
56TH INTERNATIONAL SCIENTIFIC COLLOQUIUM
Ilmenau University of Technology, 12 – 16 September 2011

URN: urn:nbn:gbv:ilm1-2011iwk:5

A FORMAL APPROACH FOR AEROSPACE SYSTEMS CONTROL CONSIDERING SFC
SPECIFICATION AND C PROGRAMMING LANGUAGE

P. Borges / J. Machado / E. Seabra / L. F. Silva

Mechanical Engineering Department, CT2M Research Centre,

School of Engineering, University of Minho
Campus de Azurém, 4800-058 Guimarães, Portugal

Phone: +351 253 510220
Fax: +351 253 516007

Email: pborgesmail@gmail.com; {jmachado, eseabra, lffsilva}@dem.uminho.pt

ABSTRACT

The C programming language is one of the most used
in critical embedded real-time controllers applied at
aerospace systems. Despite its potential, it is a very
general language, with many maintenance problems
and with a little or without graphical structure. The
absence of formal verification techniques - even if it is
possible to find some works associated to C
programming language formal verification - is a fact.
In this paper, it is proposed a methodology, that is
divided in two main steps, and has, as main goal, to
obtain safe C program code from a SFC specification:
in first step some tools and techniques are used in
order to assure the quality of the SFC specification
and, on the second step, the goal is to translate (in a
systematic way) the safe SFC specification to C code
considering crucial aspects like taking into account
aspects related with time specification.

Index Terms - Dependable Systems; C code, SFC;
Safe Controllers; Real Time Embedded Systems

1. INTRODUCTION

Aerospace systems software is developed taking into
account some precautions to avoid dangerous
situations. Usually the controllers of these systems are
critical embedded real-time controllers and the
respective software programs are developed in C
programming language [1].
The work presented herein is developed in the context
of obtaining safe controllers for aerospace systems, in
collaboration between the Technological Institute of
Aeronautics (Brazil) and University of Minho
(Portugal).

The absence of specification formalisms,
associated to this language, is also a negative point
that increases the occurrence of some problems when

it is developed the code, namely related with code
reutilization or code interpretation.

In the context of this lack some techniques can be
used for improving quality of developed software,
like, for instance, test and formal verification [2]
among others.

Some authors [3] tried, before, to use formalisms
from the industrial automation field in order to
develop some techniques of translation of these
formalisms to C programming language. The main
lacks of the mentioned work are that the behaviour of
the controller was not considered - and from our point
of view, it is not, only, necessary to translate the
formalism, but to consider, too, the behaviour of the
controller where the code will be implemented - and
also extremely important, aspects relied with time
specification were not considered too. This last aspect
is very important because, on the specification of
behaviour of mechatronic systems, the specification of
time is always a very serious and important subject.

Although presenting a global approach for formal
verification of aerospace systems programmed using
C language, this paper addresses special attention at
time aspects, starting with time specification,
following with time's formal verification, till time
programming using C programming language.

In order to achieve the main proposed goal, of this
paper, this section was devoted to exposing the actual
context of the work; section 2 presents the global
approach proposed for formal verification of SFC
specification [4] and respective direct translation and
formal verification, using formal verification
techniques, and sequent implementation using C
programming language; section 3 presents a case
study, with a SFC specification - which includes
specification of time and respective translation to
algebraic equations - that will be the basis for formal
verification tasks and for programming tasks with C
programming language; section 4 presents the model
that is formally verified and explains how this model

2

has been obtained; further, section 5 presents the C
code obtained from SFC specification; and, finally,
section 6 presents some conclusions about the current
work and possible future directions.

2. A GLOBAL APPROACH FOR OBTAINING
DEPENDABLE C CODE FROM SFC (IEC

60848) SPECIFICATION

Dependability [5] [6] is the concept that better
describes aerospace systems’ controllers. More and
more these controllers are becoming increasingly
complex. For this reason, to assure all the behaviour
requirements for these systems is a very hard and
complex task. The non-accomplishment of those
requirements can lead to catastrophic situations with
undesired accidents [7].

