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Abstract — Trajectory modulation and generation are two funda-
mental issues in the path planning problem in autonomous robotics,
specially considering temporal stabilization of the generated move-
ments. This is a very critical issue in several robotic tasks including:
catching, hitting, and human-robot scenarios.

In this work, we address these problems and focus on generating
movement for a mobile robot, whose goal is to reach a target within
a constant time. We use an Hopf oscillator whose solution controls
velocity, adapted according to temporal feedback. We have also
proposed an adaptive mechanism for frequency modulation of the
velocity profile that enables setting different times for acceleration
and deceleration.

This approach is demonstrated on a DRK8000 mobile robot in
order to confirm the system’s reliability with low-level sensors.

Keywords: Timing, Nonlinear dynamical systems, Adaptive
modulation

I. INTRODUCTION

An additional but fundamental issue in the path planning
problem is temporal stabilization of movements, particularly
in discrete movements. Temporal stabilization means to keep
as much as possible the planned movement time (MT ), despite
varying environmental conditions or perturbations. Movement
must be compensated for when these disturbances either hold
up, accelerate or decelerate it.

This is a very critical issue in robotic tasks including:
avoidance of moving objects; catching; hitting; juggling; coor-
dination between degrees of freedom; human-robot scenarios
and generating sequentially structured actions. These tasks
may include external temporal boundary conditions, which
elicit and drive movement generation.

In this contribution we continue previous attempts [1], [2],
[3] to tackle these spatial-temporal problems. We propose
a controller inspired in the vertebrate biological motor sys-
tems [4], [5], [6], [7], structured in two functional hierarchical
layers according to their level of abstraction.

We apply autonomous nonlinear dynamical systems to for-
mulate each of these layers, since their intrinsic properties
apply ideally to the problem. These include: (1) low com-
putational cost; (2) smooth online modulation while keeping
the general features of the original movements; (3) robustness
against small perturbations; (4) and allows integration of
sensory feedback [8], [9].

However, a major drawback in the dynamical systems
approach is the complexity inherent to their design. In order
to tackle this drawback, we follow a modular approach by
assuming that complex movement can be generated from the
combination of simpler motor primitives, discrete and rhyth-
mic, implemented as dynamical systems. Additionally, this
modularity is assumed in terms of motor behaviors, stored as
motor programs in the nervous system [10]. These assumptions
turn a possibly high dimensional trajectory generation problem
into a simple selection between pre-defined behaviors.

The lower level of the proposed controller acts out at the
level of heading direction and velocity by formulating two
separate dynamical systems. An attractor-based dynamics is
formulated for the heading direction variable [11]. The veloc-
ity dynamics is based on past work for modeling a CPG [9],
[1], [8]: a unique set of (oscillator-based) differential equations
is able to produce complex movements modeled as periodic
movements around time-varying offsets. The generated veloc-
ity profile and the switch between movement primitives can
be easily modulated according to changes in values of the
dynamical parameters.

The second level is responsible for selecting the most
adequate motor behavior; map it onto the corresponding set
of dynamical parameters and send them to the lower level at
the right timing. A neural competitive dynamics models this
second level. Its outcome are neural variables whose states
encode the adequate set of parameters for the corresponding
behavior. This switching dynamics autonomously bifurcate
among possible behaviors, when relatively low level, noisy
sensory information is used to initiate and steer action.

A great advantage of the proposed approach is that the pro-
posed controller is simpler and more stable compared to others
[2], [12], [1], it is generic enough to be implementable on a
wide range of robots and allows to include other behaviors and
thus generate more complex behavior. Further, the developed
approach is implemented in a lower level robot, with modest
computational resources.

This approach is demonstrated on a DRK8000 mobile robot
in order to confirm the system’s reliability with low-level
sensors. The robot navigates towards a target in a world and is
confronted with unexpected disturbances, such as obstacles or



sudden movements of the target. Results show that the system
is able to deal with these disturbances and reaches the target
still respecting the initial desired movement time.

II. RELATED WORK

Some approaches using the dynamical systems theory, have
addressed this timing problem. The framework proposed in [3]
extends the attractor dynamics approach of behavior genera-
tion to the timing domain. This framework is applied in [1] to
an autonomous vehicle generating timed movement, where a
temporal stabilization mechanism was proposed. However, [2]
argues that the included temporal stabilization mechanism does
not guarantee invariant movement time, and propose some
changes including: (1) to use the dynamic solution to directly
control the robot’s velocity; (2) to use a full oscillator cycle;
and (3) propose an adaptive rule that theoretically warrants
invariant movement time.

