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ABSTRACT. In this paper we revisit the so-called Bergman kernel method - BKM - for
solving conformal mapping problems and propose a generalized BKM-approach to extend
the theory to 3-dimensional mapping problems. A special software package for quaternions
was developed for the numerical experiments.

1. INTRODUCTION

The construction of reproducing kernel functions is not restricted to real 2-dimension.

Indeed, the two complex variable case has been already considered by Bergman himself

(c.f.[1]). Moreover, results concerning (and restricted to) the construction of Bergman ker-

nel functions in closed form for special domains in the framework of hypercomplex function

theory (which not supposes the consideration of spaces corresponding toevenreal dimen-

sions) can be found in [4, 5, 16].

They suggest that BKM can also be extended to mapping problems in higher dimensions,

particularly 3-dimensional cases. We illustrate such a generalized BKM-approach by pre-

senting numerical examples obtained by the use of speciallydeveloped software packages

for quaternions.

2. THE COMPLEX CASE REVISITED

LetΩ be a bounded simply-connected domain with boundary∂Ω in the complexz−plane

(z = x+iy), and letL2(Ω) denote the Hilbert space of all square integrable functionswhich

are analytic inΩ. Consider the inner product inL2(Ω)

< g1(z), g2(z)>=

∫ ∫

Ω
g1(z)g2(z)dxdy,

assume w.l.o.g. that0 ∈ Ω and letK(., 0) be the Bergman kernel function ofΩ with

respect to0. Then, the kernel functionK(., 0) is uniquely characterized by thereproducing

property

< g,K(., 0)>= g(0), ∀g ∈ L2(Ω).
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The kernel functionK(., 0) was introduced by Bergman in 1921. He spent most of his

life developing properties and applications of his kernel function, in particular, to conformal

mapping.

One of the most important aspects of conformal mappings is the persistence of solutions

of Laplace’s equation. This property is very useful in physical problems involving Laplace’s

equation, such as electrostatics, heat flow, fluid mechanics, etc. In fact, once the equation

has been solved on a particular domain, the solution is immediately known on all domains

which can be mapped onto the original via a one-to-one analytic function.

There are several methods for solving conformal mapping problems. In contrast to most

conformal mapping techniques, the approximation of the solution obtained by using the

Bergman Kernel method is an analytic function.

2.1. The Bergman Kernel Method.

The Bergman Kernel Method - BKM is a method for approximatingthe conformal map

f : Ω → D := {w : |w| < 1}, such thatf(0) = 0 andf ′(0) > 0.

The method is based on thereproducing property(2) of the kernel function and on the well

known relation ofK(., 0) with f ,

f(z) =

√

π

K(0, 0)

∫ z

0
K(t, 0)dt,

(see [1, 8, 9, 13])

The numerical procedure for approximatingf is based on the above properties and in-

volves the following steps:

Step 1 Choose a complete set of functions{ηj}∞1 for the spaceL2(Ω).

Step 2 Orthonormalize the functions{ηj}n
1 by means of the Gram-Schmidt process to ob-

tain an orthonormal set{η∗j }n
1 .

Step 3 Approximate the kernel functionK(., 0) by the Fourier sum

Kn(z, 0) =
n

∑

j=1

< K(., 0), η∗j > η∗j (z) =
n

∑

j=1

η∗j (0)η
∗
j (z)

Step 4 Approximatef by

fn(z) =

√

π

Kn(0, 0)

∫ z

0
Kn(t, 0)dt.

The second step of the BKM involves the use of the Gram-Schmidt process which can be

extremely unstable. For this reason we construct the Gramiam matrix by using the Maple

system, as this system provides integration routines so that the inner products involved can

be computed without any loss of accuracy (cf. [11]).
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2.2. Numerical Example.

In this section we present a simple example, just to illustrate the BKM. Consider the

square

S := {z = x + iy : |x| < 1, |y| < 1}.

The usual choice of the basis set inStep 1 is to take the polynomials1, z, z2, · · · . In this

example, because of the symmetry ofS it suffices to consider the monomials1, z4, z8, · · · ,
the other inner products being zero, (see Gaier [8]). Denoting byn the number of monomi-

als used, we have, for example, forn = 2,

η1 = 1 and η2 = z4.

The corresponding ON functions are

η∗1 =
1

2
and η∗2 =

1

76

√
133 +

15

304

√
133z4,

the approximationK2 to the Bergman kernel function is

K2(z, 0) =
83

304
+

105

1216
z4

and finally, the approximationf2 to the conformal mapping function is

f2(z) =
1

76

√
1577πz +

21

25232

√
1577πz5.