One of the most interesting analysis techniques,
among others, that lead to very promising results –
when developing software for those systems – is
Formal Verification [8]. The ideal approach, in this
context, would be to be able to apply formal
verification techniques, directly, using C programming
language code. This approach is, nowadays, possible
using the model-checkers BLAST [9] and CMBC
[10]. However, using this approaches, there are still
many limitations, namely the inability to deal with
some functions of C code. Even if it is possible to
verify some functions of the C code, there exist other
real limitations, like for instance, in reusing parts of C
code for similar applications.

Considering the limitations mentioned above, if a
system behaviour is modelled by a formalism and then
there exists the possibility of translating this
formalism to a model-checker, where it can be proved
a set of system’s behaviour properties, it is possible to
be sure that the created specification is correct. After
this, if the same formalism – translated to C code with
systematic rules – is the base of the C program code,
the designer will be assured of the quality of the C
program code.

Considering this reasoning, [11] proposed an
approach for formal verification of real-time systems,
with systematic steps since the specification till the
obtaining of the C program code (figure 1).

As specification formalism it was chosen the SFC
[4] and as model-checker it was chosen the model-
checker UPPAAL [12] since it is a model-checker that
allows the designer to deal with time and to verify
real-time systems. The choice of the SFC formalism is
justified by the fact that there are some works that
explain how to convert a SFC specification to Timed-
Automata, that are the input formalism of UPPAAL
software. [13] [14] [15].

Fig. 1 Proposed approach for formal verification of

a SFC specification.

The formal verification of the specification can

take into account, or not, plant models, depending of
the type of properties to prove [13]. So considering, or
not, plant models is also mentioned on the proposed
global approach presented in figure 1.

The hard task related with writing behaviour
properties of the system is also addressed [16] and the
definition of property patterns is an important aspect
that were considered on the proposed approach.

The proposed methodology is divided in two main
steps and has, as main goal, to obtain safe C program
code from a SFC specification.

A very important aspect, when considering this
approach is to deal with time specificities, when time
is specified on the SFC specification of the controller
behaviour.

3. ILLUSTRATION USING A CASE STUDY

Based on the algebraic equations and on the execution
algorithm for the execution of the SFC [17], the main
idea – as basis of this approach - is to translate the
SFC specification to algebraic equations and to use
them as basis for formal verification tasks and also as
basis for developing the C program code, in a
systematic way. If the specification (based on those
equations) is verified with desired results, during
formal verification tasks, it can be assumed that the
program, in C programming language, is correct
because the basis for formal verification tasks and
programming tasks were exactly the same: the
algebraic equations obtained, in a systematic way,
from SFC specification.

Let’s consider the SFC specification presented in
figure 2.

3

Fig. 2 SFC specification, corresponding to an

illustrative case study.

This SFC specification, although being a simple

specification has some particularities that deserve to
be studied, such as: “and”, “or”, “sequence selection”
and “specification of time”, that can be stated in the
figure.

Considering some rules for obtaining algebraic
equations from an SFC specification [17] the
corresponding algebraic equations of the SFC
specification presented, in figure 2, are:

Clearing conditions:
CC(1) := X1 . a
CC(2) := X2 . 3sX12
...
CC(7) := X7 . c

Step variables:
X1(t+1) := CC5 + X1(t) . /CC(1)
...
X5(t+1) := CC3 + CC7 +X5(t) . /(CC(4) + CC(6))
...
X7(t+1) := CC6 + X7(t) . /CC(7)

Outputs:
L := X6

Concerning algebraic equations mentioned above,

all variables are Boolean variables and, in the
notations: “:=” means “takes the logical value of”; “.”
is the logical and; “+” is the logical or; “/” is the
logical not; and “3sX12” is a logical variable that will
take the logical value “1” three (3) seconds after
activating the step 2 of the specification.

4. CREATION OF THE MODEL FOR FORMAL
VERIFICTION TASKS

As indicated on the approach presented on the
figure 1, the formal verification tasks can be
performed considering, or not, plant models of the
analyzed system. As, in this paper, the main focus is
related with dealing of time specification, no physical
system was associated at the SFC specification of
figure 2.

