56" INTERNATIONAL SCIENTIFIC COLLOQUIUM
limenau University of Technology, 12 — 16 Septerabad
URN: urn:nbn:gbv:ilm1-2011iwk:5

A FORMAL APPROACH FOR AEROSPACE SYSTEMS CONTROL CONSIDERING SFC
SPECIFICATION AND C PROGRAMMING LANGUAGE

P. Borges / J. Machado / E. Seabra / L. F. Silva

Mechanical Engineering Department, CT2M Researattr€e
School of Engineering, University of Minho
Campus de Azurém, 4800-058 Guimaraes, Portugal
Phone: +351 253 510220
Fax: +351 253 516007
Email: pborgesmail@gmail.com; {imachado, esealfisijMa}@dem.uminho.pt

ABSTRACT it is developed the code, namely related with code
reutilization or code interpretation.
The C programming language is one of the most used In the context of this lack some techniques can be
in critical embedded real-time controllers appligd used for improving quality of developed software,
aerospace systems. Despite its potential, it i®rg v like, for instance, test and formal verification] [2
general language, with many maintenance problemamong others.
and with a little or without graphical structurehér Some authors [3] tried, before, to use formalisms
absence of formal verification techniques - evehig from the industrial automation field in order to
possible to find some works associated to GCdevelop some techniques of translation of these
programming language formal verification - is atfac formalisms to C programming language. The main
In this paper, it is proposed a methodology, tisat ilacks of the mentioned work are that the behavajur
divided in two main steps, and has, as main goal, tthe controller was not considered - and from ountpo
obtain safe C program code from a SFC specificatiorof view, it is not, only, necessary to translate th
in first step some tools and techniques are used iformalism, but to consider, too, the behaviour hef t
order to assure the quality of the SFC specificatio controller where the code will be implemented - and
and, on the second step, the goal is to transiata (also extremely important, aspects relied with time
systematic way) the safe SFC specification to Cecodspecification were not considered too. This lapeas
considering crucial aspects like taking into acdounis very important because, on the specification of
aspects related with time specification. behaviour of mechatronic systems, the specification
time is always a very serious and important subject
Index Terms - Dependable Systems; C code, SFC; Although presenting a global approach for formal
Safe Controllers; Real Time Embedded Systems verification of aerospace systems programmed using
C language, this paper addresses special atteation
1. INTRODUCTION time aspects, starting with time specification,
following with time's formal verification, till tira
Aerospace systems software is developed taking intprogramming using C programming language.
account some precautions to avoid dangerous In order to achieve the main proposed goal, of this
situations. Usually the controllers of these systame paper, this section was devoted to exposing theahct
critical embedded real-time controllers and thecontext of the work; section 2 presents the global
respective software programs are developed in @pproach proposed for formal verification of SFC
programming language [1]. specification [4] and respective direct translataomd
The work presented herein is developed in the abnte formal verification, using formal verification
of obtaining safe controllers for aerospace systéms techniques, and sequent implementation using C
collaboration between the Technological Institufe o programming language; section 3 presents a case
Aeronautics (Brazil) and University of Minho study, with a SFC specification - which includes
(Portugal). specification of time and respective translation to
The absence of specification formalisms,algebraic equations - that will be the basis fonfal
associated to this language, is also a negativet poiverification tasks and for programming tasks with C
that increases the occurrence of some problems whemogramming language; section 4 presents the model
that is formally verified and explains how this nebd

has been obtained; further, section 5 presentthe v
code obtained from SFC specification; and, finally, i, s = Shicie]

section 6 presents some conclusions about thenturre e - || seten
work and possible future directions. ,

2. A GLOBAL APPROACH FOR OBTAINING
DEPENDABLE C CODE FROM SFC (IEC

60848) SPECIFICATION = =

Functionning
and Safety |
Requirements

7 te IR+ |
FORMAL |
MODELS ViR

VieRex|

o=
Dependability [5] [6] is the concept that better @ e
describes aerospace systems’ controllers. More ar -
more these controllers are becoming increasingl
complex. For this reason, to assure all the belavio
requirements for these systems is a very hard ar OKI
complex task. The non-accomplishment of those
requirements can lead to catastrophic situationk wi ki
undesired accidents [7].

