V2G Smart System: An Intelligent System to the Electric Vehicle Charging Problem

João C. Ferreira
ADEETC - ISEL
Lisboa, Portugal
jferreira@deetc.isel.ipl.pt

Vítor Monteiro e João Afonso
DEI – Universidade do Minho
Guimarães, Portugal
{vmonteiro e jla}@dei.uminho.pt

Abstract—The next big step in the evolution of the automotive industry is the introduction of electric vehicles (EV), however has associated limitations of autonomy and in conjunction with this limitation, extended charging times, very few points of charging and smart electricity grids very embryonic. In this context, is requires a very rigorous planning of daily use of the EV. Thus, this work presents an information system that aims to help the driver in the daily use of the EV in order to deal with the charging problem, minimizing the problem of anxiety to achieve the objectives through the continuous monitoring of the autonomy of the vehicle and the timely submission of relevant information related to charging process, also allowing the storage the energy transactions for later analysis and further improvements. Similarly, given the limitations of the electrical distribution network and taking into account N simultaneous charging process a management system is proposed to deal with this problem, in order to limit the total power consumed in each moment.

Keywords: Electric Vehicles, Simulation Model, Smart Charging, Management System

I. INTRODUÇÃO

O novo paradigma de mobilidade criado pelo veículo elétrico (VE) e o estado actual do desenvolvimento de sistemas de informação, principalmente na área de dispositivos móveis, tomam evidentes as vantagens do desenvolvimento de um sistema que responda às necessidades específicas dos condutores deste tipo de veículos, não limitando, no entanto, o âmbito dos serviços que pode disponibilizar. A Fig. 1, ilustra alguns dos problemas que a nova realidade dos mercados de energia ‘abertos’ e o uso do VE podem trazer aos condutores. Assim, é normal que os condutores de VE pensem em questões relacionadas com a sua autonomia, ou seja, “Quantos quilômetros pode percorrer sem necessidade de um novo carregamento das baterias?”, “Quando estiverem fora de casa onde poderá efectuar o carregamento?”, “Quanto tempo demora o carregamento?”, “A que preço está a energia elétrica?” Todas estas questões deixam certamente imprescindível o utilizador de um carro a gasolina na hora de adquirir um VE, no entanto, algumas delas podem ser respondidas pelos fabricantes dos VEs, como por exemplo, a carga máxima da bateria e a autonomia que proporciona ao veículo, todavia, é pouco cômodo para um condutor estar a fazer contas de cada vez que pretende sair com o seu veículo. Outras questões, como: “Onde carregar o seu veículo?” não terá resposta tão simples, obrigando o condutor a uma pesquisa para saber onde poderá carregar o seu automóvel durante a viagem que pretende fazer, e recalcular o tempo que normalmente demoraria na viagem em função do tempo que necessite para efectuar o carregamento das baterias.

Fig. 1: Principais informações para os proprietários de VEs.

Tendo em conta esta realidade que está para emergir, o presente trabalho, propõe o desenvolvimento de um sistema centralizado, onde o condutor terá de aceder para obter toda a informação relativa ao seu veículo, de modo a programar a sua viagem sem percaços. É de igual forma objecto de estudo o carregamento dos VEs tendo em conta a localização geográfica e as consequentes limitações da rede de distribuição elétrica. Não é difícil imaginar um cenário em que as solicitações de energia à rede atinjam o seu limite, pois se para além de todos os aparelhos elétricos que a maioria das pessoas utiliza todos os dias em casa, ainda juntarmos um ou mais VEs, multiplicando pelos moradores de um mesmo bairro, e pelos diversos bairros de uma área urbana, dificilmente com as actuais infra-estruturas elétricas se poderá dar resposta a todas as solicitações de energia. Neste contexto, em [1] são apresentados métodos de simulação para avaliação do impacto de VEs em redes de distribuição, e em [2] é descrito o valor destes veículos como suporte à operação da rede elétrica.

