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ABSTRACT. In this paper we consider the one-dimensional weakly asymmet-
ric simple exclusion process under the invariant state νρ: the Bernoulli prod-
uct measure of parameter ρ ∈ (0, 1). We show that the limit density field is
governed by an Ornstein-Uhlenbeck process for strength asymmetry n2−γ if
γ ∈ (1/2, 1), while for γ = 1/2 it is an energy solution of the KPZ equation.
From this result we obtain that the fluctuations of the current of particles are
Gaussian distributed for γ ∈ (1/2, 1), while for γ = 1/2 the limit distribution
is written in terms of the KPZ equation.

1. INTRODUCTION

We consider the one-dimensional weakly asymmetric simple exclusion pro-
cess (wasep), i.e. our microscopic dynamics is given by a stochastic lattice gas
with hard core exclusion. This process arises as a simple model for the growing
of random interfaces. The presence of weak asymmetry in the microscopic dy-
namics, breaks down the detailed balance condition, which implies the system
to exhibit a non trivial behavior even in the stationary situation. The dynam-
ical scaling exponent has been established by the physicists as being z = 3/2
and one of the challenging problems is to establish the limit distribution for
the density and the current of particles, see Spohn (1991). We take the process
with asymmetry given by an2−γ and we want to analyze the effect of strength-
ening the asymmetry in the limit distribution of the density field.

The wasep was studied in Masi et al (1986) and in Dittrich and Gartner
(1991), for γ = 1; and in Bertini and Giacomin (1997) for γ = 1/2. The equi-
librium density fluctuations (for γ = 1) are given by an Ornstein-Uhlenbeck
process. For γ = 1/2 (which corresponds to strength asymmetry nz), Bertini
and Giacomin (1997) used the Cole-Hopf transformation to derive the non-
equilibrium fluctuations of the current of particles. By removing the drift to
the system, there is no effect of the strength of the asymmetry on the limit
distribution of the density field. By strengthening the asymmetry the limit
distribution ”feels” the effect of this strengthening, by developing a non linear
term in the limit distribution. In this case the limit density field is a solution
of the Kardar-Parisi-Zhang (KPZ) equation. The KPZ equation was proposed
in [8] to model the growth of random interfaces. Denoting by ht the height of
the interface, this equation reads as

∂th = D∆h + a(∇h)2 + σWt,
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where D, a, σ are constants related to the thermodynamical properties of the
interface and Wt is a space-time white noise with covariance E[Wt(u)Ws(v)] =
δ(t − s)δ(u − v). According to z, a non-trivial behavior occurs under re-scaling
hn(t, x) = n−1/2h(tn3/2, x/n). This means, roughly speaking, that in our case,
for γ = 1/2 a non trivial behavior is expected even in the stationary situation
and in this case, the model belongs to the universality class of the KPZ equa-
tion. Here we provide the characterization of the transition from the Edwards-
Wilkinson class to the KPZ class, for the wasep. We prove that the transition
depends on the strength of the asymmetry without having any other inter-
mediate state and by establishing precisely the strength in order to have the
crossover. From this result we obtain the crossover regime for the current of
particles across a characteristic. Our method relies on a stronger Boltzmann-
Gibbs Principle introduced in [4] and is robust enough in the sense that it can
be applied for general interacting particle systems.

2. EQUILIBRIUM FLUCTUATIONS

2.1. The process. Let ηt be the wasep evolving on Z and with space state
Ω = {0, 1}Z. In this process, each particle waits a mean one exponential time
after which jumps to an empty neighboring site according to a transition rate
that has a weak asymmetry to the right. The process is taken on the diffusive
time scale n2 so that ηn

t = ηtn2 and the transition rate to the right is 1/2+1/nγ

and to the left is 1/2 − 1/nγ . We notice that if we decrease the value of γ, this
corresponds to speeding up the asymmetric part of the dynamics on longer time
scales as n2−γ . A stationary measure for this process is the Bernoulli product
measure on Ω of parameter ρ, that we denote by {νρ : ρ ∈ [0, 1]}.
2.2. The density field. We denote by πn

t the empirical measure as the posi-
tive measure in R defined by

πn
t (dx) =

1
n

∑

x∈Z
ηn

t (x)δx/n(dx),

where for u ∈ R, δu is the Dirac measure at u. We are interested in establishing
the fluctuations of the empirical measure from the stationary state νρ. From
now on, fix a density ρ and take ηn

t moving in a reference frame with constant
velocity given by (1 − 2ρ)n2−γ . Let Yn

t be the density fluctuation field on H ∈
S(R) as:

Yn,γ
t (H) =

1√
n

∑

x∈Z
T γ

t Hx

(
ηn

t (x)− ρ
)
, (2.1)

where T γ
t H(·) = H(· − (1 − 2ρ)tn1−γ). From now on we use the denotation

Hx = H(x/n).

