evolution of the profile of a growing
interface h;(z). The Kardar, Parisi and Zhang (KPZ) equation has the follow-
ing form in one dimension: 0,k = DAh + a(Vh)2 + oW,, where W, is a space-
time white noise and the constants D, a, o are related to some thermodynamic
properties of the interface. The quantity h;(x) represents the height of the in-
terface at the point z € R. From a mathematical point of view, this equation is
ill-posed, since the solutions are expected to look locally like a Brownian mo-
tion, and in this case the nonlinear term does not make sense, at least not in a
classical sense.

In dimension d = 1, a conservative version of the KPZ equation can be ob-
tained by defining ), = Vh;: 8;Y; = DAY, + aVY? + oV W;,. This equation has
spatial white noise as an invariant solution. In this case is even clearer that
some procedure is needed in order to define J? in a proper way. It is widely
believed in the physics community that the KPZ equation governs the large-
scale properties of one-dimensional, weakly asymmetric, conservative systems
in great generality. The microscopic details of each model should only appear
through the values of the constants D, a and ¢. In this work we provide a new
approach which is robust enough to apply for a wide family of one-dimensional
weakly asymmetric systems. As a stochastic partial differential equation, the
main problem with the KPZ equation is the definition of the square Y?.

Our first contribution is the notion of energy solutions of the KPZ equation,
which we introduce in order to state in a rigorous way our second contribution.
Take a one-dimensional, weakly asymmetric conservative particle system and
consider the rescaled space-time fluctuations of the density field );*. When the
strength of the asymmetry is of order 1//n, we prove that any limit point of J}*
is an energy solution of the KPZ equation. The only ingredients needed in order
to prove this result are a sharp estimate on the spectral gap of the dynamics
of the particle system restricted to finite boxes and a strong form of the equiv-
alence of ensembles for the stationary distribution. Therefore, our approach
works, modulo technical modifications, for any one-dimensional, weakly asym-
metric conservative particle system satisfying these two properties. As a con-
sequence, we say that energy solutions of the KPZ equation are universal, in
the sense that they arise as the scaling limit of the density in one-dimensional,
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weakly asymmetric conservative systems satisfying fairly general, minimal
assumptions.

In order to prove this result, we introduce a new mathematical tool, which
we call second-order Boltzmann-Gibbs principle. The usual Boltzmann-Gibbs
principle, introduced in [1] and proved in [3] in our context, basically states
that the space-time fluctuations of any field associated to a conservative model
can be written as a linear functional of the density field )}*. A stronger Boltzmann-
Gibbs Principle was derived in [4], which implies that for strength asymmetry
less than 1/y/n, the limit field falls into the Edwars-Wilkinson universality
class [5]. Our second-order Boltzmann-Gibbs principle states that the first-
order correction of this limit is given by a singular, quadratic functional of the
density field. It has been proved that in dimension d > 3, this first order cor-
rection is given by a white noise [2]. As a consequence for strength asymmetry
1/+/n the system fall into the KPZ universality class [6].

2. THE RESULTS

2.1. The process. Let 2 = {0,1}” be the state space of a continuous-time
Markov chain 7; which we will define as follows. We say that a function f :
Q — R is local if there exists R = R(f) > 0 such that f(n) = f(£) for any
n,§ € Q such that n(z) = {(x) whenever |z| > R. Let ¢ : @ — R be a non-
negative function. We assume the following conditions on c:

i) Ellipticity: There exists ¢; > 0 such that ¢y < ¢(n) < ¢, for any € Q.
ii) Finite range: The function c(-) is local.
iii) Reversibility: For any 7, £ € Q such that n(z) = {(x) whenever = # 0,1,
c(n) = c(§)-
For any x € Z let 7,.f(n) = f(7un) for any n € ), where 7,7 denotes the space
translation by z. We will also assume a fourth condition, which is the most
restrictive one:

iv) Gradient condition: There exists a local function i : Q —  such that
c(n)(n(1) —n(0)) = 71h(n) — h(n) for any n € Q.
In this work, we consider the Markov process {nj’;t > 0} generated by the
operator L,, acting over local functions f : 2 — R as

Lnf(n) = n’ Z Tz¢(n) {pnn(l’)(l —n(x+1)) + gz +1)(1 - n(x))}vx,x-i-lf(n)a

TEZ

where n € N, V., ..1f(n) = f(n®**1) — f(n), p, and ¢, are non-negative con-
stants such that p,, +¢, = 1 (and p,, — ¢, = a//n with a # 0) and n***! is given
by 1** ! (2) = n(x + 1), n*7*! (z + 1) = n(z), otherwise n™**!(z) = n(z).

