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a  b  s  t  r  a  c  t

In  metabolic  systems,  the  cellular  network  of  metabolic  reactions  together  with  constraints  of
(ir)reversibility  of  enzymes  determines  the  space  of all possible  steady-state  phenotypes.  Analysis  of  large
metabolic  models,  however,  is  not  feasible  in real-time  and  identification  of  a smaller  model  without  loss
of  accuracy  is  desirable  for model-based  bioprocess  optimization  and  control.  To  this  end,  we  propose
two  search  algorithms  for  systematic  identification  of  a  subset  of  pathways  that  match  the  observed
cellular  phenotype  relevant  for  a particular  process  condition.  Central  carbon  metabolism  of  Escherichia
coli was used  as  a case-study  together  with  three  phenotypic  datasets  obtained  from  the literature.  The
first  search  method  is  based  on  ranking  pathways  and  the  second  is a controlled  random  search  (CRS)
algorithm.  Since  we  wish  to  obtain  a biologically  realistic  subset  of  pathways,  the  objective  function  to
be minimized  is a trade-off  between  the error  and  investment  costs.  We  found  that  the CRS  outperforms
the  ranking  algorithm,  as it is less  likely  to fall  into  local  minima.  In  addition,  we  compared  two  path-
scherichia coli way  analysis  methods  (elementary  modes  versus  generating  vectors)  in  terms  of modelling  accuracy  and
computational  intensity.  We  conclude  that  generating  vectors  have  preference  over  elementary  modes
to describe  a particular  phenotype.  Overall,  the  original  model  containing  433  generating  vectors  or  2706
elementary  modes  could  be  reduced  to a system  of  one  to  three  pathways  giving  a  good  correlation  with
the measured  datasets.  We  consider  this  work  as  a first step  towards  the  use  of detailed  metabolic  models
to  improve  real-time  optimization,  monitoring,  and  control  of biological  processes.
. Introduction

Most mathematical models used for optimization and control
f biotechnological processes are relatively simple and generally
gnore the complex interactions between the extracellular environ-

ent and the thousands of intracellular enzymes and metabolites.
he lack of this information in bioreactor monitoring and con-
rol can have a profound impact on biological systems and lead
o poor bioreactor control performance. Nevertheless, the use of

ethods based on large models in process monitoring and con-
rol is nowadays limited due to their complexity and the lack of
ppropriate methodologies. The challenge of the development of

 large-scale modelling strategy that predicts cellular phenotypes
s not yet solved and is addressed here in the view of bioprocess
ontrol.
Genome-scale stoichiometric models are currently the best
pproximation to a representation of the metabolic capabilities
f the cell. However, stoichiometric models represent an infinite
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number of possible phenotypes and systems biology tools need
to be applied such that the simulation matches the phenotypes in
given conditions. Also, most tools in systems biology are designed
for steady-state applications, whereas the aim of process control
requires a dynamic approach. Although dynamics are not addressed
explicitly in this work, the model is formulated such that it can
be easily extended as such. Moreover, as a consequence of the
complexity of the models, the computational intensity is high. The
model simulations are therefore too slow for some applications,
such as online monitoring and control. Several model reduction
approaches can be used to simplify models for use in process con-
trol, like the use of lumped reactions, sensitivity analysis tools [1],
singular perturbation theory [2],  and elimination of the dynamics
of some processes based on their time scales [3].

Tools that have the potential to solve some of the above
problems may  come from metabolic pathway analysis. Metabolic
pathway analysis is the discovery and analysis of meaningful routes
in metabolic networks. It is becoming increasingly important for
assessing network properties and linking the cellular phenotype to

the corresponding genotype. Amongst several concepts elementary
mode (EM) analysis [4],  extreme pathway analysis (EP) [5],  and the
concept of generating vectors (GVs) [6] are promising tools. The
first two  tools have been evaluated by several authors, amongst
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Nomenclature

EP extreme pathway
EM elementary mode
GV generating vector
RMSE root mean squared error