II. VEHICLE-TO-GRID (V2G) SMART SYSTEM

Na Fig. 2 está representada uma visão de alto nível sobre a arquitetura do conceito Vehicle-to-Grid (V2G) Smart System, na qual se destacam 6 módulos principais. De referir que o sistema V2G Smart System comunicará com o Sistema de Gestão das Baterias (BMS – Battery Management System), recebendo e transmitindo informação em modo texto.
Tendo em conta que o BMS não é objecto de estudo neste trabalho, no desenvolvimento deste protótipo procuraremos abstrair-nos ao máximo deste problema, assumindo a existência de uma camada genérica responsável pelas comunicações, que sendo um módulo possível de integrar no V2G Smart System, não será por nós desenvolvido no âmbito deste trabalho. Assim, foi considerado que essa camada de comunicação passará ao V2G Smart System informação em formato XML, pronta a ser processada pelo nosso sistema.

Apesar de existirem diferentes topologias de BMS [3], [4], com diferentes características e funções diferentes, no sistema BMS tradicional, existem diversos módulos slaves (no máximo um por bateria) e um módulo master. Assim, assumindo este modelo de BMS, através do módulo master, que comunique com cada um dos módulos slave, é possível: (1) Efectuar protecção individual de cada bateria; (2) Controlar o carregamento e descarregamento; (3) Determinar o estado de carga de cada bateria (SoC — State of Charge); (4) Determinar o estado de “saúde” de cada bateria (SoH – State of Health); (5) Realizar o balanceamento de carga entre todas as baterias; (6) Fazer um histórico de cada bateria com as diferentes informações obtidas e referenciadas anteriormente; (7) Processar informação e efectuar comunicações entre o módulo master e cada módulo slave, e também entre o módulo master e o sistema geral de controlo do VE. É neste contexto que está integrado o V2G Charging System, como plataforma de interface entre o utilizador do VE e o sistema geral de controlo do VE, nomeadamente o BMS. Como referido anteriormente, a comunicação entre estes sistemas é através de informação em modo texto, e no caso em estudo este trabalho é assumido que a informação está em modo XML.

B. Camada de Acesso a Dados

Este módulo tem como objectivo a abstracção do armazenamento físico dos dados, de forma a não comprometer a Lógica da Aplicação com a implementação da Base de Dados, desta forma, caso haja uma alteração na Base de Dados, como por exemplo, uma troca de SGBD (Sistema de Gestão de Base de Dados), apenas será necessário implementar uma nova versão desta camada.

C. Controlador Central

O Módulo 3 será o Controlador Central da aplicação. É neste módulo que se insere toda a lógica da aplicação, distribuída por: (1) Gestor de Perifís – um utilizador pode definir um ou vários perifís de carregamento para cada um dos veículos por ele registados. A título de exemplo, um utilizador pode indicar ao sistema que utiliza o seu veículo para se deslocar todos os dias até e a uma determinada hora para o seu emprego, percorrendo X quilómetros, e regressando ao final do dia, altura em que carregará novamente o seu veículo. Pressupondo que o veículo carrega em quatro horas mas está ligado ao sistema durante oito horas, em parte do tempo em que não está a carregar, o veículo poderá fornecer energia à rede eléctrica, assumindo assim um papel de fornecedor de energia, com o sistema a assegurar que o nível de carga da bateria nunca será inferior às necessidades indicadas pelo perfil do utilizador; (2) Gestor de Utilizadores – módulo responsável pelo registo de utilizadores e dos seus automóveis, para além de permitir o registo, edição e remoção, é ainda responsabilidade adicional deste módulo a verificação da identidade do utilizador e da propriedade dos veículos registados (através do cruzamento de dados recebidos do utilizador com os dados das entidades competentes), e realizando periodicamente uma limpeza de utilizadores catalogados como “span” da Base de Dados. É também responsabilidade deste módulo a função de login na aplicação; (3) Gestor de Rede de Energia – Responsável pela elaboração das médias de consumo em cada área geográfica da rede, assim como pela interacção com a rede de energia, isto é, avaliando as solicitações de energia à rede de forma a prevenir ocorrência de sobrecargas, no entanto, apenas será possível se for previamente conhecida a topologia da rede elétrica em que se está inserido, que poderá variar de forma considerável, em função das características geológicas da zona, de limitações económicas, requisitos de segurança ou capacidades de carga e produção. Por norma é adoptado um de dois tipos de topologia de rede elétrica: radial ou interligada. Neste módulo, para efeitos de simulação serão apenas consideradas as redes de topologia radial. Desta forma, conhecendo a capacidade energética da subestação, sabemos que os pedidos simultâneos de vários nós terão de estar sempre abaixo da capacidade da subestação, de forma a não ocorrer uma sobrecarga da rede; (4) Conta Virtual – este módulo será responsável pelas operações e registo dos movimentos, de compra e venda de energia elétrica, na conta virtual do utilizador; (5) Gestor de Informação das Baterias – neste módulo será processada toda a informação relativa às baterias (nível de carga em cada momento, desgaste, ...). Através de cálculos relativamente simples poderemos ainda prever o tempo de carga de um VE e a energia que este poderá dispensar sem que a sua autonomia diminua.

