SECOND AND THIRD CLASS PARTICLES IN TASEP

PABLO A. FERRARI, PATRICIA GONÇALVES* AND JAMES MARTIN

ABSTRACT. We consider the nearest neighbors one-dimensional totally asymmetric simple exclusion process starting with ones to the left of the origin, a second class particle at the origin, a third class particle at site 1 and no particles to the right of site 1. We show that the probability that the third class particle is to the right of the second class particle at time t converges to 2/3 as $t \to \infty$. We also consider the asymmetric exclusion process with transition rates having a positive mean and show that if the system starts with a product measure with densities $\lambda > \rho$ to the left and right of the origin, respectively, then the position of the second class particle at time t divided by t converges in distribution to a uniform random variable in the interval $[-(\rho - \lambda), \rho - \lambda]$, extending a result by the first author and Kipnis.

1. INTRODUCTION

The Asymmetric Simple Exclusion process is one of the most studied interacting particle systems. In this process, particles evolve on \mathbb{Z} according to interacting random walks with an exclusion rule which prevents to have more than a particle per site. The dynamics is as follows. Fixed a probability $p(\cdot, \cdot)$ on $\mathbb{Z} \times \mathbb{Z}$, each particle independently of the others, waits a mean 1 exponential time, after which, being at the site x it jumps to a site y at a rate p(x, y) := p(y - x). If the site is occupied the jump is suppressed in order to respect the exclusion rule and after that it restarts. Without losing generality we assume $\sum_x p(x) = 1$. This continuous time Markov process η_t has state space $\{0,1\}^{\mathbb{Z}}$ and for a site $x \in \mathbb{Z}$, $\eta_t(x)$ denotes the quantity of particles at that site at the macroscopic time t. Then, if $\eta_t(x) = 1$ the site x is occupied otherwise it is empty.

When the transition probability rate $p(\cdot)$ has positive and finite mean $\gamma > 0$, the process is called Asymmetric Exclusion Process (AEP). The Asymmetric Simple Exclusion Process (ASEP) will be used when the jumps are nearest neighbor with p(1) = p and p(-1) = q with p+q = 1 and $p \neq 1/2$. The Totally Asymmetric Simple Exclusion process (TASEP) if in this last case p = 1.

Since the work of Rezakhanlou, it is know that starting this process from an initial measure associated to a profile (see [6]) it has an hydrodynamic limit given by the inviscid Burgers equation: $\partial_t u(r,t) + \gamma \nabla u(r,t)(1-u(r,t)) = 0.$

For $\rho \in [0, 1]$ denote by ν_{ρ} the Bernoulli product measure of parameter ρ . It is know that ν_{ρ} is an invariant measure for this process and that all invariant and translation invariant measures are convex combinations of ν_{α} if $p(\cdot, \cdot)$ is such that $p_t(x, y) + p_t(y, x) > 0$, $\forall x, y \in \mathbb{Z}^d$ and $\sum_x p(x, y) =$ $1, \forall y \in \mathbb{Z}^d$, see [4].

A second class particle is a particle that behaves with holes as a particle and with particles as a hole: if there is a second class particle at site x, then it jumps to y with rate p(y - x) if y is empty and interchanges positions with a particle at y at rate p(x - y).

Let $\nu_{\lambda,\rho}$ be a product measure with density λ to the left of the origin and ρ to the right of it. Ferrari and Kipnis [1] start the TASEP with a configuration chosen accordingly to $\nu_{\lambda,\rho}$ with $0 \leq \rho < \lambda \leq 1$ put a second class particle at site 0 and call X_t its position at time t. Then they prove that X_{tN}/N converges as $N \to +\infty$ to a Uniform random variable with support on [-t, t]. The extension of last result to the case of a AEP is straightforward, but for completeness we state this result in this general case and we make a sketch of its proof, following the same arguments as [1]. Almost sure convergence has been proven by Mountford and Guiol [5], Ferrari and Pimentel [3] and Ferrari, Martin and Pimentel [2].

We consider the process with different classes of particles. Holes can be considered as particles of class ∞ . A class-*m* particle at *x* interchanges positions with class-*k* particle at site *y* at rate

Date: January 5, 2012.

p(y-x) if m < k and at rate p(x-y) if m > k. That is, a pair of class-*m* and class-*k* particles behaves as particle-hole if m < k and as hole-particle if m > k; particles of the same class interact by exclusion. For example if a second class particle attempts to jump to a site occupied by a first class particle, the jump is suppressed but if instead it attempts to jump to a site occupied by a third class particle, then they exchange positions. As a consequence, the higher the degree of the class of a particle the less is its priority.

We start the process from a deterministic configuration, denoted by ξ , that has all negative sites occupied by (first class) particles, the origin and site 1 are occupied by a second class and a third class particle, respectively, and all sites to the right of site 1 are empty. We show that for the TASEP from the configuration ξ , the probability of the second class particle jumping to the right of the third class particle at time t converges to 2/3 as $t \to \infty$. The same argument shows that the limiting value equals (p+1)/3p for the ASEP.

References

- Ferrari, P., Kipnis, C. (1995): Second Class Particles in the rarefation fan. Ann. Int. Henri Poincaré, section B31, no. 1, 143-154.
- [2] Ferrari, P.; Martin, James, Pimentel, L.: A phase transition for competition interfaces. preprint.
- [3] Ferrari, P.; Pimentel, L. (2005): Competition interfaces and Second class particles. Ann. Probab. 33 nº4 1235-1254.
- [4] Liggett, Thomas (1985): Interacting Particle Systems, Springer-Verlag, New York.
- [5] Mountford, T; Guiol, H. (2005) The motion of a second class particle for the TASEP starting from a decreasing shock profile. Ann. Appl. Probab. 15 1227-1259.
- [6] Rezakhanlou, F. (1991): *Hydrodynamic Limit for Attractive Particle Systems on* \mathbb{Z}^d . Commun. Math. Physics **140** 417-448.