2.3. On the hydrodynamic scale parameter. For γ = 1, it is not hard to
show that {Yn,γ

t ;n ∈ N} converges to Yγ
t solution of the Ornstein-Uhlenbeck

equation:

dYγ
t =

1
2
∆Yγ

t dt +
√

χ(ρ)∇dWt, (2.2)

where Wt is a space-time white noise. So, for γ = 1 the system belongs to the
Edwards-Wilkinson universality class.
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2.4. Beyond the hydrodynamic scale parameter. In order to see the effect
of the asymmetry in the limit density field we increment the strength of the
asymmetry by decreasing the value of γ. According to Bertini and Giacomin
(1997), the effect of the asymmetry is presented in the limit field when γ = 1/2
and in that case Yγ

t has a very different qualitatively behavior from the one
obtained for γ = 1, namely the solution of (2.2).

In this work, we characterize the limit field Yγ
t for the intermediate state,

i.e. for γ ∈ (1/2, 1), by showing that for this range of the parameter it also
solves (2.2). As a consequence, for γ ∈ (1/2, 1) the system still belongs to the
Edwards-Wilkinson universality class. The idea of the proof of last result is to
use Dynkin’s formula so that

Yn,γ
t (H) = Mn,γ

t (H) + Yn,γ
0 (H) + In,γ

t (H) +An,γ
t (H)

where Mn,γ
t (H) is a martingale with respect to the natural filtration,

In,γ
t (H) =

∫ t

0

1
2
√

n

∑

x∈Z
∆nT γ

s Hx(ηn
s (x)− ρ)ds,

An,γ
t (H) =

∫ t

0

n1−γ

√
n

∑

x∈Z
∇nT γ

s Hx

{
ηn

s (x)(1−ηn
s (x+1))−χ(ρ)−(1−2ρ)(ηn

s (x)−ρ)
}

ds,

and ∆n, ∇n are the discrete laplacian and the discrete derivative, respectively.
Now we analyze the asymptotic behavior of the martingale and the integral

terms above. The hard programme of this approach is to analyze the limit of
the integral term An,γ

t (H). For that purpose, we derive a stronger Boltzmann-
Gibbs principle as in Corollary 7.4 of Gonçalves (2008), which implies that
An,γ

t (H) vanishes as n → ∞. In [4] the result was obtained for the symmetric
simple exclusion but is also true for the process we consider here. In fact that
result can be stated as: if ψ : Ω → R is a local function, γ ∈ (1/2, 1) and if
H ∈ S(R) then

lim
n→∞

Eνρ

[( ∫ t

0

n1−γ

√
n

∑

x∈Z
Hx

{
τxψ(ηn

s )−Eνρ [ψ(η)]−∂ρEνρ [ψ(η)](ηn
s (x)−ρ)

}
ds

)2]
= 0.

(2.3)
Last result together with some computations on the quadratic variation of

the martingale, gives us that Yγ
t is solution of (2.2).

2.5. On the KPZ scale parameter. From the previous arguments we have
seen that if we want to see the effect of the asymmetry in the limit field, we go
towards decreasing the value of γ, which, as mentioned above, corresponds to
speeding up the asymmetric part of the dynamics. This is in agreement with
the result of Bertini and Giacomin (1997) which says that for γ = 1/2 that is
indeed the case.

Recently in Gonçalves and Jara (2010), it was shown that for γ = 1/2,
{Yn,γ

t ; n ∈ N} is tight and any limit point is an energy solution of the KPZ
equation:

dYγ
t =

1
2
∆Yγ

t dt +∇(Yγ
t )2dt +

√
χ(ρ)∇dWt. (2.4)

Since we are in the presence of a stronger asymmetry, the result in (2.3) is
no longer true. In order to establish last result, a second order Boltzmann-
Gibbs principle was derived in Gonçalves and Jara (2010). The ingredients
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invoked in order to derive this stronger replacement is a multi-scale argument
introduced in Gonçalves (2008) combined with some fundamental features of
the model: as a sharp spectral gap bound for the dynamics restricted to finite
boxes, plus a second order expansion on the equivalence of ensembles.

The results beyond the hydrodynamic time scale, the crossover at γ = 1/2
and the KPZ class, are in fact true for a general class of weakly asymmetric
exclusion processes see Gonçalves and Jara (2010).

As a consequence of last result and by relating the current of particles with
the density field, we can obtain the crossover on the fluctuations of the current
and we obtain that for γ ∈ (1/2, 1) the limit is Gaussian, while for γ = 1/2
the limit is written in terms of the KPZ equation. For details we refer the
interested reader to [6].

2.6. Conclusion. We point out that, our approach is robust enough in order
to be applied to general one-dimensional interacting particle systems, as for
example: the zero-range process and the Ginzburg-Landau model. Our ap-
proach also works for models with finite-range, non-nearest neighbor interac-
tions with basically notational modifications. As mentioned above features of
the model that is needed in order to obtain the results presented here are: a
sharp spectral gap bound for the dynamics restricted to finite boxes, plus a sec-
ond order expansion on the equivalence of ensembles, which are quite general.
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