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Abstract 

 

Paracoccidioides spp, herein commonly referred as P. brasiliensis, is the etiological 

agent of paracoccidioidomycosis (PCM), the most prevalent systemic mycosis endemic in 

Latin America. Many aspects of the biology of P. brasiliensis remain unknown, in particular 

its ecology and the apparent lack of a sexual reproduction stage in its life cycle. This review 

will highlight the current knowledge on the genetics and genomics of P. brasiliensis, its most 

important putative virulence factors and the challenges for developing genetic tools in this 

organism. P. brasiliensis is a dimorphic ascomycete fungus belonging to the order 

Onygenales, family Ajellomycetaceae. P. brasiliensis pathogenic yeast form is characterized 

by a multi-budding and -nucleate nature , with a high polymorphic cellular shape. Successful 

infection and dissemination by P. brasiliensis requires initial interaction of the fungus with 

host cells. The fungus has to adhere to host cells after which internalization of the fungus 

takes place. Gp43 is a 43-kDa glycoprotein that participates in the interaction with the host at 

different levels. There are very few putative virulence factors described in P. brasiliensis, 

among them an extracellular phospholipase B, a 32-kDa haloacid dehalogenase PbHAD32 

that was shown to bind laminin, fibrinogen, and fibronectin, and to be important for initial 

adhesion to pulmonary epithelial cells, the pigment melanin, and the Rho-like GTPase Cdc42. 

The morphological transition of P. brasiliensis from mycelium to the yeast form is a key 

process for the infectivity of the fungus. There are several transcriptional profiling studies 

addressing which genes have increased or decreased mRNA accumulation during mycelium-

to-yeast transitions. Functional genomics studies in P. brasiliensis have been hampered by the 

absence of efficient molecular techniques that enable targeted gene inactivation in this fungus. 

However, an optimized Agrobacterium tumefaciens-mediated transformation method has been 

developed and was used to knock-down the Rho-like GTPase Cdc42 and the HAD-type 

hydrolase PbHAD32. A challenge for the future remains the development of mutagenesis 

methods that allow for the creation of targeted insertional gene mutants Paracoccidioides spp. 

The complete genome sequencing of three isolates of Paracoccidioides species provides the 

opportunity to perform more complete evaluations of the transcriptomic and proteomic data, 

and to understanding the biology and virulence of these important pathogenic fungi. 
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1. Introduction 

   

  Paracoccidioides brasiliensis is the etiological agent of paracoccidioidomycosis 

(PCM), the most prevalent systemic mycosis endemic in Latin America (Brummer et al., 

1993). An estimated 10 million people are thought to be infected in the endemic area 

(Brummer et al., 1993), and an annual incidence rate of 1-3 per 100.000 inhabitants and mean 

mortality rate of 0.14 per 100.000 is estimated for Brazil (Restrepo et al., 2001). The disease 

is mainly observed in agricultural workers and there is a clear gender bias for males, with 

reported male:female PCM incidence ratios around 10:1 in endemic regions (Brummer et al., 

1993). P. brasiliensis shows a thermally dimorphic phenotype, whereby it switches from the 

non-pathogenic mycelium form at ambient temperatures to the pathogenic multiple-budding 

yeast form when exposed to temperatures similar to those of the mammalian host. Infection of 

the host is thought to occur via the inhalation of infective airborne propagula like conidia or 

mycelia from the environment. Inhaled propagules then differentiate in the lungs into the 

pathogenic yeast form, after which the fungus disseminates to other organs of the host 

(McEwen et al., 1987). 

Many aspects of the cellular and molecular biology of P. brasiliensis remain unknown, 

in particular its ecology, sexual reproduction, multi-budding and –nucleate nature. A very 

high frequency of P. brasiliensis infections has been found in different species of armadillos. 

The fungus has been isolated in 75-100% of animals captured in PCM hyper-endemic regions 

(Bagagli et al., 2006) (Richini-Pereira et al., 2009). Many P. brasiliensis strains have been 

isolated from armadillos, while only a few were isolated from soil, penguins and bat feces 

(Matute et al., 2006; Teixeira et al., 2009). Analysis of Random Amplified Polymorphic DNA 

(RAPD), PbGP43 gene and ribosomal internal transcribed spacer (ITS) sequences of clinical 

isolates and isolates from armadillos showed that P. brasiliensis isolates from both origins 

often were highly similar, indicating that humans, in particular agricultural workers, might 

acquire the fungus from contact with soil from armadillo habitats (Sano et al., 1999; Restrepo 

et al., 2001; Hebeler-Barbosa et al., 2003).  