Fig. 2: Arquitectura do V2G Smart System

A. Base de Dados

O Módulo 1 corresponde à base de dados que será necessário criar para armazenar toda a informação persistente para dar suporte às diversas funcionalidades da aplicação. Nem toda a informação gerada e manipulada na aplicação será necessariamente persistente, havendo dados que apenas importam guardar durante um curto período de tempo ficando alojados apenas na memória da aplicação e não na base de dados.
consideravelmente, como por exemplo: o Nissan Leaf, que será ao que tudo indica, o primeiro VE a ser comercializado de forma alargada em Portugal, terá uma capacidade de armazenamento de energia de 24 kWh, dando-lhe uma autonomia (com condução relativamente cuidada) de cerca de 160 km. A carregar este carro numa tomada normal, de 230 V – 16 A, e desprezando perdas e outros factores, teoricamente, as baterias poderão ser carregadas com uma potência de 230V x 16A = 3,68 kW. Deste modo, se as baterias estivessem totalmente descarregadas, o que nunca acontece, pois tal comprometeria a vida útil das mesmas, seriam necessárias 24 / 3,68 = 6,5 horas para as carregar. Desta forma, por exemplo, as baterias poderiam fornecer para a rede elétrica uma potência de 10 kW durante meia hora, fornecendo 10 x 0,5 = 5 kWh de energia nessa meia hora. Ou seja, na prática as baterias diminuíam a energia armazenada de 24 kWh para 19 kWh, e o carro continuaria a ter energia suficiente para a viagem de regresso a casa sem problemas; (6) Informações Úteis – este módulo será responsável pela recolha de informação interior e exterior à aplicação e a sua apresentação ao utilizador. Por informação exterior entende-se informação de conteúdo dinâmico disponível online, em formato XML. Assim, para a página inicial da aplicação inspiramo-nos nas actuais redes sociais (Facebook, HH5, Twitter, etc.), que tipicamente apresentam uma secção central onde se podem ver as últimas “novidades” dos nossos amigos. Transportando esta ideia para a realidade do V2G Smart System percebeu-se que seria também interessante na homepage poder ver as últimas atualizações do mercado de energia, conhecer os últimos desenvolvimentos tecnológicos no armazenamento de energia, novidades do mercado automóvel, etc., de uma forma simples e prática. Ainda no capítulo das informações relevantes para o condutor de um VE surgem estatísticas, como a comparação com os preços dos combustíveis, e as horas de maior procura de energia por parte dos consumidores, tomando-se fundamental a inclusão de uma página dedicada a essas estatísticas, para conferir ao utilizador uma melhor noção das vantagens de utilizar este sistema.