In this work, a few novel adaptation mechanisms and
properties of the system were proposed by further exploring
the intrinsic properties of the used oscillator.

We propose an adaptive mechanism for frequency modu-
lation of the velocity profile based on the oscillators current
state, that enables setting different times for acceleration and
deceleration.

Previously, it was assumed that local bifurcation theory
could not be used and hence was difficult to build a gen-
eral model [13] for generation of more complex movements
that include discrete; rhythmic and superimposition of both.
Therefore, proposed solutions include application of a neural
competitive dynamics to switch among different contributions,
modeled as dynamical systems. However, care must be taken
such that this switch occurs where vector fields of contri-
butions are almost similar, such that the state is continuous.
Otherwise, there will be a discontinuity. Further, the neuronal
dynamics may present some multistability, meaning that more
than one neuron is ”on” and the vector field results from the
sum of the active contributions. Herein, these problems were
eliminated by using bifurcation theory to switch the qualitative
dynamics of the Hopf nonlinear system, instead of switching
among different dynamical systems.

III. SYSTEM OVERVIEW

The presented system is divided hierarchically in two func-
tional levels according to their level of abstraction. Both of the
levels are implemented through sets of interacting dynamical
systems.

The second level selects and sequences the most appropriate
motor behaviors accordingly to external conditions and current
states of the task at hand. Three motor behaviors are available
in the level’s repertoire:

1) Stop: The robot does not move, as it awaits for the
beginning of the task or has reached the target.

2) Execution: The robot performs the movement task. It
starts and executes the pursuit of the target, avoiding
eventual obstacles, while adapting its velocity to main-
tain the task’s timing.

3) Rescue: In the eventual case of the target becoming out
of reach within the time constraint due to an excessive
disturbance, the robot maintains a constant, stable ve-
locity to the target.

The first level is composed by the dynamics of two be-
havioral variables that control the 2D motion of the robot, its
heading direction ϕ and forward velocity v. The directional
dynamics governs the heading direction according to: the
perceived target position as an attractor, and repellers erected
by the detection of obstacles; safely steering the robot around
obstacles into the target.

The velocity v of the robot is the major determinant to
the success of the movement task within the specified timing
constraints. Its value is the solution of the stable limit-cycle
generated by the Hopf oscillator. Commands are sent from the
second level, changing qualitatively the dynamic solution by
taking advantage of the Hopf bifurcation, resulting in the three
presented motor behaviors. The performed velocity consists
of a single oscillation cycle, adapted in order to accelerate or
decelerate in face of disturbances.

IV. HEADING DIRECTION CONTROL

The robot’s heading direction, ϕh, in angular space and in an
allocentric coordinate, is controlled by a nonlinear vector field
in which task constraints contribute independently. The task of
reaching the target, Ftar(ϕh), attracts ϕh towards the direction in
which the target lies. The task of avoiding obstacles, Fobs(ϕh),
repels ϕh from the direction in which obstacles are perceived.

Integration of these tasks is achieved by adding each of them
to the vector field that governs heading direction dynamics.

ϕ̇h = Fobs(ϕh)+Ftar(ϕh)+Fstoch. (1)

A stochastic component, Fstoch, is added to ensure an escape
from unstable states. For a full discussion see [14], [11], [1]
for examples.

This approach differs from the potentially field approach
basically in the aspect that the state of the behavioral system
must be in or near an attractor state of the dynamical system
during operation.

V. VELOCITY CONTROL

Robot velocity is generated by the m variable of the follow-
ing Hopf oscillator:

ṁ = α
(
µ − r2)(m−Om)−ωn, (2)

ṅ = α
(
µ − r2)n+ω (m−Om) , (3)

r =

√
(m−Om)

2 +n2, (4)

where m and n are the state variables, amplitude of the
oscillations (limit cycle radius) is given by A =

√µ for µ > 0
and ω specifies the oscillations frequency (rads−1). Variable
Om is used to control the m solution offset.

This oscillator contains an Hopf bifurcation from a stable
fixed point at (m,n) = (Om,0) (when µ < 0) to a structurally
stable, harmonic limit cycle, for µ > 0. Relaxation to these
solutions is given by 1

2α µ (s).



In summary, this system is able to generate: (1) A discrete
movement to a offset Om, if µ < 0; (2) a rhythmic movement
around Om, if µ > 0; and (3) the superimposition of both
movements, resulting in a more complex movement, if µ > 0
and the offset is defined as a time-changing variable [8].