Denote byεn the error estimate obtained by sampling the function|1 − |fn(z)|| at a

number of test points on∂S. The following table contains the values ofεn and the errors

En corresponding to results presented in [11], for several values ofn.

n 2 9 18 26 28
εn 2.2E − 2 5.2E − 9 1.5E − 17 4.0E − 25 5.0E − 27
En – 1.4E − 8 1.5E − 17 1.0E − 24 –

TABLE 1. Errors estimates for the square

The resultsE9 andE26 were obtained by Levin et al [12] and Papamichael et al [14],

respectively, and are the best possible. The resultE18 was obtained by Jank [11] by using

the Maple system. At that time it was not possible to reach values ofn > 18. Now it is

clear that by using the Maple system and thus avoiding, whenever it is possible, the numeric

Gram-Schmidt process, it is possible to obtain better results.

2.3. Numerical Difficulties.

If the domains under consideration are “difficult”, i.e. if there are singularities of the

mapping function on or close to∂Ω, the convergence of the monomials is very slow. In

such cases it is convenient to use the ideas of Levin, Papamichael and Sideridis [12] (see

also ([14]) of including into the system of monomials{zj}n
j=0 functions that reflect these

singularities. The package BKMPACK is a Fortran package, due to Warby [17] and is
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based on the BKM with the so-calledaugmented basis set- BKM-AB. For example, for the

L-shaped domain

L := {z = x + iy : −1 < x < 3, |y| < 1} ∪ {z = x + iy : |x| < 1, y < 3}

the use of BKM gives very poor approximations to the conformal mapf , (ε ≈ 10−1). In

fact,f has a serious branch point singularity at the re-entrant cornerz = 1 + i of L.

–1

0

1

2

3

–1 0 1 2 3

L

FIGURE 1. A “difficult” domain

The application of BKM-AB (with appropriated singular functions) can give more ac-

curate approximations. The numerical implementation of BKM-AB produces an error

ε ≈ 10−8 (see [14] for the details about the choice of the basis set andthe numerical

results).

Another well-known difficulty in conformal mapping is thecrowdingphenomenon. Crow-

ding is a form of ill-conditioning that causes trouble in almost all numerical methods for

conformal mapping. It occurs whenever the domain islong, that is, the target region has

areas that are relatively long and thin. A common answer to this difficulty is to use a domain

decomposition (see [6, 7]). As an example illustrating thisdifficulty, consider the rectangles

Ra := {z = x + iy : |x| < a, |y| < 1}.

Next table contains the numerical results obtained by consideringa = 1, 2, 4, 6 and8.

a 1 2 4 6 8
ε 8.4E − 12 2.8E − 8 1.8E − 5 1.7E − 4 1.1E − 3

TABLE 2. The effects of crowding

Hereε denotes the error estimate corresponding ton = 25. We note that in the case

of the rectangle it is sufficient to consider the monomials1, z2, z4, · · · . For comparison

purposes we consider also these monomials fora = 1, instead of1, z4, z8, · · · , as in last

section.
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3. FROM C TO H

3.1. Basic Notions and Results.

Let {1, e1, e2, e3} be an orthonormal base of the Euclidean vector spaceR
4 with a prod-

uct according to the multiplication rules

e2
1 = e2

2 = e2
3 = −1, e1e2 = −e2e1 = e3.

This non-commutative product generates the algebra of realquaternionsH. The real vector

spaceR4 will be embedded inH by identifying the element

x = (x0, x1, x2, x3) ∈ R
4

with the element

q = x0 + e1x1 + e2x2 + e3x3 ∈ H.

The conjugate ofq is

q̄ = x0 − e1x1 − e2x2 − e3x3.

Instead of the real and the imaginary parts we will distinguish between the scalar part ofq

Scq := x0 =
1

2
(q + q̄)

and the vector part ofq

Vec q := e1x1 + e2x2 + e3x3 =
1

2
(q − q̄).

The norm|q| of q is defined by

|q|2 = qq̄ = q̄q = x2
0 + x2

1 + x2
2 + x2

3

and it immediately follows that each non-zeroq ∈ H has an inverse given by

q−1 =
q̄

|q|2 .

Introducing the hypercomplex variables

z1 = −qe1 + e1q

2
= x1 − e1x0

and

z2 = −qe2 + e2q

2
= x2 − e2x0,

we get

H
2 = {(z1, z2) : z1 = x1 − e1x0, z2 = x2 − e2x0} ∼= R

3 ∼= A := span
R
{1, e1, e2}.