  This review will highlight the current knowledge on the molecular biology  of P. 

brasiliensis, its most important putative virulence factors and the challenges for developing 

genetic tools in this organism. 
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2. Phylogeny and cryptic speciation  

 

P. brasiliensis is a dimorphic ascomycete fungus belonging to the order Onygenales, 

family Ajellomycetaceae. This family also includes the anamorphic genera Blastomyces, 

Emmonsia and Histoplasma, and all members are saprobic and pathogenic vertebrate-

associated taxa (Untereiner et al., 2004). Four phylogenetic clades have been described for P. 

brasiliensis: S1, PS2, PS3 and the recently defined new clade “Pb01” (proposed as the new 

species Paracoccidioides lutzii) (Teixeira et al., 2009). Recombination analysis indicated that 

the fungus recombines in nature (Matute et al, 2006), but a teleomorphic form of P. 

brasiliensis has not yet been isolated. Nonetheless, sexual reproduction cycle is anticipated 

based on the presence of two idiomorphic mating type loci (MAT1-1 and MAT1-2) and the 

observed 1:1 distribution of these MAT loci in a large panel of P. brasiliensis strains (Torres 

et al., 2010). In fact, heterothallic strains with opposite mating loci  are expected to undergo 

sexual reproduction, but, in many fungi, this often requires prolonged co-culturing under very 

specific conditions. Moreover, comparative genomics of P. brasiliensis with other fungi 

revealed the presence of all components of the pheromone-signaling cascade of the mating 

process with the exception of the pheromone-response scaffold protein Ste5, and the cyclin-

dependent kinase inhibitor Far1 (unpublished results). Gene expression of the MAT loci was 

confirmed in several P. brasiliensis strains, and mating assays produced structures resembling 

fruiting bodies on malt agar (Torres et al., 2010). However, these structures did not contain 

asci or ascospores (Torres et al., 2010), which might indicate that the production of competent 

sexual structures still need additional stimuli. Altogether, it seems that P. brasiliensis has all 

the molecular machinery needed for matting and it is critical to identify, in the next future, the 

correct signals controlling sexual development, which will allow enormous advances on the 

molecular genetic studies of this termodimorphic fungus. 

P. brasiliensis yeast form is characterized by a multi-budding and -nucleate nature , 

with a high polymorphic cellular shape (Figure 1; Almeida et al., 2006; Feitosa et al., 2003), 

while conidia are uninucleated structures (McEwen et al., 1987). Earlier studies using pulsed 

field gel electrophoresis, DNA hybridization, and microfluorometry established the possible 

existence of haploid and diploid (or aneuploid) isolates of the fungus by comparing clinical 

and environmental isolates from different geographic areas (Cano et al., 1998; Feitosa et al., 

2003). Further studies by flow cytometry, of different P. brasiliensis strains, confirmed the 

uninucleate cellular DNA content and showed the remarkable variability of DNA content per 

cell due to the multi-nucleate nature of the fungus (Almeida et al., 2007). These studies 
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indicated that P. brasiliensis genome sizes ranged from 23.3 to 35.5 Mb for the yeast form 

and 30.2 Mb for conidia, indicative of a haploid DNA content (Cano et al., 1998; Feitosa et 

al., 2003; Almeida et al., 2007). Genome sequences of three P. brasiliensis strains (Pb01, 

Pb03, and Pb18) have recently been released by the Paracoccidioides brasiliensis Sequencing 

Project at the Broad Institute of Harvard and MIT 

(http://www.broadinstitute.org/annotation/genome/paracoccidioides_brasiliensis/MultiHome.

html). The sequences indicated five chromosomes, 40-75 kb of mitochondrial DNA and 

nuclear genomic DNA sizes of 29-33 Mb, which confirms the earlier studies. 