Enzymes
acont aconitase
ackr acetate kinase
acs acetyl-CoA synthetase
act acetate reversible transport via proton seaport
adk adenylate kinase
akgd 2-oxogluterate dehydrogenase
ATPm ATP maintenance requirement
ATPs4r ATP synthase
citl citrate lyase
CO2t CO2 transporter via diffusion
cs citrate synthase
eno enolase
fba fructose-bisphosphate aldolase
fbp fructose-bisphosphatase
fum fumarase
g6pdh glucose 6-phosphate dehydrogenase
gadp glyceraldehyde-3-phosphate dehydrogenase
icdhyr isocitrate dehydrogenase (NADP)
cl isocitrate lyase
mdh  malate dehydrogenase
pgdh 6-phosphogluconate dehydrogenase
O2t O2 transport (diffusion)
pdh pyruvate dehydrogenase
pgm phosphoglycerate mutase
pfk phosphofructokinase
pgi glucose-6-phosphate isomerase
pgk phosphoglycerate kinase
pox pyruvate oxidase
ppc phosphoenolpyruvate carboxylase
ppck phosphoenolpyruvate carboxykinase
pps phosphoenolpyruvate synthase
ptar phosphotransacetylase
pts phosphotransferase system
pyk pyruvate kinase
rpe ribulose 5-phosphate 3-epimerase
rpi ribose-5-phosphate isomerase
sucd succinate dehydrogenase
tala transaldolase
thd5 NAD transhydrogenase
tkt1 transketolase
tkt2 transketolase

Metabolites
2PG 2-phosphoglycerate
3PG 3-phosphoglycerate
6PG 6-phosphogluconate
13DPG 1,3-bisphosphoglycerate
ACE acetate
ACCOA acetyl-coenzyme A
ACP acetyl-phosphate
AKG �-ketoglutarate
CIT citrate
COA coenzyme A
DHAP dihydroxyacetonephosphate
E4P erythrose-4-phosphate
F6P fructose-6-phosphate

FDP fructose-1,6-biphosphate
FUM fumarate
G3P glyceraldehyde-3-phosphate
G6P glucose-6-phosphate
GLC glucose
GLY glyoxylate
ICIT isocitrate
MAL  malate
OAA oxaloacetate
PEP phosphoenolpyruvate
PYR pyruvate
R5P ribose-5-phosphate
RU5P ribulose-5-phosphate
S7P sedoheptulose-7-phosphate
SCA succinyl-coenzyme A
SUC succinate

X5P xylulose-5-phosphate

others [7,8]. Llaneras and Pico [9] provide a comprehensive review
on these three and other concepts to generate and characterize the
flux space. EMs  analysis identifies all minimal functional pathways
inherent to a metabolic network. EPs analysis identifies the minimal
set of independent pathways through the network, which is a sub-
set of the EMs. It is stated that, in large networks, the number of EMs
can be several-fold greater than the number of EPs. However, since
the computation of EPs requires splitting up all reversible internal
reactions into forward and backward reactions, whereas the EMs
analysis allows for reversible reactions, the number of reactions in
the network for EPs analysis increases and the resulting number of
EPs may  not necessarily be much smaller than the number of EMs
for a network containing reversible reactions. GVs are in turn a sub-
set of the EPs. If one allows reversible reactions in the computation
of the GVs, their number is lower than the number of EMs  or EPs.

Pathway analysis for large metabolic networks has the problem
of combinatorial explosion of possible routes across the net-
works. In many situations, particularly concerning EMs, many more
pathways exist than necessary to construct all admissible flux dis-
tributions. Therefore, some of them can be taken as a generator set
of the whole admissible region. Thus, it may  not be necessary to
use the full set of pathways for specific applications. Of particu-
lar interest is the subset of pathways describing a set of measured
phenotypic data. The importance of these lays in the fact that the
internal fluxes are not independently distributed but strictly con-
strained by external fluxes through the pathways at steady state
[10]. A challenging task is how to select these pathways to describe
a physiological state of interest. In literature, several approaches
are described. Trinh et al. [11] give an overview of this problem.

Several authors concluded that EMs  analysis is the preferred
choice for finding possibly important routes in the majority of the
applications [7,8,12]. The conclusion arises because EPs and GVs do
not represent the complete set of simplest (genetically indepen-
dent) routes within the metabolic network under investigation.
Here, we evaluate these tools from a different perspective: for
selecting a number of pathways that describe a particular phe-
notype. We  compare the use of EMs, the largest set, and GVs,
the smallest subset, with the aim of bioprocess optimization and
control. We  evaluate the modelling accuracy and computational
intensity.