Now, letΩ be a domain inR3 and consider theH-valued functions defined inΩ:

f : R
3 → R

4 ∼= H

f(x) = f0(x) + e1f1(x) + e2f2(x) + e3f3(x),

wherex = (x0, x1, x2) ∈ R
3 andfk are real valued inΩ functions. On the setC1(Ω, H)

define the quaternionic Cauchy-Riemann operator

D =
∂

∂x0
+ e1

∂

∂x1
+ e2

∂

∂x2
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and its conjugate

D̄ =
∂

∂x0
− e1

∂

∂x1
− e2

∂

∂x2
.

Definition 1. AC1-functionf is called left-monogenic (resp. right-monogenic) in a domain

Ω if

Df = 0, in Ω ( resp.fD = 0 in Ω).

Definition 2. If ~z = (z1, z2) then the “symmetric powerν” of ~z is defined as

~zν := z1
ν1 × z2

ν2 =
ν!

|ν|!
∑Q

(i1,··· ,i|ν|)

zi1 · · · zi|ν| ,

whereν = (ν1, ν2) is a multi-index,|ν| = ν1 + ν2, ν! = ν1!ν2! and the sum is taken over

all permutations of(i1, · · · , i|ν|).

Result 1. Let~z = (z1, z2) andν = (ν1, ν2). The permutational productz1
ν1×z2

ν2 satisfies

the recursion formula

zν1

1 × z2
ν2 =

1

ν1 + ν2
{ν1(z

ν1−1
1 × zν2

2 )z1 + ν2(z
ν1

1 × zν2−1
2 )z2}.

Result 2. LetHk
ν (~z) := z1

ν1 × z2
ν2 , with |ν| = k.

1. Hk
ν (~z), are homogeneous polynomials of degreek.

2. Hk
ν (~z), are monogenic functions.

3. {Hk
ν (~z)} ∪ {1} are a linearly independent system, for eachk ∈ N.

(These polynomials are also called Fueter-polynomials).

3.2. The Bergman Kernel Method.

The construction of reproducing kernel functions is not restricted to real dimension 2.

Nowadays, reproducing kernels are a well known tool in the theory of functions of one

or several complex variables and also in Clifford Analysis (for a review see [3, 10]). For

more practical applications it is necessary to know the reproducing kernel explicitly. Results

concerning the construction of Bergman kernel functions inclosed form for special domains

(the ball, the half-plane, strip domains, rectangular domains, etc) can be found in [3, 4, 5,

15, 16]. In this paper we construct the Bergman kernel function numerically and propose

an analogous BKM for 3 dimensional cases.

Let Ω be a bounded simply-connected domain inR
3 and denote byL2

r(Ω, H) the right-

Hilbert space of all square integrableH-valued functions, endowed with the inner product,

(1) < f(x), g(x)>=

∫

Ω
f(x)g(x) dV.

The right linear setL2
r(Ω, H) ∩ kerD is a subspace inL2

r(Ω, H) and has also a unique

reproducing kernelK(x, ζ), i.e

<K(., ζ), f >= f(ζ), ∀f ∈ L2
r(Ω, H) ∩ kerD.
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and if we now take an orthonormal complete system of functions{η∗j } then it can be proved

a Fourier series expansion for all functionsf ∈ L2
r(Ω, H) ∩ kerD

f(x) =

∞
∑

j=1

η∗j (x) < η∗j , f >

and therefore

K(x, ζ) =
∞

∑

j=1

η∗j (x) < η∗j ,K(x, ζ)>=
∞
∑

j=1

η∗j (x)η∗j (ζ).

This result suggests a numerical procedure to construct approximations toK similar to the

complex case. More precisely, and assuming w.l.o.g. that0 ∈ Ω, we rewriteSteps 1-3 of

BKM as follows:

Step 1 Choose a complete set of functions{ηj}∞1 for the spaceL2
r(Ω, H) ∩ kerD.

It is well known that the monogenic Fueter polynomials introduced in Section 3.1,

Hk
ν , |ν| = k; k = 0, 1, · · · , are a complete set of functions and are therefore the

natural choice in this step.

Step 2 Orthonormalize the functions{ηj}n
1 by means of the Gram-Schmidt process to ob-

tain an orthonormal set{η∗j }n
1 .

The use of Fueter polynomials up to degreeN corresponds to a total of

n :=
(N + 1)(N + 2)

2

functions. More precisely, then homogeneous polynomials of degree≤ N are

ηj := Hk
k−i,i; k = 0, · · ·N ; i = 0, · · · , k; j =

k(k + 1)

2
+ i + 1.