One of the most interesting analysis techniques
among others, that lead to very promising results -
when developing software for those systems — i
Formal Verification [8]. The ideal approach, inghi Fig. 1 Proposed approach for formal verification of
context, would be to be able to apply formala SFC specification.
verification techniques, directly, using C prograimgn
language code. This approach is, nowadays, possible The formal verification of the specification can
using the model-checkers BLAST [9] and CMBC take into account, or not, plant models, dependiing
[10]. However, using this approaches, there aie stithe type of properties to prove [13]. So considgror
many limitations, namely the inability to deal with not, plant models is also mentioned on the proposed
some functions of C code. Even if it is possible toglobal approach presented in figure 1.

Not OK!

SFC
Specification
(IEC 60848) .

Systematic
Translation of
SFCto C code

verify some functions of the C code, there exisieot The hard task related with writing behaviour
real limitations, like for instance, in reusing fsaof C properties of the system is also addressed [16}aad
code for similar applications. definition of property patterns is an important esp

Considering the limitations mentioned above, if athat were considered on the proposed approach.
system behaviour is modelled by a formalism and the ~ The proposed methodology is divided in two main
there exists the possibility of translating thissSteps and has, as main goal, to obtain safe Camogr
formalism to a model-checker, where it can be pdove code from a SFC specification.

a set of system’s behaviour properties, it is fmegso A very important aspect, when considering this
be sure that the created specification is corssiter ~ approach is to deal with time specificities, whinet
this, if the same formalism — translated to C caite IS specified on the SFC specification of the cdigro
systematic rules — is the base of the C prograne,codbehaviour.

the designer will be assured of the quality of @e

program code. 3. ILLUSTRATION USING A CASE STUDY

Considering this reasoning, [11] proposed an
approach for formal verification of real-time systg ~ Based on the algebraic equations and on the erecuti
with systematic steps since the specificationtti# algorithm for the execution of the SFC [17], theima
obtaining of the C program code (figure 1). idea — as basis of this approach - is to trandtate

As specification formalism it was chosen the SFCSFC specification to algebraic equations and to use
[4] and as model-checker it was chosen the modethem as basis for formal verification tasks and as
checker UPPAAL [12] since it is a model-checkett thabasis for developing the C program code, in a
allows the designer to deal with time and to verifysystematic way. If the specification (based on ¢hos
real-time systems. The choice of the SFC formaigssm equations) is verified with desired results, during
justified by the fact that there are some workg thaformal verification tasks, it can be assumed tihat t
explain how to convert a SFC specification to Timed program, in C programming language, is correct
Automata, that are the input formalism of UPPAAL because the basis for formal verification tasks and
software. [13] [14] [15]. programming tasks were exactly the same: the

algebraic equations obtained, in a systematic way,
from SFC specification.

Let's consider the SFC specification presented in
figure 2.

4. CREATION OF THE MODEL FOR FORMAL
VERIFICTION TASKS

As indicated on the approach presented on the
figure 1, the formal verification tasks can be
performed considering, or not, plant models of the
analyzed system. As, in this paper, the main fasus
related with dealing of time specification, no plgs
system was associated at the SFC specification of
figure 2.

However, concerning formal verification non-
model-based [18] (without considering plant models)
we have considered three main models: a model for
the controller behaviour (named as
CONTROLLER_BEHAVIOUR a model concerning
the controller programGONTROLLER_PROGRAM
and a model for modelling the tim€IMER). Also, all
the input variables of the SFC specification were
modelled as random variables using, for each one, a

Fig. 2 SFC specification, corresponding to anmodel composed by a location and two transitions: o
illustrative case study. one of those transitions it is assigned the logicdlie

“1" to the variable and on the other transitionist

This SFC specification, although being a simpleassigned the logical value “0” to the variable. sThi
specification has some particularities that des¢ove Model was instantiated for all the input variabtés
be studied, such as: “and”, “or”, “sequence seteti the SFC specification.
and “specification of time”, that can be statedtie In this section the model of the program and the
figure. model of the time are presented, discussed anal, als

Considering some rules for obtaining a_|gebraicthe synchronization between them is illustrated.
equations from an SFC specification [17] the The model of the timer can be instantiated as many
corresponding algebraic equations of the SFdimes itis needed.

specification presented, in figure 2, are: The model of the controller program is illustrated
in figure 3.
Clearing conditions:
CC(l) := Xl . a CONTROLLER_PROGRAM
CC(2) := X2 . 3sX12 ,_>.C’
CC(7) =Xr.c CC1:=X1 8&a ¢
QC2: 2 8& TIME ¢
Step variables: ggzi %g ?ic& s5a
X1y := CC5 + Xy . /CC(1) COB=X5 48 a4 ¢ 84 6._c