Em relação aos relatórios, são criados para que o utilizador possa visualizar o histórico (guardado em base de dados) que os seus perfis de carregamento geram, tirando conclusões para futuras redefinições nos perfis caso hajam vantagens. Este módulo tem ainda como um dos principais objectivos manter o sistema sempre atualizado em relação aos preços do mercado de energia. Para consulta em tempo-real dos preços da energia deverá existir um site que forneça “feeds” RSS directamente relacionados com os produtores de energia elétrica, no qual hajam informações relevantes como os preços e capacidade de fornecimento de energia numa dada altura. Estudos revelam que as condições meteorológicas [5], [6], [7] têm influência na produção de preço da energia. Por exemplo, tendo em conta as fontes de energia renováveis, sabe-se que um determinado aumento da temperatura se reflete num aumento do preço da energia, assim como ventos fortes possibilitam maior geração de energia eólica, e consequente diminuição no preço dessa energia. Desta forma, uma correcta avaliação das condições meteorológicas permitirá ao sistema fornecer ao utilizador uma previsão da variação do preço da energia a curto prazo. Para proporcionar ao leitor a consulta de notícias e informações exteriores deverão igualmente existir sites que forneçam “feeds” RSS possuindo essa informação.

D. Interface Gráfica

Como em qualquer aplicação web será necessário definir uma interface com o utilizador. Esta interface deve ser o mais independente possível da Lógica da Aplicação, de forma a possibilitar a implementação de diferentes interfaces gráficas (diferentes estéticas) sem ter de se alterar o resto da aplicação. Nesse sentido, existe a possibilidade de duas interfaces distintas, uma destinada a ser visualizada num computador desktop, e uma segunda direcionada a um dispositivo móvel.

E. Interpretador de Ficheiros de Carregamento Efetuado

Faz a leitura e a interpretação dos ficheiros de carregamentos efectuados, disponibilizados pelo BMS, dotando o V2G Smart System de uma camada de abstracção em relação ao formato do ficheiro. Nesse sentido, deverá ser implementado um sub-módulo para cada formato de ficheiro existente. Embora o formato do ficheiro não seja conhecido, foi necessário definir que informação relevante o ficheiro deve conter. Assim, concluiu-se que no ficheiro deve estar contida a seguinte informação: (1) Hora de início do carregamento; (2) Capacidade inicial das baterias; (3) Energia fornecida às baterias; (4) Capacidade final das baterias; (5) Hora de fim do carregamento. Embora pudesse ser útil obter outras informações considerou-se que estas seriam as informações razoáveis/expectáveis de obter através de um BMS comum.

F. Gerador de Ficheiros de Carregamento a Efetuar

É responsável pela criação dos ficheiros de carregamento a efectuar, baseando-se na informação fornecida pelo Gestor de Perfis, que obtém através do Gestor Central, e que constituem o output do V2G Smart System, para ser utilizado pelo BMS. Tal como realizado para o ficheiro de input, foi necessário definir que informação faria sentido incluir no ficheiro de output, pelo que se concluiu que deveria conter o seguinte: (1) Hora para iniciar o carregamento; (2) Nível mínimo do estado de capacidade; (3) Possibilidade de comprar energia; (4) Possibilidade de vender energia.

III. REDE DE DISTRIBUIÇÃO ELÉCTRICA

As redes de distribuição de energia elétrica possibilitam o escoamento da electricidade recebida da rede de transporte através das subestações e conduzem a electricidade até às instalações que as consomem. Em Portugal Continental, a actividade de distribuição é efectuada majoritariamente por uma empresa – a EDP Distribuição – e também por algumas cooperativas de distribuição de energia elétrica em Baixa Tensão.

Para garantir uma operação segura e controlada, os elementos da rede de distribuição são compostos, entre outros, por geradores, circuitos de comando, circuitos de corte, seccionadores e disjuntores. A tensão, a potência, a frequência, o factor de carga e a capacidade do sistema de transmissão são desenhados para fornecer uma prestação economicamente eficiente aos clientes. Quanto à estrutura ou topologia da rede, esta pode variar consideravelmente. O desenho é muitas vezes moldado de acordo com o terreno e a sua geologia. A lógica da
topologia pode variar dependendo de limitações econômicas, requisitos de segurança do sistema e características da carga e da produção. usualmente, dois tipos de topologia de rede são adoptados: radial ou interligada. uma rede radial envia a sua energia de uma subestação para os pontos de entrega sem ligação a nenhum outro ponto de abastecimento. esta configuração é usualmente utilizada em extensas áreas rurais com áreas isoladas de carregamento. esta é a topologia mais simples e econômica para uma rede de distribuição ou transmissão. num formato em árvore, a energia vinda de grandes fontes de produção radia progressivamente para linhas de tensão mais baixas até chegar aos consumidores finais. assim, tendo em conta a rede de distribuição do local em estudo, fez-se a geo-referenciamento manual e passou-se para um grafo geo-referenciado usando uma ferramenta de grafos desenvolvida localmente.

