MICROBIOTEC '11
PORTUGUESE SOCIETY FOR MICROBIOLOGY
PORTUGUESE SOCIETY FOR BIOTECHNOLOGY
detect anti-Leptospira interrogans sensu lato (s.l.) antibodies. Serological positive results obtained by MAT showed the following distribution: for 2006 to 2010, 60/226 (27%); from 2004 to 2007, 148/370 (40%), and from 1993 to 2003, 248/586 (42%). These findings reveal an important reduction of the project's involvement area since the number of cases of Leptospirosis significantly decreased during and after the project's completion. It is assumed that this important reduction is a consequence of the mapping of the major Leptospira transmission risk-areas to humans, and the creation of laboratory facilities, namely the diagnosis implementation by a serological screening and PCR technique, avoiding the extreme clinical pictures. Globally, these results promote a continuous and active surveillance in Azores.

PS3: 41

Incorporation of antimicrobial peptide into bacterial cellulose produced through food waste

Angela Faustino Jozala¹, Carolina Alves dos Santos², Renata Aparecida Nedel Pélito³, Francisco Miguel Gama⁴, Adalberto Pessor Jr.⁵

¹School of Pharmaceutical Sciences, University of São Paulo, Brazil; ²Chemical Engineering Department, University of São Paulo; ³Department of Chemical Engineering, UFSC/SC; ⁴Department of Biologic Engineering, UNINHO/Portugal

The incorporation of antimicrobial, such as nisin, or other drugs in bacterial cellulose has a wide applicability in pharmaceutical, medical, chemical, cosmetic, food and other areas. Nisin is a natural antimicrobial peptide used as food preservative; being effective at controlling a broad range of gram-positive bacteria, including the multidrug-resistant pathogen. Bacterial cellulose (BC) is an extracellular polysaccharide produced by strains of G. xylinus. BC production using waste as culture media is a novelty, stimulating scale-up for industrial production and extended applications in medical devices. For this reason, the objective of this work was evaluated nisin activity after incorporation into BC standard and produced using waste. For BC production, the following culture media were employed (i) Hestrin and Schramm's (standard); (ii) Waste fruits, collected from the disposal of fresh food. & (iii) Mixture of the waste fruit and milk whey, under 30 °C for 96 hours in static conditions. BC standard and from waste were submerged in 1mL of nisin (Sigma®) containing 2.5% of nisin. At different concentrations 250, 125, 62.5, 31.25, 15.63 and 7.81 μg/mL, at phosphate buffer saline (PBS) pH 4.5, sterilized by filtration, 0.22 μm. They were incubated at 30°C under 100rpm for 4 hours, followed by protein analysis and nisin activity, which was determined by agar diffusion with L. sakei as bioindicator. Results demonstrated that all types of BC have the ability to incorporate nisin after 4 hours. Nisin activity was higher in BC, although only 43% of proteins from the initial solution were transferred into the membrane. The same behavior on nisin incorporation was observed in BC standard and from waste, indicating that waste can be applied on BC production. This work can be considered a profitable alternative, generating high-value products with extended applications and contributing to decreasing disposals in the world.

PS3: 42

Induction of antioxidant defenses by diterpenic phenolics in human fibroblasts for nutritional applications toward anti-aging interventions

Ana Cristina Carvalho¹, Andreia C Gomes², Cristina Pereira-Wilson³, Cristovao F Lima³

¹CITAB - Department of Biology, University of Minho, Braga, Portugal; ²CBMA - Department of Biology, University of Minho, Braga, Portugal

Human lifespan is increasing in developed and developing countries, rising considerably the percentage of elderly people. Aging is characterized by the progressive accumulation of molecular damage, which leads to altered cellular functioning, reduced stress tolerance and susceptibility to diseases, such as cancer, neurodegenerative and cardiovascular diseases. Consumption of fruits, vegetables and herbs has been related with health promotion due to their content in bioactive phytochemicals. In a previous work, we have shown the ability of curcumin to induce antioxidant stress responses in human fibroblasts. Curcumin is a well-known anti-inflammatory and anti-oxidant. In the present work, we propose to evaluate the ability of the phenolic diterpenes canosic acid (CA) and canosol (CS) to induce intracellular antioxidant defenses in normal human skin fibroblasts and relate that with anti-aging effects. The ability of these compounds to induce cellular antioxidant defenses was investigated by western blot and biochemical determinations. We observed that human fibroblasts are more susceptible to CA than CS. Canosic acid was not toxic up to 40 μM (the highest concentration tested), CS induced toxicity in human fibroblasts only at 40 μM. Both CA and CS at non-toxic concentrations induced significantly glutathione levels, an important intracellular antioxidant, in a concentration-dependent manner. Both compounds were also able to induce cytotoxic enzymes such as HO-1, NQO1 and Hsps70, assessed by western blot. We also tested the capacity of these compounds to afford a cytoprotective action by pre-incubating cells with CA and CS before a furtheroxidant challenge.
PS3: 43