 

4. Identification of genes which have their mRNA accumulation modulated during 

dimorphic transition 

 

The morphological transition of P. brasiliensis from mycelium to the yeast form is a 

key process for the infectivity of the fungus (Figure 2). There are several transcriptional 

profiling studies addressing which genes have increased or decreased mRNA accumulation 

during mycelium-to-yeast transitions (Felipe et al., 2005; Nunes et al., 2005; Bastos et al., 

2007; Parente et al., 2008; Pereira et al., 2009), as well as during the conidia-to-yeast 

transition (Garcia et al., 2009). A P. brasiliensis biochip carrying sequences of 4,692 genes 

from this fungus was used to monitor gene expression at several time points of the mycelium-

to-yeast morphological shift (from 5 to 120 h) (Nunes et al., 2005). The results revealed a 

total of 2,583 genes that displayed statistically significant modulation in at least one 

experimental time point. Among the identified gene homologues, some encoded enzymes 

involved in amino acid catabolism, signal transduction, protein synthesis, cell wall 

metabolism, genome structure, oxidative stress response, growth control, and development 

(Nunes et al., 2005). The expression pattern of 20 genes was independently verified by real-

time reverse transcription-PCR, revealing a high degree of correlation between the data 

obtained with the two methodologies. One gene, encoding 4-hydroxyl-phenyl pyruvate 

dioxygenase (4-HPPD), was highly overexpressed during the mycelium-to-yeast 

differentiation, and the use of NTBC [2-(2-nitro-4-trifluoromethylbenzoyl)-cyclohexane-1,3-

dione], a specific inhibitor of 4-HPPD activity, as well as that of NTBC derivatives, was able 

to inhibit growth and differentiation of the pathogenic yeast phase of the fungus in vitro 

(Nunes et al., 2005). P. brasiliensis can grow as a prototroph for organic sulfur as a mycelial 
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(non-pathogenic) form, but it is unable to assimilate inorganic sulfur as a yeast (pathogenic) 

form. Temperature and the inability to assimilate inorganic sulfur are the single conditions 

known to affect P. brasiliensis mycelium-to-yeast (M–Y) dimorphic transition (da Silva 

Ferreira et al., 2006). For a comprehensive evaluation of genes that have their expression 

modulated during the M–Y transition in different culture media, a large-scale analysis of gene 

expression was performed using a microarray hybridization approach (da Silva Ferreira et al., 

2006). Ninety-five percent of the genes in the microarray are mainly responding to the 

temperature trigger, independently of the media where the M–Y transition took place (da 

Silva Ferreira et al., 2006). These authors suggest that although P. brasiliensis cannot use 

inorganic sulfur as a single sulfur source to initiate both M–Y transition and Y growth, the 

fungus can somehow use both organic and inorganic pathways during these growth processes.  

In another study, a genomic DNA microarray, covering approximately 25% of the 

genome (12,000 elements) of the organism was constructed and used to identify genes and 

gene expression patterns during growth in vitro (Monteiro et al., 2009). To examine gene 

expression, mRNA was extracted and amplified from mycelial or yeast cultures grown in 

semi-defined medium for 5, 8 and 14 days. Principal components analysis and hierarchical 

clustering indicated that yeast gene expression profiles differed greatly from those of mycelia, 

especially at earlier time points, and that mycelial gene expression changed less than gene 

expression in yeasts over time. Genes upregulated in yeasts were found to encode proteins 

shown to be involved in methionine/cysteine metabolism, respiratory and metabolic processes 

(of sugars, amino acids, proteins and lipids), transporters (small peptides, sugars, ions and 

toxins), regulatory proteins and transcription factors (Monteiro et al., 2009). Mycelial genes 

involved in processes such as cell division, protein catabolism, nucleotide biosynthesis and 

toxin and sugar transport showed differential expression. Transposable elements and 

components of respiratory pathways tended to increase in expression with time, genes 

encoding ribosomal structural proteins and protein catabolism tended to sharply decrease in 

expression over time, particularly in yeast (Monteiro et al., 2009).  

To identify genes specifically expressed during infection some studies have isolated 

Expression Sequence Tags (ESTs) from infected mice (Bailão et al., 2006; Costa et al., 2007). 

One study showed that during liver infection genes involved in utilization of multiple carbon 

sources were activated, which included glucose and glyoxylate cycle substrates. In addition, 

genes for nitrogen metabolism and biosynthesis, as well as lipid biosynthesis were highly 

expressed. This suggests that nitrogen and lipid compounds are probably not easily obtained 

from the host, while the availability of carbohydrates for energy maintenance is not limited 
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(Costa et al., 2007). A second study found that many genes related to melanin biosynthesis, 

iron acquisition and cell defense were specifically higher expressed during infection in a 

mouse model, while yeast transcripts upregulated during exposure to human blood were 

mainly related to cell wall remodeling/synthesis (Bailão et al., 2006). 