However, concerning formal verification non-
model-based [18] (without considering plant models)
we have considered three main models: a model for
the controller behaviour (named as
CONTROLLER_BEHAVIOUR), a model concerning
the controller program (CONTROLLER_PROGRAM),
and a model for modelling the time (TIMER). Also, all
the input variables of the SFC specification were
modelled as random variables using, for each one, a
model composed by a location and two transitions: on
one of those transitions it is assigned the logical value
“1” to the variable and on the other transition it is
assigned the logical value “0” to the variable. This
model was instantiated for all the input variables of
the SFC specification.

In this section the model of the program and the
model of the time are presented, discussed and, also,
the synchronization between them is illustrated.

The model of the timer can be instantiated as many
times it is needed.

The model of the controller program is illustrated
in figure 3.

Fig. 3 Model of the program, verified with

UPPAAL, corresponding to SFC specification of the
case study.

This model is composed by three locations (or

states) and during transitions between states, there is
assigned the logical value to each Boolean variable

4

associated to the transition of the model. On the
transition from location C7 to C8 it is also previewed
a synchronization message that is responsible for
connecting this model with the model of the controller
behaviour. So, when the model of the controller
behaviour sends the message “START_PE” (meaning
“start program evolution”), the evolution of this
model starts immediately. In the first transition, all the
variables concerning clear conditions are actualized
and the evolution of the model drives to the location
C8. From location C8, the model evolves immediately
– because location C8 is an Urgent location - to C9
location, actualizing the values of all the step
variables associated to this transition. From this
location (C9) the model evolves immediately to C7
location, sending a message - to the model of the
controller behaviour - that the evolution of the model
of the program has been finished (“END_PE”; “end of
program evolution”). This last evolution actualizes
the values of the outputs corresponding to the SFC
specification. The model stands in this location (C7)
till the moment that it will receive again the message
“START_PE”.

In order to obtain more interesting results, on the
formal verification tasks, the variables used on the
calculation of the clearing conditions (see transition
from C7 to C8, in figure 3) are copies from the real
inputs of the model. As we can understand, when the
controller is running, it is not sensible to the changing
of the inputs. Taking this very important fact into
account, on the model of the controller behaviour,
there are made – during inputs reading step - the copy
of all inputs with the following nomenclature:

a_c is the copy of variable a; b_c is the copy of
variable b; c_c is the copy of variable c; TIME_c is
the copy of variable TIME; and so on...

Concerning the formal verification of time
specification, it was defined a model to deal with this
specific aspect, presented in figure 4.

Fig. 4 Model of the time specification, verified

with UPPAAL, corresponding to time of SFC
specification of the case study.

In this model three locations are considered. The

location OFF (initial location) means that the timer is
off and that the variable that starts the timing process
is off too (in this case, the step variable X2).

If the step variable changes its logical state, from
off to on, then the model evolves from location OFF
to location STANDBY and, in this location, starts the
process of timing, associated to the clock of the
model, named as clock_x2.

The time unit considered was 0.1 seconds, so the
clock must finish time on 30 * 0.1 seconds = 3
seconds (time specified on the SFC specification).
When this time is elapsed, the transition from location
STANDBY to location ON is fired and logical value
“1” is assigned to variable TIME. At any moment of
this process, if the step variable, that starts the process
(in this case X2), changes from logical value “1” to
logical value “0”, the model evolves immediately to
location OFF and the model remains on this location
till next changing of logical value, of the step variable,
from “0” to “1”. In this context, logical value “0” is
always assigned to variable TIME.

Each time that model of the program finishes its
evolution, the model of the timer is actualized by the
synchronization message “END_PE”. This message
forces the evolution of this model, in order to be
assumed, during all scan cycles of the controller, that
the model is actualized and takes always the more
recent value of the step variable X2.

When TIME variable changes from logical value
“0” to “1” – on the transition from location STANDBY
to location ON, on the model of the timer (figure 4) –
its value will be taken into account on the next
evolution of the model of the program, during
transition from location C7 to location C8 (figure 3).