Induction of antioxidant defenses in human HepG2 cells by a methanolic extract of *Hypericum perforatum* cells elicited with *Agrobacterium tumefaciens*

Cristovão F. Lima, Ana Cristina Carvalho, Gregory Franklin, Alberto C.P. Dias

CITAB - Department of Biology, University of Minho, Portugal

Hypericum perforatum (HP) commonly known as St. John's wort is an important medicinal plant traditionally used in several ailments including mild to moderate depression. In a recent study, elicitation of HP cells (culture of cells in suspension) with *Agrobacterium tumefaciens* (AT) increased significantly the production of compounds with antioxidant and antimicrobial properties [1]. The present investigation has been conducted to test the efficacy of methanolic extracts of elicited and control HP cells in protecting human hepatocytes (HepG2 cell line) upon oxidative stress. Briefly, HepG2 cells were treated with tert-butyldihydroperoxide (t-BHOOH) to induce oxidative stress, and the ability of the HP extracts to protect against cell death were measured by MTT and LDH leakage assays. The ability of these extracts to induce cellular antioxidant defenses were investigated by western blot and biochemical determinations. When HepG2 cells were co-incubated with 800 μM t-BHOOH and HP extracts (60 μg/mL), only the extract from the elicited HP cells was able to significantly prevent t-BHOOH-induced cell death. The extract from control HP cells did not show any protective effect, on the contrary, stimulated t-BHOOH toxicity. When HepG2 cells were pre-incubated for 5 h with HP extracts, followed by a period of 16 h of recovery with fresh medium, prior to incubation with t-BHOOH, only the HP extract from elicited cells significantly protected against cell death. This suggested the ability of HP extract from elicited cells to induce intracellular antioxidant defenses in HepG2 cells. That was confirmed by the induction of about 40% in the content of glutathione in HepG2 cells, whereas control extract increased only 10%. As well, only the extract from elicited HP cells were able to induce the levels of cytoprotective enzymes such as HO-1 and NQO1.

In conclusion, we observed that elicitation of HP cells with AT produced bioactive compounds present in the methanolic extract able to protect HepG2 cells against oxidative stress, and also to induce intracellular antioxidant defenses of this human cell line.

[1] Franklin et al., Phytochemistry, 2009, 70: 604-611. ACC is supported by FSTC research grant NaturaAge – PTDC/QUT-BIQ/101392/2008 and (Hyphen-Food) PTDC/AER/UL/101508/2008. Co-funded by the program COMPETE from OREN with co-participation from the European Community fund FEDER.

PS3: 44

Effect of algae and plant lectins against bacterial biofilm formation

Mayron Alves Vasconcelos, Francisco Vasconcelos Sousa Arruda, Victor Alves Carneiro, Kyria Santiago Nascimento, Benildo Sousa Cavada, Edson Holanda Teixeira, Mariana Henriques, Maria Olivia Pereira

1Biologically Active Molecules Laboratory (Biomol-Lab), Department of Biochemistry and Molecular Biology, Federal University of Ceará, CE, Brazil; 2Integrate Biomolecules Laboratory (LIBS), Faculty of Medicine of Sobral, Federal University of Ceará, Sobral, CE, Brazil; 3IBB – Institute for Biotechnology and Biogenic Engineering, Centre of Biological Engineering, University of Minho, Campus de Gualtar, Braga, Portugal

Biofilms are composed by microbial cells that are irreversibly associated with a surface and are enclosed in a matrix of polymeric material. The search for potential phytochemicals as anti-biofilm agents has become an active area of research. Lectins are sugar binding proteins of non immune origin that agglutinate cells and/or precipitate glycoconjugate molecules. Due to their capacity to bind and recognize specific carbohydrates, lectins can be a potent tool against biofilm formation. Thus, this work aims to evaluate, in vitro, the activity of a set of plant and red algae lectins against clinical relevant bacteria, Staphylococcus aureus and Klebsiella oxytoca, by the assessment of their capacity to interfere on biofilm formation. Lectins were added to bacteria (2 x 10^8 CFU/mL) on the moment of biofilm formation in concentrations ranging from 25 to 250 μg/mL. Subsequently, the resultant biofilms (48 h) were analyzed in terms of biomass by crystal violet staining and in terms of cell viability by assessing the number of colony forming units. Additionally, the effect of lectins on planktonic growth was also assessed following the optical density of the bacterial cultures along time. Although both groups of lectins were able to reduce the growth of S. aureus and K. oxytoca, the plant lectins from Valtarea macrocarpa (VML) and Cratylia floribunda (CFL) showed the better activities. It should be highlighted that VML at 250 μg/mL reduced around 90% the planktonic growth.