CC7:=X7 &&c_c

X5(+1) := CC3 + CC7 +Xf . /(CC(4) + CC(6))
LR Ca
X7 1) := CC6 + X¢y . /ICC(7) ® X1:=0C5 | X1 8& ICC1,

X2:=CC1 || X2 && !CC2,
X3:=CC2 || X3 && ICC3,

Outputs: i) é?,f‘h b bk 1(CC4 || CCB)
L = X6 X6 :CC4 xgﬁ &Ej. :CCB.
X7:=CCB || X7 && ICC7

Concerning algebraic equations mentioned above, @w‘ -
all variables are Boolean variables and, in the J o
notations: “:=" means “takes the logical value of”; N
is the logicaland “+” is the logical or; “/" is the
logical not, and “3sX12” is a logical variable that will Fig. 3 Model of the program, verified with
take the logical value “1” three (3) seconds aftetUPPAAL, corresponding to SFC specification of the
activating the step 2 of the specification. case study.

This model is composed by three locations (or
states) and during transitions between statese tiser
assigned the logical value to each Boolean variable

3

associated to the transition of the model. On the If the step variable changes its logical statemfro
transition from location C7 to C8 it is also preved off to on, then the model evolves from locati@FF
a synchronization message that is responsible fao locationSTANDBYand, in this location, starts the
connecting this model with the model of the coméol process of timing, associated to the clock of the
behaviour. So, when the model of the controllermodel, named aslock x2
behaviour sends the message “START_PE” (meaning The time unit considered was 0.1 seconds, so the
“start program evolutiot), the evolution of this clock must finish time on 30 * 0.1 seconds = 3
model starts immediately. In the first transitiafi,the seconds (time specified on the SFC specification).
variables concerning clear conditions are actudlize When this time is elapsed, the transition from tmea
and the evolution of the model drives to the lamati STANDBYto locationON is fired and logical value
C8. From location C8, the model evolves immediately'l” is assigned to variabl@IME. At any moment of
— because location C8 is &irgentlocation - to C9 this process, if the step variable, that startptioeess
location, actualizing the values of all the step(in this case X2), changes from logical value “@” t
variables associated to this transition. From thidogical value “0”, the model evolves immediately to
location (C9) the model evolves immediately to C7location OFF and the model remains on this location
location, sending a message - to the model of th#ll next changing of logical value, of the stepiable,
controller behaviour - that the evolution of thedab from “0” to “1”. In this context, logical value “Ois
of the program has been finished (“END_PE&nti of always assigned to variabl¢ME.
program evolutiot). This last evolution actualizes Each time that model of the program finishes its
the values of the outputs corresponding to the SF@volution, the model of the timer is actualizedtbhg
specification. The model stands in this locatio)(C synchronization message “END_PE”". This message
till the moment that it will receive again the megs forces the evolution of this model, in order to be
“START_PE". assumed, during aficancycles of the controller, that
In order to obtain more interesting results, on thehe model is actualized and takes always the more
formal verification tasks, the variables used oa th recent value of the step variatd@.
calculation of the clearing conditions (see traosit When TIME variable changes from logical value
from C7 to C8, in figure 3) are copies from thelrea“0” to “1” — on the transition from locatioS TANDBY
inputs of the model. As we can understand, when tht locationON, on the model of the timer (figure 4) —
controller is running, it is not sensible to theaobing its value will be taken into account on the next
of the inputs. Taking this very important fact into evolution of the model of the program, during
account, on the model of the controller behaviourfransition from location C7 to location C8 (figuBg
there are made — during inputs reading step -apg c With this configuration, behaviour properties (of
of all inputs with the following nomenclature: any system) dealing with time can be verified. The
a_cis the copy of variabl@; b_cis the copy of time associated at thecan cycle of the controller is
variableb; c_cis the copy of variable; TIME _cis modelled on the model of the controller. Also, some
the copy of variabl&@IME; and so on... aspects of the controller, like being a monotask or
Concerning the formal verification of time multitask controller, among others, can be consider
specification, it was defined a model to deal viftts in this mode[CONTROLLER_BAHAVIOUR
specific aspect, presented in figure 4.
5. C CODE PROGRAM OBTAINED FROM
TIMER ALGEBRAIC EQUATIONSOF THE
OFF SPECIFCATION