Additionally, we motivate the choice of this Hopf oscilla-
tor because it enables to explicitly modulate the generated
trajectories with respect to their amplitude, frequency and
offset, according to small parameter changes while keeping
the general features of the original movements.

This is interesting for trajectory generation in a robot [8].

A. Profile modulation

The oscillator described by eqs. (2)(3)(4), generates a m
harmonic solution which period equals the movement time
MT = 2π

ω . Herein, MT is the time that velocity goes from
zero to twice the oscillator radius, A, and back to zero again,
performing a full sinusoidal cycle (fig. 1 (top)). However,
ascending and descending parts of the oscillatory cycle have
equal durations, meaning that a large amount of time is
spent accelerating towards the maximum required velocity
and decelerating back to zero again. From a robot physical
perspective, it would be beneficial if minor top velocities are
requested, keeping the profile approximately constant as long
as possible. Therefore, we understand that ideally it should be
possible to choose the acceleration/deceleration time durations
within the task’s movement time.

Consider the velocity profile depicted in fig. 1 (top). The
velocity evolves as follows:

v(t) = A(1− cos(ωt)) (5)

Lets now consider the same task of reaching a target, but
subdividing the required velocity profile in three time intervals,
each with different durations, such their sum results in the
movement time MT = T1+T2+T3. During 0 to t1 the oscillator
covers the first quarter of the limit cycle (T1), half of the limit
cycle is covered from t1 to t2 (T2), and the last quarter from
t2 to t3 (T3).

Angular frequency ω is calculated for each of the three time
intervals, such that in the overall they are performed within
the correct timing, as follows:

ω1 =
π

2T1
, ω2 =

π
T2

, ω3 =
π

2T3
. (6)

The distance s covered during each time interval is calculated
by integrating eq. (5) during the given time intervals, for a
fixed radius cycle A:

s1 =
A
(π

2 −1
)

ω1
, s2 =

A(π +2)
ω2

, s3 =
A
(π

2 −1
)

ω3
. (7)

The total distance covered by the robot, is the distance needed
to reach the target.

D(t = 0) = s1 + s2 + s3, (8)

where D(t = 0) is the distance between the robot’s initial
position and the initial target coordinates at instant t = 0s.
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Fig. 1. Top: simple oscillation profile generated by the Hopf oscillator. On
this profile, T1 and T2 are longer, resulting in a curve with a higher top velocity.
Bottom: modulated oscillation profile where the acceleration and deceleration
times are smaller, resulting in a smaller top velocity.

In an undisturbed scenario in which no disturbances (obsta-
cles, target displacement, etc) occur, the fixed radius A can be
calculated as follows:

A =
D(t = 0)

( π
2 −1)
ω1

+ (π+2)
ω2

+
( π

2 −1)
ω3

(9)

B. Timing adaptation

However, in a real implementation disturbances of many
types may occur which disturb the online planned robot time
course. Hence, the robot must be able to accelerate or deceler-
ate along its path, and still reach the target within the defined
movement time. In [2] was proposed an online adaptation
rule for the Hopf radius which was able to guarantee that
the remaining distance is traversed within the remaining time.

Building on the same formulation, we integrate eq. (5)
during each of the three time intervals, thus determining an
online updating rule for the Hopf offset and radius cycle A,
that considers both the current distance to the target and the
remaining time to do it. The adaptive rule is calculated by
different formulae, depending on the current instant of time,
For 0 < t < t1:

A1 (t) =
D(t)

π
2 −1+sin(ω1t)

ω1
+ π+2

ω2
+

π
2 −1
ω3

− t
(10)

For t1 < t < t2:

A2 (t) =
D(t)

π
2

ω1
+ π+1+cos(ω2(t−T1))

ω2
+

π
2 −1
ω3

− t
(11)

For t2 < t < t3:

A3 (t) =
D(t)

π
2

ω1
+ π

ω2
+

π
2 −cos(ω3(t−T1−T2))

ω3
− t

(12)

C. Frequency and amplitude modulation

The velocity profile is modulated in amplitude and fre-
quency by simply changing both A and ω parameters, re-
spectively. The idea is to explicitly change these parameters



according to the oscillator current state, as follows:

A =
A1(

1+ eb(m−A)
)
(1+ ebn)

+
A2

1+ e−b(m−A)
(13)

+
A3(

1+ eb(m−A)
)
(1+ e−bn)

where A1, A2 and A3 are as defined in eq.(10-12).
A alternates between three different values, A1, A2 and A3,

depending on the current values of the m and n variables. The
alternation speed between these values is controlled by b. The
same procedure is used for the ω parameters.