For p € [0,1] let v, be the Bernoulli product measure in (2 of parameter p.
Under condition iii), the measures {v,;p € [0, 1]} are invariant and reversible
with respect to the evolution of #*. Under condition i), these measures are also
ergodic with respect to the evolution of 7;'.

2.2. Equilibrium Fluctuations. In this work we are interested in a central
limit theorem for the density of particles starting from the equilibrium state
v,. Let us fix a density p € (0,1) and let S(R) be the Schwartz space of test
functions and let S’(R) be the space of tempered distributions in R, which cor-
responds to the topological dual of S(R). The fluctuation field {)}*;t > 0} is
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defined as the S'(R )-Valued process given by
Vi ny G(z/n—v(p tn'/?
G == Z i ( /n—v(p)tn’'7)

TEZ
where v(p) = af'(p). Our main result in this work says that the sequence of
processes {{V;*;t € [0,T]};n € N} is tight in D([0,T],S'(R)) and any limit point
is a stationary energy solution of the KPZ equation:

dty, = @ af ( VY2t + /X (0) @ (p) VW 2.1)

2.3. Energy solutions of the KPZ equation. The space C([0,7],S'(R)) is
the space on which the solutions of the KPZ equation (2.1) will live. For ¢ > 0
we define i (7) : R — Rby i.(z)(y) = e '1(z < y < 2+ ¢). We say that a process
{I;t € [0,T)} with trajectories in C([0,T],S’(R)) and adapted to some natural
filtration {F;;t € [0,T]} is a weak solution of (2.1) if:
i) There exists a process {A;;¢ € [0, 7]} with trajectories in C([0,T],S’'(R))
and adapted to {F;;¢ € [0,T]} such that for any G € S(R),

111%/ /ys ic 2Gm+ei G gy ds = A(Q). (2.2)
ii) For any function G € S(R) the process
Mi(G) = W(G) - s(G")ds — aﬁz(p) A(G)  (2.3)

is a martingale of quadratic variation x(p)¢'(p)t [ G'(z)?dx

Now we introduce a stronger notion of solution, which captures well some of
the particularities of the solutions of (2.1). Let {);;t € [0,T]} be a weak solu-
tion of (2.1). For 0 < s <t < T, let us define the fields

/ yu G/l

) - AS(G)7
/ / AC Glate -Gl )dzdu
€
We say that {yt, [0,T7} is an energy solution of (2.1) if there exists a con-

stant x > 0 such that
E[Z,:(G)?] < k(t — s)/G’(z)de
and
E(A.(6) ~ AL (G)P) < et =) [ 6'(w)Pds

forany 0 < s <t < T, any ¢ € (0,1) and any G € S(R). We say that a weak
solution {Vy;¢ € [0,7T]} is a stationary solution if for any ¢ € [0,7] the S'(R)-
valued random variable ) is a white noise of variance x(p).

An immediate consequence of last result is the existence of weak solutions
of the KPZ equation. Let ); be a limit point of };*. Since the measure v, is
invariant under the evolution of 7}, for any fixed time ¢ € [0,7] the S'(R)-
valued random variable ); is a white noise of variance x(p). As a consequence
of the previous result we obtain that for any limit point {};;¢t € [0,T]} of
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{{Y;t € [0,T]};n € N}, there is a finite constant ¢ > 0 such that the pro-
cess {A;;t € [0,T)} defined as above satisfies the moment bound E[A; +(G)?] <
clt — s|*>/? [ G'(x)?dx. Moreover, for any v € (0,1/4) and any G € S(R) the real-
valued process {V:(G);t € [0,T]} is Holder-continuous of order ~.
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