With this configuration, behaviour properties (of
any system) dealing with time can be verified. The
time associated at the scan cycle of the controller is
modelled on the model of the controller. Also, some
aspects of the controller, like being a monotask or
multitask controller, among others, can be considered
in this model: CONTROLLER_BAHAVIOUR.

5. C CODE PROGRAM OBTAINED FROM
ALGEBRAIC EQUATIONS OF THE

SPECIFCATION

It is important to highlight that the same algebraic
equations obtained from SFC specification and
verified with UPPAAL model-checker, are the same
that will be used as basis for obtaining the respective
C program code. As illustrated in figure 1, the SFC
specification can be re-designed if the obtaining
results are not satisfying, during the formal
verification tasks.

Based on the algebraic equations and on the
execution algorithm for the execution of the SFC
presented above (figure 2), the C program code can be
developed in systematic way.

The task of writing C code can, now, be done in a
simple, rigorous and systematic way. It is possible,
now, to give a top-down structure for C code and it is

5

possible, too, to introduce the concept task, from a
hierarchical point of view, on the C code.

The C programming language is a very complete
language and allows, through the use of simple and
few functions (for, while, if, vectors, matrices,
pointers and a few more), to create large and complex
programs.

The language is based on the concept of creating
functions that execute some specific tasks that can be
reused on several programs.

When developing programs, the user needs to
create some functions that can be interesting and
useful for him. There exist also, some libraries that
can be inserted on a program and they carry out
hundreds of (previously defined) functions that can be
reused any time as necessary, on the current program,
or others.

Concerning the proposed approach and
considering, also, the execution algorithm of a SFC,
the program is developed taking into account that the
code will be implemented on a monocyclic and mono-
task real-time controller.

The execution algorithm of a SFC is comprised of
several steps: inputs reading (reads the input variables
that model sensor signals), program execution
(calculates and actualize the values of the internal
controller variables), outputs updating (actualize the
values that model the orders that the controller sends
to the plant) and timers (dealing with time aspects).
The elaboration of the C program has, as structure,
precisely the structure mentioned above.

One important characteristic of C programming
language is that this language allows reusing some
libraries where are allocated several functions. This
fact allows us to use those libraries. The libraries that
are used, on our approach are: stdlib.h, conio.h e
time.h.

 On the library stdlib.h there are found some
standard functions of C programming language,
almost always needed when developing a C program.
The library time.h is useful, too, because it deals with
aspects related with time, being the time measured in
milliseconds.

Our program declares, first, the mentioned libraries
(figure 5) and then there are declared the variables int
x[N_STATES], xold[N_STATES], ct[N_TRANS]
and in[N_INPUTS].

In order to be possible to use the same approach, in
a systematic way, with other SFC specifications the
number of inputs is an integer number that can be
easily changed concerning other application of the
same kind. For this, it is only necessary to change the
size of the arrays.

Fig. 5 Initialization

As mentioned before, the code is divided into four

main parts:
• Input (reading) of data (variables that model

the sensors behaviour);
• Calculation of the Clearing Conditions and

the calculation of the Step variables of the
SFC (that model the internal variables of the
controller);

• Updating of outputs, based on changing of
the step variables of the SFC (variables that
model the orders sent from the controller to
the plant).

• Dealing with time aspects
The inputs reading task is represented by the

following for cycle:

Fig. 6 Reading Inputs

This cycle is incremented and all the inputs are

actualized. It is important to focus that, in figure 8,
appears a comment “to define according the
controller” that means that this part of the code is
specific from each controller device. The physical
inputs address must be indicated in order to allow the
reading of inputs. For instance, in[1] , in[2] , in[3] ,
in[4] , in[5] and in[6] would represent, respectively
the variables a, b, c, d, e and f.