In recent years, several approaches that combine the use of EMs

with experimental data have been used to predict cellular pheno-
types and maximum production capabilities. Provost and Bastin
[13] achieved a model reduction by deriving a dynamic model based
on EMs. The model is based on the elimination of intracellular rates
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o obtain a macroscopic model connecting substrates and products.
he dynamic model, compatible with the underlying metabolic net-
ork, is built on these macro-reactions. The basic assumption is

hat the main dynamics is contained in the extracellular metabo-
ites and that the intracellular metabolites are at quasi-steady state.
his approach of combining EMs  with experimental data is the basis
or the model in this work, subject to several modifications [14].

In the sequel, two methods will be compared to select a limited
umber of pathways matching the phenotype in given conditions.
he first method is based on ranking and the second on a controlled
andom search (CRS) algorithm. An overview of the work is shown
n Fig. 1.

. Model

.1. Model based on pathway analysis

We adopt a model based on pathway analysis that is built
rom a stoichiometric model. The first step in our modelling
pproach (Fig. 1) is therefore the definition of the stoichiometric
atrix N (nm × nv) for the central carbon metabolism based on the
etabolites, reactions, compartments (internal or external), and

he corresponding enzyme directions (we refer to Section 2.2 for
ore details on the biological content and to Supplement 1 for the

toichiometric matrix itself):

 =
[

Ns

N�

]
(1)

eing Ns the ns × nv stoichiometric matrix containing the intracellu-
ar metabolites and N� the n� × nv external stoichiometric matrix.
he quasi-static approximation for mass balances of the internal
etabolites is mathematically expressed by:

ds

dt
∼= 0 ⇒

[
Ns

N�

]
v −

[
o

vm

]
= o (2)

here s denotes the concentrations of the intracellular metabolites,
 is the vector of the specific reaction rates (called metabolic fluxes),
nd vm is the specific uptake and excretion rates of the measured
xtracellular species.

Next, on the basis of a set of macro-reactions, the dynamical
odel of a bioreactor can be established as [2]:

d�

dt
= Kr(t) + u(t) (3)

here � is the vector with the concentrations of the external
etabolites per biomass weight, r(t) the vector of specific macro-

eaction rates, and u(t) the net exchange of the metabolites with the
utside of the reactor. The stoichiometric matrix K of the macro-
athways reads [13]:

 = N� · E (4)

here E is the nv × nEMs elementary modes matrix or the nv × nGVs
enerating vectors matrix. Each column of E represents one path-
ay (EM or GV). We  chose to compute both using METATOOL 5.1.0

15].
In continuous cultivations, there is no accumulation of metabo-

ites and Eq. (3) can be simplified to:

 · r = −u (5a)

The exchange rates with the environment then become equal to
he measured specific rates:
m = −u (5b)

Any steady state flux pattern can be expressed as a non-
egative linear combination of pathways. In overdetermined
 Control 21 (2011) 1483– 1492 1485

systems the matrix K is not-invertible. Some authors applied the
Moore–Penrose inverse to calculate the rates r through the path-
ways [16]. An issue, not addressed in some literature on the
calculation of the pathway rates, is that of reversibility of pathways.
A pathway is considered reversible if all its reactions are reversible.
Conversely, pathways containing one or more irreversible reac-
tions are irreversible. As a consequence, the pathway rates of the
irreversible modes should be greater than or equal to zero.

Poolman et al. [16] tackled this by simply removing the columns
of K that lead to negative rates in irreversible modes and recalculat-
ing the assignment. Schwartz and Kanehisa [17] took into account
the reversibility constraints in a quadratic programming problem
to calculate the pathway rates. Another method, based in linear
programming, is the concept of the �-spectrum [18,19].  The �-
spectrum encloses all possible solutions, but is not intended to find
a reduced set of modes. In this work we compute the rates r using
a non-negative least squares algorithm [20], since all pathways are
irreversible. Note that our approach can easily be extended with
reversible pathways, in case they are present, by splitting up these
reversible pathways into two  irreversible pathways.