D. Dealing with obstacles

In this work, we specifically deal with the disturbance of
obstacles along the path. These oblige the robot to change
its path, and therefore it is required to compensate for the
corresponding change of timing.

Obstacle presence is indicated by a potential function, U(ϕh)
(see [11], [14] for details): if U(ϕh) has negative values, the
repulsion from obstacles contribution is weak for the current
heading direction value; if it has positive values, the current
heading direction ϕh, is on a repulsion zone of sufficient
strength and the robot must avoid the obstacle. In this last
situation the velocity should decrease by reducing A. This is
achieved by modifying eq.(14) as follows:

A = (eq.14)
(

1− T F −d
1+ e−b(U(ϕ)−1/b)

)
(14)

where TF is the maximum range of the robot’s sensors and d
the minimum distance to an obstacle measured by any of the
sensors.

This set of equations constitutes the lower level responsible
for setting the robot velocity at each time step. It receives from
higher levels and at the right timing, sets of parameters that
specify and modulate in a simple and straightforward manner
the generated trajectories.

In summary, the set of parameters sent by the second layer,
is composed by:

1) µ , switches on/off the rhythmic output. If µ > 0 it also
encodes the amplitude of rhythmic activity, A =

√µ ;
2) Om, modulates the oscillations’ offsets, i.e. the goal for

the discrete movement;
3) T1, T2, T3, specifies the velocity profile’s shape.

The parameters α and b are set a priori.

VI. BEHAVIOR SWITCHING

In this work, we consider that there should exist three differ-
ent behaviors: stop; execution; and rescue. Further, the switch
between these behaviors should be easily and autonomously
elicited, according to sensory information, such that action
itself is elicited by perception.

A competitive dynamical system implements this switching
mechanism.

A. Neural Competitive Dynamics

Each of the possible behaviors is represented by a “neu-
ral”variable ui ∈ [−1,1] (i = stop, execution, rescue). A com-
petitive dynamics is formulated for these variables as follows:

αµ u̇i = βiui− | βi | u3
i −ν ∑

a ̸=i
u2

aui +gwn (15)

where neurons ui can go “on”(=1) or “off”(=0). The neuron
ui, with the largest competitive advantage, βi > 0, is likely to
win the competition, although for sufficiently small differences
between the different βi values multiple outcomes are possible,
so that the system is effectively multistable.

Parameter ν is a competitive term which destabilizes any
attractors in which more than one neuron is “on ”. αµ defines
the time scale of the dynamics.

We vary βi parameters by : βi = 1.5+ 2bi, where bi are
“quasi - boolean”variables, varying between 0 and 1 (with a
tendency to have values either close to 0 or close to 1). A
sequence of neural switches and hence behavior switching,
is generated by translating sensory conditions and logical
constraints into values for these parameters ([15], [3], [1], [12]
for examples).

Neuron stop is “on”(=1) when one of the following is true:
(1) time, t, is bellow the initial time, tinit, set by user; (2) target
has been reached.

Neuron execution is “on”(=1) when: (1) t > tinit; and (2)
target is reachable; and (3) target has not been reached. A
target is considered reachable when it is possible to reach the
target in the remaining time.

Similarly, neuron rescue is “on”(=1) when: (1) t > tinit; and
(2) target is not reachable.

B. Parameter modulation

Different values of triplets of neurons
(ustop,uexecution,urescue) lead to different behaviors, namely: no
movement, timed movement and constant movement. Each
triplet must then be mapped onto different values for the set
of parameters. This is achieved as follows.

1) Offset Om: The offset is set as follows

Om =
∣∣ustop

∣∣Os + |uexecution|Oe + |urescue|Or, (16)

where Os,Oe,Or are respectively the offsets for behaviors stop,
execution and rescue. The values are set according to desired
behaviors, Os = 0, Oe = A and Or = 0.1.

2) Oscillatory Activity: Qualitatively, by modifying on the
fly the µ parameter, the system switches between a stable fixed
point at m = Om (for µ < 0) and a purely rhythmic movement
(for µ > 0). Hence, the µ parameter controls whether or not
there are oscillations and thus, timed movement.

For µ > 0 this parameter also encodes the amplitude of
rhythmic activity. This parameter depends on the neural com-
petitive dynamics as follows:

µ = −
(∣∣ustop

∣∣+ |urescue|
) A2

2
+ |uexecution|A2 (17)
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Fig. 2. Robot motion when the robot is moving to a 1.9 m target but during
its path is faced with an obstacle.

This means that the timed movement is performed when
uexecution is “on”, by making µ > 0, and that the velocity is
constant when ustop or urescue are ”on“, by making µ < 0.