Figure 7 presents the most important part of the
code. In our methodology, all the other blocks can de
reused, and this one too. This one is the only one that
demands the new elaboration of the equations
(corresponding to clearing conditions and step
variables of the SFC) because these equations depend
directly of each specific SFC specification. The
function readinputs is presented in figure 6 and the
function updateoutputs is presented in figure 8.

6

Fig. 7 Main function. Translation of SFC clearing
conditions and SFC step variables

In C the main() function is used as the starting

point of the program. Inside the main function the
order in which the equations are written is followed.
According to figure 9, the initialization is done with
int declarations. The variables are declared and the
first step variable of the SFC (x[1]) is activated
(logical value 1). Further, a while cycle is created, and
the program is always running according the execution
cycle of the controller. The functions are executed by
the following order: readinputs, program execution
(calculation of the clearing conditions and then the
controller state variables) and, finally, the
updateoutputs function (figure 9).

The xold[i] variable means the logical value of the
variable in the previous cycle and the x[i] variable
means the current value of the state variable.

Fig. 8 Update outputs

Finally, the program updates the values of the

output variables (figure 8) with for and if cycles. The
value of the output is changed if x[i] is not equal to
xold[i] : x � xold[i]!=x[i]. As with the reasoning
presented for the input variables, the indexation of the
outputs to physical addresses of the controller devices
depends directly of the used controller device, so the
comment: “to define according the used controller”, in
figure 8.

Till now, the programming of timers was not yet
detailed and illustrated. The implementation of timers
will require the definition of a structure for each timer,
in order to systematize this programming task. As
detailed before, the variable that will start time
“counting” is the step variable X2.

In order to facilitate the task of timers
programming, it will be created an array of timer,
when we can easily define the size of the array from
one application to another of the same kind. We must
remember that our idea is to make this approach as an

systematic approach in order to be easily applied in
another applications of the same kind. By definition,
for each SFC, is defined an array for respective timers
with size equal to the number of steps of this SFC
specification. Of course that, neither all the steps (with
their respective step variables) will be used as basis
for the respective timer, but this fact makes our
approach more systematic and easy to use.

For instance, concerning a SFC of 25 steps, it
would be created, automatically, an array with 25
timers: one for each step variable of the SFC.

Fig. 9 C Programming of timers, associated to the

SFC specification of the case study.

Figure 9 illustrates the C programming of timers,

following our proposed approach. Initially, it is
created a structure for each timer, it is realized the
respective indexation and, finally, the respective
actualization of state of the timers. The creation of the
timer, indicating the step variable of the SFC at which
it is associated, is done by the function newtimer.

The function timeron is executed in each scan
cycle and will indicate if the timer is on state on or
not. It initiates the “time counting” if it detected the
state changing of the respective step variable and will
deactivate the timer when the step variable, that
originates the timer, returns to off. Finally, the timers
are updated, in each scan cycle, by the function
updatetimers.

Not only timers can be treated this way, following
our approach, but also counters can be programmed
following the same reasoning. The programming of
counters is similar to programming of timers. It must
be created a structure for each counter that would
contain the value to count, the current value of the
counter and the reset of the counter. Of course that
this similarity is true if the variable, that will originate
the counting function, is a step variable of the SFC
specification.

7

6. CONCLUSIONS AND FUTURE WORK

This paper has shown how to obtain a simple and
systematic translation of a SFC specification to a C
program code. The main focus of this paper was to
present a detailed discussion about some aspects of
time specification like modelling, formal verification
and obtaining the correspondent C program from the
initial SFC specification of time.

Also, some very important aspects like taking into
account the cyclic behaviour of the controller device
were considered. The goals of the paper were totally
accomplished.

With the proposed approach, the reusing of small
parts of the code – for similar applications - is simple
because the graphical use of the specification
formalism allows changes and different organizations
in a simple and commode way.

The work presented in this paper is inserted in a
complex project development and, in parallel with the
systematic obtaining of C programs code - in a near
future - the authors intended to define some rules in
order to facilitate the elaboration of the C program
code facilitating the tasks of its formal verification
(using model-checkers for direct model-checking of C
code) trying to eliminate some gaps existing,
nowadays, in this field.