The complete sequencing of the genome (see above) will provide the opportunity to 

perform more complete evaluations of the transcriptomic and proteomic data. 

 

5. Tools for genetic manipulation of P. brasiliensis  

 

Functional genomics studies in P. brasiliensis have been hampered by the absence of 

efficient molecular techniques that enable targeted gene inactivation in this fungus. 

Established methods to introduce DNA into fungi are based on protoplast transformation, 

electroporation, or lithium acetate transformation, while more recalcitrant fungi have been 

transformed using biolistic approaches (Ruiz-Diez, 2002). More recent approaches have 

successfully applied Agrobacterium tumefaciens-mediated transformation (ATMT) to yeast 

(Saccharomyces), filamentous fungi (Aspergillus, Fusarium) and dimorphic fungal pathogens 

like Histoplasma capsulatum, Blastomyces dermatitidis, Coccidioides immitis and Penicillium 

marneffei (de Groot et al., 1998; Kummasook et al., 2010; Michielkse et al., 2005; Sullivan et 

al., 2002). This method takes advantage of the natural capacity of the soil bacterium A. 

tumefaciens to transfer part of its Ti plasmid DNA (the T-DNA) to a eukaryote host, after 

which the T-DNA randomly integrates into the host genome. For transformation a so-called 

binary vector system is used, in which the T-DNA and the virulence region (responsible for 

T-DNA formation and transport) of the Ti plasmid are placed on two separate plasmids. This 

allows for genetic manipulation of the binary vector containing the T-DNA (Hoekema et al., 

1983). The T-region of the Ti plasmid is surrounded by a 24-bp left and right border repeat, 

which are essential as the cis-acting signal for the DNA transfer system to target cells. All 

other sequences of the natural T-DNA can however be deleted and replaced by other (non-

homologous) DNA sequences. 

ATMT in fungi is, in general, a highly efficient and simple method, which has allowed 

advances in functional genetic studies in many species that previously were difficult to 

transform. The fact that the T-DNA integrates randomly into genomes makes ATMT an 

efficient tool for random insertional mutagenesis studies, as was shown for the dimorphic 

fungi H. capsulatum and B. dermatitidis (Gauthier et al., 2010; Nemecek et al., 2006). 
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Transformation of P. brasiliensis has proven to be more difficult, as transformation 

efficiencies from ATMT were low (Leal et al., 2004), while electroporation resulted in 

transformants with low mitotic stability (Soares et al., 2005). An optimized ATMT method 

with increased transformation efficiencies of two-fold was obtained by manipulating cell 

recovery and co-culture drying conditions (Almeida et al., 2007), which resulted in a 

mitotically stable homokaryon progeny with a single gene copy integration. Moreover, the 

application of such technique allowed the expression of green fluorescent protein (GFP), 

showing the feasibility of new developments in gene expression systems into P. brasiliensis. 

In fact, the application of this powerful toolkit will allow the visualization of structural 

organization and dynamic processes in P. brasiliensis, by direct observations of living cells 

expressing fluorescently tagged proteins. However, it is of major relevance to undertake 

efforts to ensure that tagged genes are not over expressed by taking advantage of the new 

know-how coming from the genome sequences of P. brasiliensis, particularly, promoter 

sequences and regulatory elements, and eventually look for the feasibility of the Tet-On and 

Tet-Off inducible gene expression systems. 

A gene expression approach was also exploited in an antisense RNA (aRNA) 

technology that allows for targeted down-regulation of gene expression (Almeida et al., 2009; 

Hernández et al., 2010). In this way, several mutants were produced with a large range of 

ranking of expression down-regulation of the Rho-like GTPase Cdc42 within two different P. 

brasiliensis strains (Almeida et al., 2009). Such technology was also applied to downregulate 

the HAD-type hydrolase PbHAD32 (Hernández et al., 2010). These studies showed for the 

first time that targeted silencing of genes encoding important virulence factors can be 

achieved in P. brasiliensis, as described to above, and signifies the clear value of the aRNA 

technology for elucidating the function of putative virulence factors of P. brasiliensis. 