2.2. Stoichiometric model

The network model was  reconstructed to represent Escherichia
coli growing on glucose minimal media. The starting point was the
reduced model for the central carbon metabolism of E. coli [21].
This model was modified in the following way: biomass forma-
tion was  modelled by acknowledging the metabolic drain from the
central metabolic pathways [22]; and oxidative phosphorylation
was lumped [23]. The resulting model contains glycolysis, pen-
tose phosphate pathway, TCA cycle, anaplerotic reactions, biomass
formation, oxidative phosphorylation, maintenance energy, and
membrane transport reactions. Energy requirements for biomass
formation and energy production are also included. The model con-
tains 45 metabolites and 48 reactions, of which 23 are irreversible.
The number of degrees of freedom is 10 (there are linearly depen-
dent balance equations). The metabolic network is shown in Fig. 2.

The distinction between balanced and unbalanced metabolites
in the computation of the pathways is based on the classification as
intracellular and extracellular metabolites. Therefore, the following
specific rates have been defined for the extracellular metabolites:

vm = [qm
GlcEX, �, qm

AceEX, qm
CO2

, qm
O2

] (6)

where qm
GlcEX

is the specific glucose consumption rate, � is the
specific growth rate, qm

AceEX is the specific acetate production or con-
sumption rate, qm

CO2
the specific carbon dioxide evolution rate, and

qm
O2

the specific oxygen uptake rate. Note that, in continuous culti-
vation, the uptake and excretion rates are equal to the exchange
rates (Eq. (5)); in batch cultivation, in accordance to the quasi-
static approximation, i.e. constant specific uptake and excretion
rates during exponential growth, these specific rates are equal to
the specific consumption or accumulation of glucose, biomass, and
acetate.

2.3. Experimental data

We  expected that all observed phenotypes could be represented
by a non-negative linear combination of the pathways. However,
often, the opposite case is encountered [10]. As a measure of the
ability of the stoichiometric model to represent a particular pheno-

type, we  computed the sum of squared errors of the specific rates
in Eq. (6) normalized by the specific growth rate (SSE/�) for 21
datasets. The specific rates from the model are computed using
non-negative least squares as explained in Section 2.1.
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Fig. 1. Procedure for sele

As a result, Fig. 3 shows that SSE/� is nonzero for several
atasets. This can happen if the network model is somewhat sim-
lified, misses important pathways, or if the experimental data
ontain measurement errors. Here, it was found that, in most cases,
he carbon balance was not closed. We  refer to Supplement 2 for the
omputation of the carbon balance and for a figure showing the car-
on balance of the datasets. Therefore, before attempting to select
athways, the experimental data should be carefully considered.
s an alternative means to seek for inconsistencies between model
nd measurements, the calculability analysis proposed in [24] can
e used. We  chose three datasets showing different phenotypes to

llustrate our method of selecting pathways. Those datasets rep-
esent a continuous cultivation at a specific growth rate of 0.1 h−1

25], in which acetate formation was absent; a continuous cultiva-
ion with a dilution rate of 0.4 h−1 [26], where acetate was formed
ut in very small amounts; and a batch cultivation [27], where
cetate formation was considerable. The carbon recovery was 108%
or dataset [25], 78% for dataset [26], and 100% for dataset [27].

. Selection of pathways

.1. Objective function

Computation of the pathways using METATOOL gives 2706 EMs,
f which 1622 is biomass producing modes and 433 GVs. A way
o select the pathways that describe a particular phenotype with

iomass production could be based on the biomass yield on glu-
ose and oxygen, e.g. by selecting the pathway with the highest
ield [23] or by selecting a single pathway or a linear combination
f pathways close to those two experimentally measured yields.
 of a subset of pathways.

Supplement 3 shows an example of such method for our model
using a particular dataset. Song and Ramkrishna [10] chose a fixed
number of GVs based on yield analysis using quadratic program-
ming.

Here, however, we  aim to select a realistic subset of pathways
(corresponding to a subset of K in Eq. (3))  that matches an observed
phenotype considering all possible pathways (for instance also
non-biomass producing modes), and also model size, and efficiency
of the pathways. Hence, we reduce the number of pathways on the
basis of an objective function that takes into account these aspects.