1X2
TIME:=0,
clock_x2:=0

Al

clock_x2:=0 It is important to highlight that the same algebrai
STANDBY equations obtained from SFC specification and
verified with UPPAAL model-checker, are the same
clock_x2<=30 that will be used as basis for obtaining the retpec
X2 && clock_x2>=30 C program code. As illustrated in figure 1, the SFC
e specification can be re-designed if the obtaining
results are not satisfying, during the formal
Fig. 4 Model of the time specification, verified verification tasks.
with UPPAAL, corresponding to time of SFC Based on the algebraic equations and on the
specification of the case study. execution algorithm for the execution of the SFC
presented above (figure 2), the C program codéean
In this model three locations are considered. Theleveloped in systematic way.
location OFF (initial location) means that the timer is The task of writing C code can, now, be done in a
off and that the variable that starts the timing psece simple, rigorous and systematic way. It is possible
is off too (in this case, the step variable X2). now, to give aop-downstructure for C code and it is

ON

possible, too, to introduce the concéask from a
hierarchical point of view, on the C code.

The C programming language is a very complete
language and allows, through the use of simple and
few functions for, while, if, vectors matrices
pointersand a few more), to create large and complex
programs.

The language is based on the concept of creating Fig. 5 Initialization
functions that execute some specific tasks thatbean
reused on several programs. As mentioned before, the code is divided into four

When developing programs, the user needs tenain parts:
create some functions that can be interesting and « |nput (reading) of data (variables that model

int x[N_STATES],xold[N_STATES],ct[N_TRANS], in[N_INPUTS];:

useful for him. There exist also, some librarieatth the sensors behaviour);

can be inserted on a program and they carry out .« Calculation of the Clearing Conditions and
hundreds of (previously defined) functions that ban the calculation of the Step variables of the
reused any time as necessary, on the current progra SFC (that model the internal variables of the
or others. controller);

Concerning the proposed approach and . ypdating of outputs, based on changing of
considering, also, the execution algorithm of a SFC the step variables of the SFC (variables that
the program is developed taking into account that t model the orders sent from the controller to
code will be implemented on a monocyclic and mono- the plant).
task real-time controller. + Dealing with time aspects

The execution algorithm of a SFC is comprised of ¢ inputs reading task is represented by the
several stepsnputs readingreads the input variables following for cycle:

that model sensor signals)program execution

(calculates and actualize the values of the interna voia readinput=()

controller variables)putputs updatingactualize the {int i;

values that model the orders that the controlledse Tor (i=0;i<N_INFUTS;i++) in[i]=0:
to the plant) andimers (dealing with time aspects).

The elaboration of the C program has, as structure, Fig. 6 Reading Inputs

precisely the structure mentioned above.

One important characteristic of C programming This cycle is incremented and all the inputs are
language is that this language allows reusing somactualized. It is important to focus that, in figus,
libraries where are allocated several functionsis Th appears a comment “to define according the
fact allows us to use those libraries. The libsatteat ~ controller” that means that this part of the code i
are used, on our approach astdlib.h, conio.h e specific from each controller device. The physical
time.h inputs address must be indicated in order to atlwav

On the library stdlib.h there are found some reading of inputs. For instancig[1], in[2], in[3],
standard functions of C programming languagein[4], in[5] andin[6] would represent, respectively
almost always needed when developing a C progranthe variables, b, c, d, e andf.

The librarytime.his useful, too, because it deals with ~ Figure 7 presents the most important part of the
aspects related with time, being the time measiired code. In our methodology, all the other blocks dan
milliseconds. reused, and this one too. This one is the onlytbae

Our program declares, first, the mentioned libsarie demands the new elaboration of the equations
(figure 5) and then there are declared the varsaioie (corresponding to clearing conditions and step
X[N_STATES], xold[N_STATES], ct[N_TRANS] Vvariables of the SFC) because these equations depen
and in[N_INPUTS]. directly of each specific SFC specification. The

In order to be possible to use the same approach, function readinputsis presented in figure 6 and the
a systematic way, with other SFC specifications thdunctionupdateoutputss presented in figure 8.
number of inputs is an integer number that can be
easily changed concerning other application of the
same kind. For this, it is only necessary to chahge
size of the arrays.