 

6. GP43 and putative virulence factors 

 

Successful infection and dissemination by P. brasiliensis requires initial interaction of 

the fungus with host cells. The fungus has to adhere to host cells after which internalization of 

the fungus takes place. Gp43 is a 43-kDa glycoprotein that participates in the interaction with 

the host at different levels. It is the main diagnostic and prognostic antigen so far 

characterized in P. brasiliensis (Puccia et al., 1986). Anti-gp43 monoclonal antibodies have 

immunotherapeutic potential in mice (Bruissa-Filho et al., 2008), while vaccination with gp43 
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elicits vigorous interferon-g protective response especially due to P10, a 15 aminoacid-long 

conserved T-cell epitope (reviewed in Travassos et al., 2008). In addition, gp43 has adhesive 

properties to extracellular matrix proteins that might help fungal dissemination [Hanna et al., 

2000; Mendes-Giannini et al., 2004; Vicentini et al., 1994). 

PbGP43 has been studied under many different aspects since its characterization and 

the accumulated information has been extremely useful to unravel novel features of 

Paracoccidioides molecular genetics. The PbGP43 ORF is 1,329-pb long and contains a 78-

bp intron (Cisalpino et al., 1996). Translation results in a precursor protein of 416 amino 

acids, including a leader peptide of 35 residues. The gp43 sequence belongs to the glycosyl 

hydrolases family 5, with 50% identity with fungal exo-β-1,3-glucanases; however, it 

apparently lacks enzymatic activity probably because a catalytic NEP motif (Cutfield et al., 

1999; Mackenzie et al., 1997) is mutated to NKP in isolates from the three P. brasiliensis 

phylogenetic groups (Cisalpino et al., 1996; Morais et al., 2000; Matute et al., 2006).  

Polimorphism in the PbGP43 ORF was suggested by Sano et al. (1999) and fully 

characterized by Morais et al. (2000), which helped to explain diversity in gp43 isoelectric 

points (pI) (Puccia et al., 1986; Moura-Campos et al., 1995). A Maximum-likelihood 

phylogenetic tree suggested the existence of genetic groups: highly polymorphic and 

phylogenetically distant PbGP43 genotype A translates into a peculiarly basic gp43 detected 

previously in one P. brasiliensis isolate (Moura-Campos et al., 1995). Basic gp43 is typical of 

cryptic species PS2 defined in Matute et al. (2006) multilocus study, where PbGP43 exon 2 

was the most informative locus. Isolates within a major independent species S1 contain 

genotypes B, D or E, as extensively reviewed by Puccia et al. (2008). Most substitutions are 

non-synonymous and several are under selective pressure (Matute et al., 2008). 

The PbGP43 transcript starts at positions -25, -33, and -35, as mapped similarly in 

four P. brasiliensis isolates by primer extension (Carvalho et al., 2005). Comparison of 3’ 

RACE amplicons revealed that within a range of 37 bp there were 11 poly(A) cleavage sites 

within two main clusters of possible alternative poly(A) (Rocha et al., 2009b). These data 

resulted from comparison of 56 cloned 3’ UTR sequences from ten isolates of P. brasiliensis 

and also showed that the 3’ UTR sequence is highly conserved.  

At the other end of the gene, 2,047 nucleotides of the 5’ intergenic region from the 

Pb339 isolate were fully characterized (Rocha et al., 2009b). Comparisons with other isolates 

were carried out by PCR amplicon size polymorphism and at the sequence level with Pb3, 

Pb18 and Pb01 Broad Institute genomes. Size polymorphism partially correlated with P. 
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brasiliensis phylogenetic groups: PS2 isolates yielded a shorter amplicon (about 1,500 bp) 

than most S1 representatives (about 2,000 bp). The -2,047 fragment, which is about 95% 

identical between Pb18 and Pb339, is quite peculiar because it is composed of three similar 

tandem repeats of about 500 bp preceded upstream by 442 bp (Rocha et al., 2009b). In Pb3, 

one tandem repeat is missing. The amount of gp43 culture fluids can vary among isolates 

(Moura-Campos et al., 1995) and both transcriptional and post-transcriptional mechanisms 

are apparently responsible for these differences (Carvalho et al., 2005). In a controlled study 

carried out in defined medium, the number of accumulated PbGP43 transcripts in Pb339 was 

about 1,000-fold higher than in Pb18 and 129-fold higher than in Pb3, but these differences 

could not be justified by a missing 5’ intergenic repeat (Rocha et al., 2009b). They could be 

due, however, to polymorphisms, mRNA stability and/or 3’ UTR regulators.  