In general, increasing the model size (or the number of selected
pathways) is likely to improve the estimation errors. On the other
hand, our assumption is that only a small number of pathways are
active under defined process conditions. Besides, in our search for
a biologically meaningful subset, we  think that the more efficient
pathways, in terms of investment in enzymes, are more likely to
be active in practice. Carlson [28] supports the view that inexpen-
sive pathways (in investment in enzymes) have preference during
nutrient limitation.

The proposed objective function therefore is a trade-off between
the error RMSE and the investment costs required to establish the
selected pathways IC:

J  = RMSE + c · IC (7)

where c is a factor to weight the importance of investment costs
against the actual error. The choice of the weighting factor c influ-

ences the selection of the number and index of the pathways. Since
the main contribution for the objective function should be the
RMSE, we chose the following value: c = 5 × 10−4. The effects of dif-
ferent values of factor c are discussed in Section 4.3.  RMSE denotes
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he weighted root mean squared error between the simulated (vms)
nd experimental (vme) uptake and excretion rates:

MSE =
√

1
n

·
∑(

vme − vms

W

)2
(8)

here n is the number of measurements and w is the weights, com-
uted as the absolute value of vm. The weight for acetate is set to

nity to avoid dividing by zero when acetate is absent.

Model size (the number of selected pathways) and efficiency
the investment required to establish the pathways, that is, to pro-
uce the enzymes) are simultaneously evaluated in one criterion:
 FAD

 sole carbon source. The external metabolites are shown in a dotted red oval.

investment costs IC.  It is calculated as the number of nonzero com-
ponents of the selected pathways Ek times their rates rk:

IC = K(Ek · rk) (9)

The pathways are normalized for glucose uptake. In general, Eq.
(9) penalizes the selection of more pathways and inefficient path-
ways. We  are now left with the problem of selecting the best subset

of overall pathways K and computing their corresponding rates,
which minimizes the objective function Eq. (7).  Hereto we com-
pare two algorithms: ranking (Section 3.2) and a controlled random
search (Section 3.3).
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.2. Pathway ranking

The approach “ranking of EMs” was developed based on the idea
f adding one column of K (representing the macro-reaction of one
M) to the current subset of K to give the largest improvement of
he objective function until a minimal objective function is found.
he algorithm uses this approach to expand the model, starting
ith a single term which minimizes the objective function. As an

xample, the ranking algorithm would select three out of the 433
riginal pathways for the given dataset in Fig. 4. Supplementary 4
ontains the MATLAB code for the ranking and controlled random
earch algorithms.
.3. Controlled random search algorithm

Price [29] developed a CRS procedure, which searches for global
inima in an iterative procedure. A drawback of this method is the
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ig. 4. Selection plot of the generating vectors on dataset [27] using the pathway
anking algorithm. Three GVs give the minimal objective value J (Eq. (7)).
tasets from literature by a non-negative linear combination of all pathways in K (Eq.
by the specific growth rate (�). The dilution rate (D) is given in h−1 [25–27,37–44].

computational time; nevertheless, it is more efficient than a pure
random search. This procedure is applied here to select a limited
number of pathways and their index from K on the basis of the
objective function. Using a particular phenotypic dataset, the spe-
cific rates vme are calculated from the rates in literature and the
following steps are performed:

1. First, a set of NT trial points (potential solutions) is randomly
generated with p = 2 elements (number of pathways and their
column index k) from the search domain V. The search domain V
is defined by specifying limits on each of the p variables. In this
work, the constraints were set to a maximum of ten pathways
and the maximum index defined by the number of calculated
pathways. Each trial point specifies which columns of K are
used and then the rates r are computed using the non-negative
least-squares algorithm. The error of this estimation is used to
compute the objective function in Eq. (7) for that trial point and
the results are stored in matrix A.

2. Then the search starts by generating for each iteration a new
trial point as follows: a new point (TP) is generated by choosing
p + 1 random distinct points RP1, RP2, . . .,  RPp+1 from the set of
NT stored points and computing the centroid G of the n points
RP1, . . .,  RPp minus the last point RPp+1:

TP = 2 · G − RPp+1 (10)

Provided that the new trial point TP satisfies the constraints,
the goal function is evaluated (JTP). In the original CRS algorithm,
the centroid is given by:
G = 1
p

p∑
j=1

RPp(j) (11)
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In this work, we used an algorithm based on the CRS2 algo-
rithm [30] that showed improved convergence properties by
including the current best point TPmin:

G = 1
p + 1

⎛
⎝TPmin +

p∑
j=1

RPp(j)

⎞
⎠ (12)

. The stored point M in matrix A with the greatest objective func-
tion value (JM) is determined. JTP is then compared with JM. If
JTP < JM, M is replaced by TP in A.