iv. sistema de tracking

num projeto de final de curso no isel – instituto superior de engenharia de lisboa [8], foi desenvolvida uma aplicação de tracking dos movimentos de condutores em modo offline, para evitar custos de comunicação para os condutores. os princípios gerais desta aplicação encontram-se ilustrados na fig. 3.

![fig. 3: princípios geral da aplicação sistema de tracking.](image)

a aplicação designou-se por gps tracker e foi concebida para ser utilizada em dispositivos móveis, como o pda, que possuam o sistema operativo android 1.6 ou superior. o objectivo desta aplicação é criar ficheiros gpx com o registo dos dados gps (nomedamente: latitude, longitude e velocidade instantânea) relativos aos percursos efectuados pelo utilizador. a localização geográfica do utilizador pode ser obtida através do dispositivo de gps, da informação que chega ao pda disponibilizada pelas antenas celulares, ou então via wi-fi. é possível a configuração de alertas/avisos relevantes, que entramem em funcionamento, por exemplo, quando o número de ficheiros gpx armazenados ultrapassa o número definido pelo utilizador. também é possível activar ou desactivar a opção de guardar os dados recolhidos num ficheiro gpx, escolher o intervalo de tempo assim como a distância máxima entre a recolha de dados gps. o sistema permite consultar estatísticas sobre o percurso realizado, nomeadamente: (1) duração do percurso efectuado; (2) distância total percorrida; (3) velocidade média; (4) data e hora do percurso efectuado. o sistema permite também apresentar todos os parâmetros anteriores para a totalidade dos percursos do utilizador, obtendo assim os valores médios totais.

v. metodologia da simulação

de forma a estudar o consumo energético de diferentes tipos de famílias, bem como o impacto da integração dos ves na rede de energia elétrica, foi implementado o modelo de simulação descrito neste item. este modelo recebe informação relativa ao agregado familiar, a sua potência contratada e a rede de distribuição em causa, em paralelo com informação de um sistema de tracking que fornece as horas de partida/chegada a casa dos consumidores. na posse desta informação são estudados os hábitos de consumo e obtidos os perfis para cada tipo de família.

agregado familiar – consideram-se três tipos de família compostos da seguinte forma: (1) família grande: dois adultos e duas crianças; (2) família média: dois adultos e uma criança; (3) família pequena: um ou dois adultos.

potência contratada – para os clientes em baixa tensão normal (bton), a potência contratada é definida por escalões e as instalações possuem um dispositivo (disjuntor) de controlo da corrente consumida pelas cargas da instalação. a potência contratada define o valor instantâneo máximo de potência elétrica que essa instalação pode receber. o valor da potência contratada e o dimensionamento da instalação elétrica estão intimamente ligados, assim como também o dimensionamento da rede elétrica mais próxima da instalação.

a. modelo de recolha de dados de consumo

os hábitos de consumo são estudados com base em dois factores: (1) quais os equipamentos utilizados pelos consumidores; (2) qual o consumo energético desses equipamentos. de modo a saber quanto consome cada equipamento, utilizaram-se os dados que constam no simulador de potência a contratar da erse (entidade reguladora dos serviços energéticos) [9] e obtiveram-se as seguintes tabelas de valores médios de potência máxima por electrodoméstico. posteriormente foram realizados um conjunto de inquéritos na região de Lisboa, tendo sido escolhidas cinco famílias pequenas, cinco famílias médias e cinco famílias grandes que cumprissem os seguintes pré-requisitos: (1) disponibilidade para preenchimento do questionário; (2) fiabilidade nos dados fornecidos; (3) número de pessoas do agregado familiar de acordo com o grupo de estudo associado e; (4) rotina diária constante. a cada família foi entregue uma tabela (para maior detalhe ver referência [10]) onde deveriam anotar para cada hora (de 0 a 23), o equipamento que utilizaram e a quantidade (para o caso das lâmpadas). durante uma semana, todos os dias de segunda-feira a domingo, cada utilizador preencheu o relatório dos seus consumos. posteriormente, para cada tipo de família foi estabelecido um valor médio de consumo entre os cinco utilizadores, a fim de obter resultados indicativos por hora e por família, resultando assim templates de consumo por família.
VI. A APlicaçãO V2G SMART SYSTEM