Earlier studies had shown seven substitution sites in the proximal -326 bp of the 

promoter region (Carvalho et al., 2005). Electrophorectic mobility shift assays (EMSA) with a 

series of probes covering this region identified protein binding oligonucleotides between -134 

to -103 and -255 to -215. These fragments contain three substitution sites characteristic of P. 

brasiliensis PS2 isolates and mutation at -230 seemed to alter binding affinity. The 

transcription elements involved are speculative, but NIT2 is apparently active (Rocha et al., 

2009a). In addition, gene reporter assays in Aspergillus nidulans suggested that the first -480 

bp were sufficient to promote basal levels of PbGP43 transcripts and also modulation with 

ammonium sulfate (Rocha et al., 2009a). The involvement of NIT2-like binding motifs in 

transcription modulation of the PbGP43 gene was suggested by the presence four clusters of 

NIT2-like sites, four of which were positive in EMSA. Similar negative modulation with 

ammonium sulfate and glucose in Pb3, Pb18 and Pb339, in addition to the finding to an 

upstream oligonucleotide in a beta-glucosidase gene identical to a protein-binding fragment of 

PbGP43, suggest that although gp43 is a non-functional b-1,3-exoglucanase, transcription 

regulation could be partially similar (Rocha et al, 2009a, 2009b). 

The ortologue to gp43 in P. lutzii Pb01 (PAAG 05770.1), is only 80% identical, does 

not have any N-glycosylation site or conserved P10, and catalytic NEP is preserved, 

suggesting that it might be an active glucanase. The immunological identity with gp43 is 

questionable, since sera from PCM patients from central-western Brazil, where virtually all P. 

lutzii samples have been isolated, present low rates of positivity in diagnostic tests using 

extracellular antigens from Pb339 (Batista et al., 2009), where the main antigenic component 

is gp43 (Camargo et al., 1988). In order to address this point, the gp43 ortogue from Pb01 is 
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currently being expressed in bacteria and Pichia pastoris (unpublished results), following 

expression of other gp43 isoforms (Carvalho et al., 2009). On the other hand, an anti-gp43 

protective antibody MAb32 (Puccia and Travassos, 1991), which recognizes a conserved 

epitope encoded in exon 1 (Bruissa-Filho et al., 2009), was also protective against infection 

with Pb01 (unpublished results).  

  Isolates Pb2, Pb3 and Pb4, which belong to PS2 group, evoked milder experimental 

PCM in B10.A mice than Pb18 and other representative isolates from the main species S1 

(Carvalho et al., 2005). However the role played by differences in the gp43 sequence in the 

outcome of disease is unknown. On the other hand, the role played by gp43 as a virulence 

factor has never been genetically proven. Recently, using the anti-sense strategy standardized 

by Almeida et al. (2009), successful knock-down mutants from Pb339 have been obtained 

that hardly express any gp43 (unpublished results). These mutants are currently being tested 

for virulence in vivo. 

Activity of the extracellular phospholipase B (PLB) also plays a role in P. brasiliensis 

virulence. PLB activity and plb1 gene expression were increased when P. brasiliensis and 

alveolar macrophages were cocultured in the presence of pulmonary surfactant (a 

phospholipid-rich PLB substrate). This coincided with reduced adherence to and increased 

internalization by these macrophages. Increased PLB activity in the presence of pulmonary 

surfactant might lead to a greater release of substrates for lipid synthesis and leukotriene 

production, which in turn act as suppressors of the innate immune response, as confirmed by 

the observed reduced expression levels of the cytokines TNF-α and IL-1β genes. PLB 

therefore seems to play a role in fungal evasion via interference with the immune response of 

macrophages (Soares et al., 2010). 

The 32-kDa haloacid dehalogenase PbHAD32 was shown to bind to several ECM 

proteins such as laminin, fibrinogen, and fibronectin, and to be important for initial adhesion 

to pulmonary epithelial cells expressing these ECMs (González et al., 2005, 2008). Gene 

silencing of PbHAD32 gene expression further confirmed that PbHAD32 plays a role in 

binding of P. brasiliensis to human epithelial cells, and in addition showed that PbHAD32 is 

important for P. brasiliensis virulence in a mouse model of infection (Hernández et al., 2010). 

The fact that PbHAD32-silenced yeast cells showed an altered cell morphology with more 

elongated buds could play a role in the reduced adhesion that was observed.  