Step two and three are repeated until the stop criterion is sat-
isfied (all penalties J in the stored matrix A are identical, the
maximum J is smaller than a certain value, or the maximum
number of function evaluations is reached).

. Results and discussion

.1. Ranking and CRS of EMs  for dataset [26]

Both the ranking and the CRS algorithm reduced the original
odel containing 2706 EMs  to a system based on one and the same
ode for biomass growth; and another pathway for the original
odel of 433 GVs. The corresponding macro-reaction for the EM

hat connects the extracellular substrates and the end-products is:

EM 1123 : 1.00 GlcEX + 1.75 O2 → 0.0938 Biomass

+ 2.03 CO2 + 0 AceEX

ith a rate of 4.59 h−1. The original set of generating vectors did not
ontain this mode and another similar overall pathway is selected:

GV 166 : 1.00 GlcEX + 1.76 O2 → 0.0935 Biomass

+ 2.04 CO2 + 0 AceEX

ith a rate of 4.61 h−1. Simulation of the reduced model gives an
ppropriate match with the data (J = 0.352 in Eq. (7),  Table 1). Note
hat acetate formation, which was almost 1000 times lower than
he specific glucose consumption, is fitted to be zero in the reduced

odel. Application of the algorithms to a different dataset, in which
cetate is produced in significant amounts, would lead to the selec-
ion of different mode(s), as is shown in the next section.

The selected EM is a pathway with an incomplete glycoly-
is (without pgi,  but active pentose phosphate pathway) and an
ncomplete TCA cycle (without mdh, but instead the collective
ction of me1, pps, and ppc completes the TCA cycle). Although the
ir)reversibilities of the enzymes allow flux through those path-
ays, it is not likely that they are physiologically meaningful. The

elected GV seems more biologically relevant, containing a full
lycolysis and TCA cycle. With the aim of selecting biologically rel-
vant pathways under given environmental conditions, it would
e meaningful, before selecting pathways, to take into account
ore constraints imposed on the cell. As such, in addition to the

mposed (ir)reversibilities of the enzymes, additional constrains
an be assigned on the flux directionalities of reactions based on
easurements in particular conditions; and subsequently, only the

athways that satisfy these additional constrains would be com-
uted. For instance, these constrains can be assigned based on
hermodynamic grounds (using intracellular metabolite concentra-
ions) or on C13 labelling experiments.

.2. Controlled random search for dataset [25]
The CRS algorithm was intended to find global minima. How-
ver, this is not guaranteed and the algorithm was  run several times
o find the best solution. All obtained sets of GVs have close objec-
ive function values, but not all the same. Convergence to global
 Control 21 (2011) 1483– 1492 1489

instead of local optima could be improved by increasing the number
of trial points NT in the search (at the expense of increasing compu-
tational time). As an example, Fig. 5 shows that the iterative search
converges to a set of two GVs. The corresponding macro-reactions
are the following, with rates r of 7.4 and 3.34 h−1:

GV 88 : 1.00 GlcEX + 1.02 O2 → 0.0717 Biomass

+1.24 CO2 + 0.865 AceEX

GV 183 : 1.00 GlcEX + 3.1.0 O2 → 0.0685 Biomass

+3.10 CO2 + 0 AceEX

Simulation of the reduced model gives an appropriate match
with the data (Fig. 5D and Table 1), for the GVs (as well as for the
EMs).

4.3. Comparison of methods and discussion

An overview of the results on the selection of a subset of path-
ways for the two selection methods and the two  pathway modelling
approaches for the three datasets is shown in Table 1. It can be
observed that we obtained nearly the same RMSE for the reduced
models compared to the original model containing all pathways. So,
in given environmental conditions, selection of few pathways does
not harm modelling accuracy. Besides, a presumably more realistic
description of the metabolism is obtained compared to full models.
However, in order to verify whether the pathways selected in this
fashion are also active in vivo, additional experimental data would
be required.