A aplicação V2G Smart System foi desenvolvida com base na framework ZK, Java e numa Base de Dados. Para criação da Base de Dados, decidiu-se que o SGB a utilizar seria o MySQL Server 5.1, pesando na escolha o facto de ser uma tecnologia open source. No desenvolvimento da camada de Acesso a Dados e da camada Lógica da Aplicação, optámos pela linguagem Java. Todas as interfaces gráficas foram criadas com base no Framework ZK [11], que facilita o desenvolvimento de aplicações web com Ajax, tendo ainda a vantagem de ser, também, open source. O ambiente de desenvolvimento a utilizar no sistema foi o Eclipse com o plug-in ZK integrado. O detalhe da implementação encontra-se em [12]. Uma aplicação web pressupõe a definição de um conjunto de páginas com uma relação directa ou indirecta entre si. Nesta secção será ilustrado o funcionamento da aplicação, cujos principais menús estão apresentadas na Fig. 4.

Fig 4: Menu da aplicação V2G Smart System.

O V2G Smart System é uma aplicação que visa servir qualquer tipo de condutor de VE's ou híbridos, sendo portanto um sistema flexível possível de ser usado tanto por condutores profissionais, tais como condutores de transportes públicos, ou de transporte de mercadorias, que fazem do automóvel a sua principal ferramenta de trabalho, como por condutores comuns que utilizam o automóvel apenas como meio de transporte. Esta flexibilidade está no entanto fortemente dependente da definição de perfis por parte do utilizador. Na Fig. 5 está apresentado o ecrã principal da aplicação V2G System Smart.

No momento da criação de perfil, o utilizador deve introduzir os seguintes dados do veículo: marca, modelo, número de chassis e matrícula, como ilustrado na Fig. 6. Neste momento o utilizador pode também já definir um perfil de carregamento para o VE que está a registar, como apresentado na Fig. 7. Suponhamos que o utilizador pretenda definir um perfil para o seu carro de serviço, ou seja, o carro que utiliza para se deslocar para o seu trabalho todos os dias (Semana Total). Por exemplo, o utilizador indica ao sistema que pretende vender energia quando o seu preço for igual ou superior a 0.90 € e pretende comprar quando o preço estiver abaixo de 0.85 €. Indica ainda que pretende sair de casa às 8h30m e regressar às 18h30m fazendo um total de 85 Km. Estas informações permitem ao sistema gerir o tempo e o nível de carga de bateria do veículo em função das necessidades do utilizador.