Another type of virulence factor is the pigment melanin, which is common in many 

dimorphic fungi. Phagocytosis of melanized P. brasiliensis yeast cells is reduced, and in 
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addition melanized yeast cells show an increase resistance to reactive oxygen species that 

might be produced by the host cells (da Silva et al., 2006; Silva et al., 2009). Melanins are 

negatively charged and hydrophobic polymers, and as such their presence in fungal cell walls 

might alter cell surface charge and hydrophobicity, and thereby might inhibit phagocytosis (da 

Silva et al., 2006; Nosanchuk and Casadevall, 1997). Moreover, melanin interferes with the 

binding of several antibodies resulting in an overall reduction in the internalization of 

melanized cells.  

Finally, the Rho-like GTPase Cdc42 was shown to have an effect on virulence. Gene 

silencing of PbCDC42 resulted in yeast cells with a reduced cell size and fewer buds per cell, 

and a more homogeneous cellular morphology overall. In vitro phagocytosis of these 

PbCDC42-silenced yeast cells by macrophages was increased, and moreover, these cells were 

less virulent in a mouse model of infection (Almeida et al., 2009). This role of PbCDC42 in 

maintaining enlarged, multiple-budding and heterogeneously sized P. brasiliensis yeast cells 

might promote host evasion (Figure 3). Furthermore, in fungi CDC42 is a central regulator 

that orchestrates several cellular functions such as cell division, cell polarity, cytoskeleton 

remodeling and hyphal development (Johnson, 1999; Wang, 2009), and might therefore also 

regulate the expression of other proteins involved in the infection process.  

 

7. Future prospects: where do we go from here? 

 

A challenge for the future remains the development of mutagenesis methods that allow 

for the creation of targeted insertional gene mutants in P. brasiliensis. In closely related 

dimorphic fungi such as H. capsulatum and B. dermatitidis, gene inactivation by homologous 

recombination in early studies was often frustrated by ectopic integration of transformed 

DNA at multiple loci, resulting in random DNA duplications, deletions or rearrangements. 

This might be due to the presence of dominant illegitimate recombination events (by non-

homologous end-joining) that override homologous recombination. In addition, transforming 

DNA can be maintained on extra-chromosomal elements in Histoplasma spp., which obstructs 

DNA integration (24, 54, 55). Despite these aspects, allelic replacement by homologous 

recombination of genes was found to be straight-forward in Blastomyces dermatitidis 

(Brandhorst et al., 1999), while for Histoplasma capsulatum these problems could be 

circumvented by using a combination of telomeric linear vectors and a two-step genetic 

selection procedure (Woods and Goldman, 1992). Attempts for mutagenesis by homologous 
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recombination in P. brasiliensis have not been reported and it is not known if P. brasiliensis 

is able to form linear plasmids as observed in Histoplasma spp. A feasible approach for 

creating gene deletion mutants might be to down-regulate the activity of non-homologous 

end-joining (NHEJ) pathways to increase the frequency of homologous recombination events 

that take place. In several filamentous fungi like Sordaria macrospora, Aspergillus fumigatus, 

Penicillium chrysogenum and Botrytis cinerea this has been achieved by aRNA gene 

silencing of the Ku70 and/or Ku80 genes, which encode key proteins involved in NHEJ 

(Krappmann et al., 2006; Pöggeler and Kück, 2006; Choquier et al., 2008;; Snoek et al., 

2009). Such a directed mutagenesis tool would facilitate functional studies of genes 

implicated in virulence and morphogenesis, in particular those newly identified in microarray 

studies.  
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Fig. 1 - Multiple budding and multinucleate nature of the P. brasiliensis yeast form. Confocal 

microscopy observation of PI and FITC-ConA double-stained yeast cells. White bars 

correspond to 5 µm. 
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Fig. 2 - The cell size and multiple budding cell morphology of P. brasiliensis affects 

phagocytosis by macrophages, thereby promoting host evasion. Confocal microscopy 

observation using DAPI to visualize nuclei, α-tubulin-antibody and FITC-ConA 

staining. Scale bar corresponds to 10 µm. 

 

 

  



25 

 

Fig. 3 - Morphology of P. brasiliensis cells growing in liquid culture, which were induced to 

undergo mycelium-to-yeast transition by an increase in temperature from 26ºC to 

37ºC. The cellular forms observed were hyphae (0 days), differentiating mycelium (3 

days), transforming yeast (5 days), yeast (10 days). Black bars correspond to 5 µm. 
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