In addition, Table 1 shows that the CRS algorithm outperformed
the ranking algorithm for a model size larger than one pathway. If
the optimal model size is one, both methods select the same path-
way, at the expense of a slightly larger computational time for the
CRS. The ranking algorithm is based on expanding the model from
a single and fixed “best” pathway with the “next best” pathway
and so on. However, in reality the set of pathways giving the best
objective value J does not necessarily include the best pathway. So,
the ranking algorithm may  not find the best set. In other words,
the ranking approach has the problem of falling in local minima.
Conversely, the iterative search procedure CRS may  find the global
minima. However, this is not guaranteed and the algorithm should
be run several times to find the best solution. These findings are in
line with other authors. Crampin et al. [31] already stated that the
non-orthogonality of the matrix K means that the optimal subset
of size K + 1 is not necessarily the optimal subset K plus the “next
best term” and that the selection process must therefore be iter-
ative. Also Judd and Mees [32] stated: “It appears that finding the
optimal model of size K is NP-hard – related to the feasible basis
extension problem. If this is the case, we cannot expect to obtain
the optimal solution easily.”

If we  compare the three datasets, the best results were obtained
using dataset [25], followed by datasets [26,27].  Similar results
were observed using the full pathway model (Fig. 3). As mentioned
before, inspection of the experimental data suggested that the mea-
surements of [26] are probably contaminated with an error. The
respiration quotient (RQ = CER/OUR) was 0.69; when, for growth
under aerobic conditions RQ is expected to be about 1.

Comparing the reduced model based on EMs  and GVs, the RMSE
values were the same (not shown). This is in line with our expec-
tations, because all EMs  can be reconstructed from the GVs by a
non-negative linear combination. The objective values J may be
slightly higher for GVs, because the best EM may  not be present

in the set of GVs, leading to slightly increased investment costs
in the objective function. On the other hand, the total number of
EMs  can be several-fold greater than the number of GVs, especially
for networks with many reactions and therefore the selection of
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Table 1
Overview of the results for the selection methods “ranking” and “controlled random search” using the pathway modelling methods “elementary modes” and “generating
vectors” on three datasets from literature.

Dataset Pathways Selection method J Reduced RMSE Original RMSE Reduced model size Original model size

CSTR [25]
EMs

Ranking 0.062 0.045 (0.060)a 0.050 (0.058) 1 2706
CRS 0.062 0.045 (0.060) 0.050 (0.058) 1 2706

GVs
Ranking 0.066 0.049 (0.058) 0.050 (0.058) 3 433
CRS 0.064 0.049 (0.058) 0.050 (0.058) 2 433

CSTR [26]
D  = 0.4 h−1

EMs
Ranking 0.352 0.335 (0.970) 0.348 (0.961) 1 2706
CRS  0.352 0.335 (0.970) 0.348 (0.961) 1 2706

GVs
Ranking 0.352 0.336 (0.969) 0.348 (0.961) 1 433
CRS 0.352 0.336 (0.969) 0.348 (0.961) 1 433

Batch [27]
EMs

Ranking 0.164 0.147 (0.619) 0.160 (0.610) 3 2706
CRS 0.164 0.148 (0.619) 0.160 (0.610) 2 2706
Ranking 0.177 0.160 (0.610) 0.160 (0.610) 3 433

 (0.61

a
m
t
n
I
t
s
a

a
E
t
i
d
t
o
t

F
s

GVs CRS  0.163 0.148

a The RMSE values in parentheses are without weights in Eq. (8).

ctive pathways from a larger set of pathways becomes harder and
ore time-consuming; moreover, the computational intensity of

he calculation of the EMs  itself is a challenge for large metabolic
etworks, whereas GVs allow computation in polynomial time [6].

n summary, although EMs  give the smallest objective values with
he least pathways, we prefer GVs to EMs  for the selection of a sub-
et of pathways (from the many for large networks) that describe

 particular phenotype.
The effect of changing the importance of investment costs

gainst the sum of squared errors (factor c in the objective function
q. (7)) depends on the datasets. The effect of efficiency is rela-
ively more important for datasets with small RMSE, as can be seen
n Table 1. In these cases, where the model is able to represent the

ataset fairly (in contrast to cases with high experimental errors),
he factor c was chosen such that efficiency does affect the choice
f the pathways, though RMSE remains the main term contributing
o the objective value. Although the selected pathways are differ-
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ize,  (B) index of the two selected GVs, (C) objective values J (Eq. (7)), (D) measured versu
5) 0.160 (0.610) 2 433

ent for different choices of c, the final impact of slight changes in
c is minor, because there are many similar pathways (in particular
elementary modes) that lead to similar results, as can be seen from
Fig. S3 as well.