Step 3 Approximate the kernel functionK(., 0) by the Fourier sum

KN (x, 0) =

n
∑

j=1

η∗j (x)η∗j (0); N = 0, 1, · · ·

All these results underline that the Clifford analysis and one complex variable analysis

are closely connected. Thus, if we go further and introduce

Step 4 Compute

fN (x) = CN

∫ x

0
KN (t, 0)dt; N = 0, 1, · · · ,

whereCN denotes some constant (depending onKN (0, 0)), shall we get a “mapping” func-

tion from the domainΩ onto a sphere?

Before attempting to answer this question, we should make some remarks.
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Remark 1. We don’t expectf to be conformal as it is well known that inR3 the set of

conformal mappings is restricted to the set of Möbius transformations as firstly shown by J.

Liouville in 1850.

Remark 2. The polynomialsηj are inΩ ⊂ R
3 ∼= A := span

R
{1, e1, e2}, but the cor-

responding ON polynomialsη∗j are, in general, inH ∼= R
4. This means that the kernel

functionK and the mapping functionf are, in fact, functions fromΩ in R
4.

Remark 3. From the geometric and practical point of view, we would likef to map domains

Ω ⊂ R
3 to a sphere (for the moment, not necessarily the unit sphere).

Next two results are the starting point for the numerical BKMwe propose.

Result 3. If a functionf of the form

f = f(x) = f0(x) + f1(x)e1 + f2(x)e2,

is left-monogenic thenf is also right-monogenic.

Proof. Let x = (x0, x1, x2) and denote by∂k de partial derivatives
∂

∂xk

, k = 0, 1, 2. If

f is left-monogenic then

(∂0 + e1∂1 + e2∂2)(f0 + f1e1 + f2e2) = 0,

and after some simple calculations, we get














∂0f0 − ∂1f1 − ∂2f2 = 0
∂1f0 + ∂0f1 = 0
∂2f0 + ∂0f2 = 0
∂1f2 − ∂2f1 = 0

and these conditions imply thatf is right-monogenic, i.e.

(f0 + f1e1 + f2e2)(∂0 + e1∂1 + e2∂2) = 0. �

Result 4. Letf : Ω ⊂ H
2 → H ∼= R

4 be a function of the form

f = f(x) = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3,

monogenic from both sides and such that

∃a ∈ Ω : f(a) = 0.

Then,

f3 = 0, i.e. f : H
2 → A ∼= R

3.

Proof. Let f : Ω → H be a function of the form

f = f(x) = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3.
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If DLf = fDR = 0, then






































∂0f0 − ∂1f1 − ∂2f2 = 0
∂1f0 + ∂0f1 + ∂2f3 = 0
∂2f0 + ∂0f2 − ∂1f3 = 0
∂1f2 − ∂2f1 + ∂0f3 = 0
∂1f0 + ∂0f1 − ∂2f3 = 0
∂2f0 + ∂0f2 + ∂1f3 = 0
∂1f2 − ∂2f1 − ∂0f3 = 0

This means that

∂0f3 = ∂1f3 = ∂2f3 = 0

and thusf3(x0, x1, x2) = C, whereC is some constante. Therefore,f is a function of the

form

f = f0(x0, x1, x2) + f1(x0, x1, x2)e1 + f2(x0, x1, x2)e2 + Ce3.

Applying now the fact thatf(a) = 0, for somea ∈ Ω, we conclude thatC = f3(a) = 0

and the result is proved.�

We don’t expectf to be monogenic from both sides. We recall that Möbius transfor-

mations are the only conformal mappings inR
m+1, (m ≥ 2), but quaternionic Möbius

transformations themselves are neither left nor right monogenic. However, Results 3 and 4

give the motivation for the numerical procedure we propose for computingf in Step 4 of

BKM.

Step 4.1 Approximate the mapping functiong : Ω → H by

(2) gN (x) =

∫ x

0
KN (t, 0)dt; N = 1, 2, · · ·

Step 4.2 Approximate the mapping functionf by “cutting” the “e3-part” in (2), i.e. ifgN is

of the form

(3) gN (x) = g
{0}
N (x) + g

{1}
N (x)e1 + g

{2}
N (x)e2 + g

{3}
N (x)e3,

then construct the functionfN from Ω into A ∼= R
3 by means of

(4) fN(x) = g
{0}
N (x) + g

{1}
N (x)e1 + g

{2}
N (x)e2.

3.3. Numerical Examples.

We illustrate this method by presenting some examples. All the numerical results pre-

sented in this work were obtained by using a specially developed Maple software package -

confMapPackage, [2].