int wain(){ systematic approach in order to be easily appled i

Ry another applications of the same kind. By definitio
while (1){ for each SFC, is defined an array for respectiveits
readinpues() ;e with size equal to the number of steps of this SFC
ct[1]=x[1] &€& in[1]:
specification. Of course that, neither all the stépith
et[71=x[7] €& in[3]: their respective step variables) will be used asisba
for (1=0; 1< STATES:1++) xold[i]=x[i]; for the respective timer, but this fact makes our
®[11=et[S] || x[1] && lec[1]: approach more systematic and easy to use.
[T ete] || %07 €5 ter(o]: For instance, concerning a SFC of 25 steps, it
updateoutputs () ; would be created, automatically, an array with 25
} timers: one for each step variable of the SFC.

Fig. 7 Main function. Translation of SFC clearingot simesc
conditions and SFC step variables e mteral
} ttimer;
In C the main() function is used as the starting ccirer cimersm srazes;;
point of the program. Inside thmain function the ... sevcimesine x, 1ot tncerva) ¢
order in which the equations are written is follove resi= seemvaimiaremas;
According to figure 9, the initialization is donathv ot ctmeron(1nt 1) ©
int declarations. The variables are declared and threturn timersixi.stars!=0 & (curtime-tinersix].stars)>=timers(x] . interval;
first step variable of the SFC (x[1]) is activated’
(logical value 1). Further, &hile cycle is created, and 5.2 ==
the program is always running according the exeauti Fm;m;
cycle of the controller. The functions are execuigd - o smozsii
the following order:readinputs program execution if (x[1]=0} timers(1].scarc=g:
(calculation of theclearing conditionsand then the 1 ARG e AT nes] sranee
controller state variablds and, finally, the
updateoutput$unction (figure 9). _)))
Thexold[i] variable means the logical value of the _Fig- 9 C Programming of timers, associated to the
variable in the previous cycle and tkfj] variable SFC specification of the case study.

means the current value of the state variable. _)) _
Figure 9 illustrates the C programming of timers,

¥oid updateoutputs (] following our proposed approach. Initially, it is
tint i: created a structure for each timer, it is realiteel

Tox (1707 1<N_STATES; 1++) { respective indexation and, finally, the respective
if (®old[di] '=x[i]) =x[i]l=i:
) actualization of state of the timers. The creatibthe
} timer, indicating the step variable of the SFC hicl
Fig. 8 Update outputs it is associated, is done by the functiewtimer

The function timeron is executed in each scan

Finally, the program updates the values of thecycle and will indicate if the timer is on state or
output variables (figure 8) witfor andif cycles. The not. It initiates the time counting”if it detected the
value of the output is changedxfi] is not equal to state changing of the respective step variablevefhd
xold[i]: x > xold[i]!=x[i]. As with the reasoning deactivate the timer when the step variable, that
presented for the input variables, the indexatibthe ~ Originates the timer, returns tdf. Finally, the timers
outputs to physical addresses of the controlleicgsv are updated, in each scan cycle, by the function
depends directly of the used controller devicetheo updatetimers
comment: “to define according the used controllar”, Not only timers can be treated this way, following
figure 8. our approach, but also counters can be programmed

Till now, the programming of timers was not yet following the same reasoning. The programming of
detailed and illustrated. The implementation ofeim ~ counters is similar to programming of timers. Itshu
will require the definition of a structure for eatitmer, ~ be created a structure for each counter that would
in order to systematize this programming task. Agontain the value to count, the current value & th
detailed before, the variable that will start timecounter and theesetof the counter. Of course that
“counting” is the step variable X2. this similarity is true if the variable, that wiriginate

In order to facilitate the task of timers the counting function, is a step variable of theCSF
programming, it will be created an array of timer,Specification.
when we can easily define the size of the arragnfro
one application to another of the same kind. Wetmus
remember that our idea is to make this approa@nas