We  used data from three particular experiments (3 × 5 mea-
sured metabolites) to illustrate the results. Interestingly, the
approach is flexible enough to be of use, at a higher computa-
tional cost, if more datasets are simultaneously taken into account
(e.g. replicate studies). In this way, the selection of pathways
becomes less dependent on a single instance of measurements
and therefore more reliable. Also, with the aim of developing a
model that represents a wider range of phenotypes, the algo-
rithm should be run on datasets from different conditions and

sequentially merging the selected pathways into one set. For
instance, representing the presence or absence of acetate formation
or varying yields (which involves fluxes through different path-
ways).
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As mentioned before, most models for online optimization and
ontrol are relatively simple, often based on lumped reactions. The
se of genome-scale stoichiometric models, on the other hand –
urrently the best representation of the cell – is often limited by the
act that these models do not allow a direct simulation of pheno-
ypes and their use for the computation of EMs  or GVs is impossible
r too slow for online applications. They also face the challenge of
stimating appropriate dynamics. The development of a reduced
odel in this work is an attempt to more accurately represent the

apabilities of the cell in given conditions, while still being suitable
or online applications.

The next step will be online monitoring of the evolution of the
etabolites � (biomass, glucose, and acetate) through estimation

f the pathway fluxes (r(t) in Eq. (3)). One way would be to extend
he (controlled random) search with the simultaneous selection
f reaction mechanisms. A challenge, however, is the independent
stimation of the reaction mechanisms and its model parameters.
n alternative way is the use of observer-based techniques. The
est way is currently under study. Ultimately we aim to optimize
nd control these fluxes in real-time towards enhanced production
f target metabolites, for example through online optimization of
eed profiles [33].

Another application where the selection of pathways could be
sed is for the redirection of the central metabolism towards the
igh-efficiency production of biochemicals [34,35]. Based on this
nalysis, those authors proposed targets for metabolic engineering
owards an improved yield. Nevertheless, some genetic modifi-
ations such as gene deletions cause a decrease in growth rate,
esulting in a decrease in productivity. To counterbalance the effect
f genetic modifications on productivity, other technologies based
n optimization of pathways and real-time control might be more
fficient. We  think that improvements in the production of bio-
hemicals can be obtained by redirecting the metabolism of the
ells towards the desired pathways by manipulating the envi-
onment of the cells using dynamic models based on pathway
nalysis.

In modelling metabolic systems through EMs, usually some
etabolites are considered “external” in the sense that they are

vailable for uptake or can be secreted from the cell. Those metabo-
ites are the sources of the network and their concentrations are
ssumed to be buffered. Internal metabolites have to be balanced
ith respect to production and consumption at steady state. In
any cases, there are biochemical reasons to treat a metabolite as

alanced or unbalanced (based, for example on known membrane
ransporters). Often, however, the classification is ambiguous, since
he buffered condition can also be assumed for metabolites that are
ot secreted. Given that the higher the number of external metabo-

ites the larger the number of EMs, Dandekar et al. [36] propose a
lassification method of metabolites as external or internal that
inimizes the number of EMs.
Ultimately, we wish to optimize and control in real-time

owards the desired pathways. For this purpose, it is important to
apture the essential process dynamics. In our next step of building

 dynamic model, therefore, we will investigate methods to classify
 metabolite as unbalanced or balanced based on time-scale sepa-
ation [14], rather than on the physical presence of the metabolite,
ince the various reactions operate on different time scales, from
illiseconds to hours or days.
The development of methodologies to improve real-time

rocess optimization, monitoring, and control based on large-
cale metabolic models has the potential to raise process
fficiency and productivity. This work is a first step towards

he use of metabolic models in real-time by presenting a
wo-step methodology to capture a large metabolic network
y only a small number of pathways under defined process
onditions.
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