Example 1.Consider the cube

E1 := {(x0, x1, x2) ∈ R
3 : |x0| < 1, |x1| < 1, |x2| < 1},

and denote, as usual, byz1 and z2 the homogeneous polynomialsz1 = x1 − x0e1 and

z2 = x2 − x0e2. For example, forN = 2, the BKM details are as follows:
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Step 1 The6 homogeneous polynomials of degree≤ 2 are:

η1 := H0
(0,0)(z1, z2) = 1,

η2 := H1
(1,0)(z1, z2) = x1 − x0e1,

η3 := H1
(0,1)(z1, z2) = x2 − x0e2,

η4 := H2
(2,0)(z1, z2) = x2

1 − x2
0 − 2x0x1e1,

η5 := H2
(1,1)(z1, z2) = x1x2 − x0x2e1 − 2x0x1e2,

η6 := H2
(0,2)(z1, z2) = x2

2 − x2
0 − 2x0x2e2.

Step 2 The corresponding orthonormal polynomials are:

η∗1 = 1
4

√
2,

η∗2 = 1
4

√
3(x1 − x0e1),

η∗3 = 1
4

√
3(2x2 − x0e2 + x1e3),

η∗4 = 3
56

√
70(x2

1 − x2
0 − 2x1x0e1),

η∗5 = 3
224

√
14(14x1x2 − 14x2x0e1 − 4x1x0e2 + (5x2

1 − 5x2
0)e3),

η∗6 = 3
32

√
10(−x2

1 − x2
0 + 2x2

2 − 2x2x0e2 + 2x1x2e3).

Step 3 The approximationK2 to the Bergman kernel function is

K2(x, 0) =
1

8
, x ∈ E1.

Step 4 The approximationf2 to the mapping function is

f2(x) =
1

8
x, x ∈ E1.

Next figures correspond to the plots obtained with BKM for several values ofN .
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FIGURE 2. The original cube
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FIGURE 3. N = 2
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FIGURE 4. N = 4
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FIGURE 5. N = 8
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FIGURE 6. N = 12

The first obvious remark is that the image of the cube considered in Example 1 seems,

in fact, to be a sphere, but not unitary. Moreover, numericalexperiments show that the
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constant factor

CN :=

√

π

KN (0, 0)

used in the complex case is not adequate. For the moment it is not completely clear what

should be the choice ofCN .

The analysis of the “e3-part” in (3), i.e. g{3}N (x) shows some evidence that asN grows

this function gets smaller. However we did not go further than N = 14, as our program

becomes very time consuming. Figure 7 corresponds to the plot of g
{3}
14 (x), wherex ∈

{(x0, x1, x2) ∈ R
3 : x0 = 1, |x1| < 1, |x2| < 1}.
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FIGURE 7. The functiong{3}14 (x)

Example 2.For the parallelepiped

E2 := {(x0, x1, x2) ∈ R
3 : |x0| < 2, |x1| < 1, |x2| < 1},

the BKM results are as follows:
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FIGURE 8. The original parallelepiped
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FIGURE 9. N = 1
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FIGURE 10. N = 2
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FIGURE 11. N = 4
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FIGURE 12. N = 8
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FIGURE 13. N = 12

Next figure corresponds to the plot of the functiong
{3}
12 (x), for x ∈ {(x0, x1, x2) ∈ R

3 :

x0 = 2, |x1| < 1, |x2| < 1}.
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FIGURE 14. The functiong{3}12 (x)

We end this section by presenting a last example of an L-shaped domain. Even for this

“difficult” domain, the BKM results are very encouraging.

Example 3.Consider the L-shaped domain presented in Figure 15. The BKMresults are as

follows:
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FIGURE 15. An L-shaped domain
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FIGURE 16. N = 0
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FIGURE 17. N = 1
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4. CONCLUSIONS

Although we don’t have for the moment a theoretical justification for the remarkable re-

sults achieved by the BKM propose (even for small values ofN ), we are convinced that this

BKM-approach for 3 dimensional cases works and it is useful to continue the investigation

in this direction. We expect to get theoretical results and to be able to improved this method

by extending the complex idea of domain decomposition to higher dimensions.
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D-99421 Weimar Universidade do Minho Institut Mathematik/Physik Universidade de Aveiro
Germany 4470 Braga D-99421 Weimar 3810 Aveiro

Portugal Germany Portugal
bastian.bock@web.de mif@math.uminho.pt guerlebe@fossi.uni-weimar.de hrmalon@mat.ua.pt