VII. EXPERIMENTAL RESULTS

In this section we describe some experiments done in a
real mobile robot: DRK8000. Initially the robot is stopped and
it must reach a target in three different world configurations
within a specified time. The robot has no previous knowledge
of any of the obstacles in the world, or of any other distur-
bance that may occur. Targets are directly represented through
coordinates.

At each sensorial cycle, sensory information is acquired,
dynamic equations are calculated and integrated using an Euler
method with time step of 9 ms. The maximum robot velocity
is 0.15 m/s.

A. Experiment 1

In this experiment the robot is faced with an obstacle during
its path towards a target positioned at 1.9m away (fig. 2).
The obstacle is at 1 m from the robot initial position. During
the first tinit = 3s, the robot only turns towards the target
but no timed forward movement is generated. Despite this
disturbance, we expect that the robot will avoid the obstacle
and reach the target without exceeding the specified movement
time, 30 s.

The velocity profile of this experiment is presented on
fig. 3. At t = 12 s, when robot is close to the obstacle, the
amplitude of oscillator is decreased according to eq. (14),
consequently reducing the robot’s velocity. This enforces a
safe circumnavigation of the obstacle. After steering around
the obstacle (t = 15 s), the amplitude is raised in order to
compensate for the provoked delay.

Fig.4 shows the resulting path in phase-space. The oscillator
radius A and offset are reduced during obstacle circumnaviga-
tion but then increase to higher values in order to reach the
target within the specified movement time.

In fig. 5 we can observe the path taken by the robot
throughout the experiment. Markers depict robot position at
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Fig. 3. Robot real velocity (blue continuous line), the timing velocity (red
dashed line) and the amplitude of the oscillator (black mixed line).
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Fig. 4. Trajectories in the phase plane space for simulation depicted in 2.

instants of time, thus giving an indication of the robot velocity.

B. Experiment 2

The purpose of this experiment illustrated in fig.6, is to show
that the robot compensates not only disturbances when faced
with obstacles, but also compensates the displacement of the
target. Initially, the robot tries to reach within the specified
movement time (30 s), a target positioned at 1.9m. However,
at t = 19s (panel 2 in fig.6), the target is displaced to a distance
of 1.4 m relatively the robot’s initial position.

Fig. 7 (bottom), presents the distance to the target, initially
at 1.9 m. At t = 19 s it decreases due to the displacement of
the target to a closer position.

In fig.7 (top) it is noticeable the simultaneous adaptation of
the oscillator solution and the real velocity of the robot (blue
continuous line) at the moment of displacement.

Observing table VII-B we can see that independently of the
complexity of the world and the disturbances that the robot
faces (obeying the robot’s physical restrictions), the robot
performs its movement task within the specified movement
time.
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Fig. 5. The robot’s path as recorded by the dead-reckoning for the situation
depicted in fig. 2. The red circle indicates the target location and the rectangle
indicates the obstacle position in the world.
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Fig. 6. Robot motion when the robot is moving to a target and suddenly at
t = 19 s the target is displaced (panel B)
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Fig. 7. Top: robot real velocity (blue continue line), the timing velocity (red
dashed line) and the amplitude of the oscillator (black mixed line). Bottom:
distance between the target and the robot along all trajectory.

VIII. CONCLUSION

In this paper we addressed the problem of generating timed
trajectories for autonomous vehicles with noisy, low-level sen-
sory information, which must reach a target within a stipulated
time independently of the complexity of the environment and
distance to the target, being able to detect and circumnavigate
any obstacle and moreover compensate any delay or rush.

In this work we presented several new capabilities of
the system relatively to previous works: 1) it initiates and
terminates the movement task through the exploitation of the
oscillator’s Hopf bifurcation; 2) velocity profile adaptation,

TABLE I
AVERAGE PERFORMED MOVEMENT TIME IN DIFFERENT WORLD

CONFIGURATIONS

Experiments Time (s) MT (s) Initial Distance (m)
Experiment 1 28 30 1.60
Experiment 2 28.4 30 1.90
Experiment 3 28.6 30 1.90

allowing to specify the duration of specific parts, and 3)
respective temporal adaptation; 4) new mechanism to adapt
the velocity in order to safely overcome obstacles.

We successfully demonstrated the reliability of the proposed
system through three experiments in a DRK8000 robot, even
when depending on low-level sensory information.

Future work will address how to extend the described model
to achieve more complex behavior and how to integrate this
approach with the dynamical system approach to generate
formation control and how to incorporate the ability of using
learning with neuronal layers.
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