6. CONCLUSIONS AND FUTURE WORK [7] Leveson, N. (2005). Role of Software in
Spacecraft AccidentsJournal of Spacecrafts and
This paper has shown how to obtain a simple an&ocketsvol. 41, no. 4, pp. 564-575.
systematic translation of a SFC specification t€ a [8] Nadjm-Tehrani, S., and Strémberg, J. (1999)
program code. The main focus of this paper was téormal Verification of Dynamic Properties in an
present a detailed discussion about some aspects Aérospace ApplicationFormal Methods in System
time specification like modelling, formal verifiGah ~ Design archive Vol. 14, Issue 2, ISSN:0925-9856,
and obtaining the correspondent C program from thep. 135 — 169.
initial SFC specification of time. [9] Hezinger, R., Jhala, R., Majumbar, R. and Sutre,
Also, some very important aspects like taking intoG. (2003) Software verification with Blast.
account the cyclic behaviour of the controller devi [10] Clarke, E., Kroening, D., and Lerda, F., (2004).
were considered. The goals of the paper were yotallA tool for checking ANSI-C programs. In K. Jensen
accomplished. and A. Podelski, editors, TACAS 2004, Vol. 2988 of
With the proposed approach, the reusing of smallLecture Notes in Computer Science, pp 168-176,
parts of the code — for similar applications -im@e Springer.
because the graphical use of the specificatiofll] Borges, P., Villani, E., Machado, J., Ferreira, J.,
formalism allows changes and different organizaion and Campos, J. (2010). Abordagem Sistemética para o
in a simple and commode way. Controlo Seguro de Sistemas aeroespaciais. XIV
The work presented in this paper is inserted in dnternational Congress on Project Engineering, 1Spai
complex project development and, in parallel with t [12] Bengtsson, J., and Larsson, F. (1996). Uppaal a
systematic obtaining of C programs code - in a neafool for Automatic Verification of Real-Time
future - the authors intended to define some riles Systems. Docs Technical Report Nr 96/97, Uppsala
order to facilitate the elaboration of the C pragra University, ISSN 0283-0574.
code facilitating the tasks of its formal verifimat [13] Machado J. (2006). Influence de la prise en
(using model-checkers for direct model-checkingcof compte d'un modéle de processus en vérification
code) trying to eliminate some gaps existingformelle des Systémes & Evénements Discrets. PhD

nowadays, in this field. Thesis, Ecole Normale Supérieure de Cachan, France.
[14] Remelhe, M.P., Lohmann, S., Stursberg, O., and
7. REFERENCES Engell, S. (2004). Algorithmic Verification of Logi

Controllers given as Sequential Function ChartEBHE
[1] Ritchie, D. (1993). The Development of the C International Symposium on Computer Aided Control
Language. Second History of ProgrammingSystems Design Taipei, Taiwan
Languages conference, Cambridge. [15] Stursberg, O., Lohmann, S., and Engell, S.
[2] A Clarke, E., Kroening, D., and Lerda, F., (2004).(2005). Improving dependability of logic controker
A tool for checking ANSI-C programs. In K. Jensenby algorithmic verification World Congress IFAC,
and A. Podelski, editors, TACAS 2004, Vol. 2988 ofVol. 16, Part 1, Czech Republic.
Lecture Notes in Computer Science, pp 168-176[16] Campos, J., and Machado, J. (2009). Pattern-
Springer. based Analysis of Automated Production Systems. 13
[3] Bay6-Puxan, O., Rafecas-Sabaté, J., Gomisth IFAC Symposium on Information Control Problems
Bellmunt, O., and Bergas-Jané, J. (2008). Ain Manufacturing, In Proceedings of the 13 th IFAC
GRAFCET- compiler methodology for C- Symposium on Information Control Problems in
programmed microcontrollers, Assembly AutomationManufacturing, Moscow.
Emerald Group Publishing Limited, pp. 55-60. [17] Machado J., Seabra E., Campos J., Soares F.,
[4] EN 2002 (2002) - European Standard 60848iedo C, (2011). Safe controllers design for indaktr
GRAFCET specification language for sequentialautomation systems. Computers & Industrial
function charts. Engineering 60 (2011) 635-653
[5] Roussel, J.M., and Giua, A. (2005). Designing[18] Frey, G. and L. Litz (2000). Formal Methods in
dependable logic controllers using the supervisorf’LC programming. In: 2000 IEEE International
control theory. in CDROM Preprints 16th IFAC Conference on Systems, Man & Cybernetics. pp.
World Congress, Praha, Czech Republic, paper n2431-2436, Nashville.
04427, 6 pages.
[6] Johnson, T.L. (2004). Improving automation
software dependability: A role for formal methods?
Special Issue on Manufacturing Plant Control:
Challenges and Issues. 11th [IFAC INCOM'04
Symposium on Information Control Problems in
Manufacturing, Vol. 15, Issue 11, pp. 1403-1415.

