Traditional Chinese Medicine (TCM) Symposium

(Universidade do Minho, Braga, Portugal, 21st July 2011)

2nd Annual General Meeting (AGM) of the GP-TCM Consortium

Good Practice in Traditional Chinese Medicine Research in the Post-genomic Era
form of α-synuclein causes toxicity in cells. Therefore, the aim of this study was to evaluate the possible protective effect of Hypericum perforatum phenolic compounds (quercetin, kaempferol and biapigenin), in the toxicity induced by the heterologous expression of α-synuclein, using the yeast Saccharomyces cerevisiae as a model. Preliminary results indicate that the presence of these phenolic compounds decrease the protein accumulation in cells expressing α-synuclein. We concluded that these phenolic compounds apparently have beneficial biological properties that consequently could have a potential use in preventing Parkinson's disease.

This work was supported by a grant from FCT – Fundação para a Ciência e Tecnologia (PTDC/BIA-MIC/114116/2009 and PTDC/AGR-ALI/105169/2008). B.S.M has fellowships from FCT (SFRH/BD/41674/2007).

P10 - Curcumin-induced hormetic effects in human skin fibroblasts: implications toward anti-ageing interventions

Cristovao F. Lima*, C. Pereira-Wilson2 and S. I. S. Rattan3

1CITAB/2CBMA – Department of Biology, University of Minho, Braga, Portugal; 3Laboratory of Cellular Ageing, Department of Molecular Biology, Aarhus University, Aarhus, Denmark; *lima@bio.uminho.pt

Ageing is associated with decreased cellular antioxidant defenses and with reduced ability to induce stress responses. We have tested the curcumin-induced hormetic stimulation of cellular stress responses in normal human skin fibroblasts, and associate those with potential anti-ageing effects. Curcumin incubation for 24h induced heme oxygenase-1 (HO-1) protein levels, GST activity, GSH levels and GSH/GSSG ratio. These effects were preceded in the first hours of incubation by induction of oxidative stress as shown by increased levels of ROS and DNA damage, and impairment of cells’ GSH redox state. The curcumin-induced increase in antioxidant defenses was shown to be redox and PI3K/Akt-dependent in human fibroblasts. The induction of this stress response led to protective hormetic effects via a further oxidant challenge with tert-BOOH. Replicative senescent cells possessed already higher HO-1 levels, and induction of HO-1 by curcumin was considerably impaired. In conclusion, the induction of stress responses by curcumin in human skin fibroblasts, which resulted in protection against a subsequent stressor, supports the view that phytochemical-induced hormetic stimulation of cellular antioxidant defenses can be a useful approach toward anti-aging intervention.

Acknowledgements: This work is supported by FCT research grant NaturAge – PTDC/QUI-BIQ/101392/2008, which is co-funded by the program COMPETE from QREN with co-participation from the European Community fund FEDER.

P11 - Language Barriers, the Chinese Medicine Great Wall

Authors: Albuquerque, Pedro

Affiliation: Global Smile (Portugal – China)

Abstract: Chinese medicine (CM) is nowadays being used all over the European Union and attracts increasing interest among European citizens, clinicians, suppliers of Chinese medicines, scientists, pharmaceutical companies and politicians. Nevertheless, in a Post-genomic Era, a personalised medicine like CM still holds several questions from the past that require contemporary answers. Coming from a background and a culture so different from our own, these