7. REFERENCES

[1] Ritchie, D. (1993). The Development of the C
Language. Second History of Programming
Languages conference, Cambridge.
[2] A Clarke, E., Kroening, D., and Lerda, F., (2004).
A tool for checking ANSI-C programs. In K. Jensen
and A. Podelski, editors, TACAS 2004, Vol. 2988 of
Lecture Notes in Computer Science, pp 168–176,
Springer.
[3] Bayó-Puxan, O., Rafecas-Sabaté, J., Gomis-
Bellmunt, O., and Bergas-Jané, J. (2008). A
GRAFCET- compiler methodology for C-
programmed microcontrollers, Assembly Automation
Emerald Group Publishing Limited, pp. 55–60.
[4] EN 2002 (2002) - European Standard 60848:
GRAFCET specification language for sequential
function charts.
[5] Roussel, J.M., and Giua, A. (2005). Designing
dependable logic controllers using the supervisory
control theory. in CDROM Preprints 16th IFAC
World Congress, Praha, Czech Republic, paper n°
04427, 6 pages.
[6] Johnson, T.L. (2004). Improving automation
software dependability: A role for formal methods?
Special Issue on Manufacturing Plant Control:
Challenges and Issues. 11th IFAC INCOM'04.
Symposium on Information Control Problems in
Manufacturing, Vol. 15, Issue 11, pp. 1403-1415.

[7] Leveson, N. (2005). Role of Software in
Spacecraft Accidents. Journal of Spacecrafts and
Rockets, vol. 41, no. 4, pp. 564-575.
[8] Nadjm-Tehrani, S., and Strömberg, J. (1999)
Formal Verification of Dynamic Properties in an
Aerospace Application. Formal Methods in System
Design archive, Vol. 14, Issue 2, ISSN:0925-9856,
pp. 135 – 169.
[9] Hezinger, R., Jhala, R., Majumbar, R. and Sutre,
G. (2003) Software verification with Blast.
[10] Clarke, E., Kroening, D., and Lerda, F., (2004).
A tool for checking ANSI-C programs. In K. Jensen
and A. Podelski, editors, TACAS 2004, Vol. 2988 of
Lecture Notes in Computer Science, pp 168–176,
Springer.
[11] Borges, P., Villani, E., Machado, J., Ferreira, J.,
and Campos, J. (2010). Abordagem Sistemática para o
Controlo Seguro de Sistemas aeroespaciais. XIV
International Congress on Project Engineering, Spain.
[12] Bengtsson, J., and Larsson, F. (1996). Uppaal a
Tool for Automatic Verification of Real-Time
Systems. Docs Technical Report Nr 96/97, Uppsala
University, ISSN 0283-0574.
[13] Machado J. (2006). Influence de la prise en
compte d’un modèle de processus en vérification
formelle des Systèmes à Evénements Discrets. PhD
Thesis, École Normale Supérieure de Cachan, France.
[14] Remelhe, M.P., Lohmann, S., Stursberg, O., and
Engell, S. (2004). Algorithmic Verification of Logic
Controllers given as Sequential Function Charts. IEEE
International Symposium on Computer Aided Control
Systems Design Taipei, Taiwan
[15] Stursberg, O., Lohmann, S., and Engell, S.
(2005). Improving dependability of logic controllers
by algorithmic verification World Congress IFAC,
Vol. 16, Part 1, Czech Republic.
[16] Campos, J., and Machado, J. (2009). Pattern-
based Analysis of Automated Production Systems. 13
th IFAC Symposium on Information Control Problems
in Manufacturing, In Proceedings of the 13 th IFAC
Symposium on Information Control Problems in
Manufacturing, Moscow.
[17] Machado J., Seabra E., Campos J., Soares F.,
Leão C, (2011). Safe controllers design for industrial
automation systems. Computers & Industrial
Engineering 60 (2011) 635–653
[18] Frey, G. and L. Litz (2000). Formal Methods in
PLC programming. In: 2000 IEEE International
Conference on Systems, Man & Cybernetics. pp.
2431-2436, Nashville.