Fig 5: Ecrã principal da aplicação onde: (1) Neste menu a ideia é oferecer ao utilizador um menu fácil e simples para que possa aceder aos itens fundamentais e mais regularmente acedidos. Neste menu é possível aceder à página inicial, definições, estatísticas, conta virtual, contactos e rede elétrica, que serão apresentadas e explicadas de forma mais detalhada posteriormente; (2) Estado da bateria: Saber qual é o estado na bateria de um certo VE num dado momento; (3) O utilizador pode consultar todos os perfis que definiu e fazer a criação de novos. Cada perfil corresponde a um botão que para além de ter a informação da matrícula do veículo, o utilizador pode passar com o rato por cima do respectivo botão para ver a marca e modelo do veículo, tal como podemos observar no segundo perfil, trata-se de um Kia Fenga; (4) Preços de energia do mercado, nestas tabelas são apresentados ao utilizador os preços actuais (“live”) de cada um dos fornecedores de energia elétrica. Para a construção desta tabela, e tal como referido anteriormente, as informações são obtidas através dos RSS fornecidos por uma entidade que contém essa funcionalidade; (5) Saldo da conta virtual. Este é um link que redireciona para a mesma página que o link do menu principal chamado “Conta virtual”, ao qual podemos aceder aos movimentos e efectuar operações de depósito/levantamento; (6) Um menu de links muito simples, que redireciona para as seguintes páginas com as seguintes funções: página principal, a criação de um novo perfil, a visualização dos movimentos da conta virtual do utilizador, os contactos do site; tirar dúvidas, dar sugestões, observar os termos e condições gerais do site; (7) Menu de links diretos para a Página Inicial, Contactos, Termos e Condições gerais, e a opção de fazer / da sessão; e (8) Zona onde é dado a conhecer ao utilizador, as últimas notícias relacionadas com a energia elétrica, que poderá noticiar o surgimento de novos veículos, novos desenvolvimentos tecnológicos, novas experiências, variação de preços no mercado de energia.

Fig 6: Menu de criação do perfil da aplicação V2G Smart System.

Fig 7: Criação do perfil de carregamento para o VE.
Outra das possibilidades que o utilizador tem para definir o perfil de carregamento para além da “Semana Total”, é o “Fim de Semana”, “Dias úteis” e “Personalizado”. Os três primeiros tipos de perfil são todos idênticos, mudando só os dias da semana. Já no perfil “Personalizado” poderá ser definido um perfil diferente para cada dia. Em qualquer altura o utilizador pode também consultar os gastos/lucros que efectuou com os últimos carregamentos - Fig. 8. A página de Conta Virtual pode ser acedida através do menu principal ou clicando no saldo que aparece no canto superior direito do ecrã.

Fig. 8: Movimentos da conta virtual (AccountMovements.zul)

Através desta página pode ser ainda fornecido ao sistema um número de cartão de crédito e o montante que o utilizador pretende disponibilizar para carregamentos. Da mesma forma pode especificar um número de cartão no qual devem ser carregados os seus lucros. Na Fig. 9, é apresentada a consulta dos consumos energéticos feitos pelos diversos condutores dos VE, a qual é de interesse para os fornecedores de energia onde estes poderão consultar as médias de consumo, filtradas pela área geográfica: distrito e concelho. Através da análise da tabela central será mais fácil perceber quais as horas do dia em que os utilizadores mais carregam os seus veículos, sendo possível ao fornecedor inferir sobre a quantidade de energia que deverá conseguir disponibilizar em determinados períodos em detrimento de outros. O condutor de igual forma pode observar estes resultados e assim redefinir os seus perfis de carregamento de maneira a que fiquem mais rentáveis em todos os aspectos.

Fig. 9: Consulta dos consumos energéticos médios pela rede elétrica

VII. CONCLUSÕES

A adopção massiva de VE será restringida a limitações da rede de energia elétrica se não forem adoptadas medidas adicionais. Uma estrutura de controlo hierárquico poderá lidar com este problema, permitindo a integração de uma maior número de VEs e evitando investimentos monetários no reforço da rede de energia elétrica. Assim, este trabalho foi proposto num sistema web para centralizar a informação e a gestão dos carregamentos dos VE, gerando diversos tipos de relatórios. A análise de dados de consumo permite melhor os comportamentos dos condutores dos VE e assim adaptar os sistemas.

O presente trabalho ilustra de igual forma a colaboração existente entre o GEPE – Grupo de Electrónica de Potência e Energia (GEPE) da Universidade do Minho, com experiência no desenvolvimento de sistemas de carregamento de VE [13], com o grupo do ISEL, GIAA – Grupo de Investigação em Ambientes Autónomos e a sua experiência no desenvolvimento de sistemas de informação inteligentes.

AGRADECIMENTOS

Os autores agradecem à FCT (Fundação para a Ciência e a Tecnologia) e ao Programa MIT-Portugal, pelo financiamento do Projecto MIT-PT/EDAM-EMS/0030/2008.

REFERENCES