NUMERICAL EXPERIMENTS WITH BERGMAN KERNEL FUNCTIONS
IN 2 AND 3 DIMENSIONAL CASES

S. BOCK, M. I. FALCAO, K. GURLEBECK AND H. MALONEK

ABSTRACT. In this paper we revisit the so-called Bergman kernel ne:thBKM - for
solving conformal mapping problems and propose a genethBKM-approach to extend
the theory to 3-dimensional mapping problems. A specialsok package for quaternions
was developed for the numerical experiments.

1. INTRODUCTION

The construction of reproducing kernel functions is notrieted to real 2-dimension.
Indeed, the two complex variable case has been alreadydewadi by Bergman himself
(c.f.[1]). Moreover, results concerning (and restricteflithe construction of Bergman ker-
nel functions in closed form for special domains in the fraumik of hypercomplex function
theory (which not supposes the consideration of spacessmwnding teevenreal dimen-
sions) can be found in [4, 5, 16].

They suggest that BKM can also be extended to mapping prallehigher dimensions,
particularly 3-dimensional cases. We illustrate such segdized BKM-approach by pre-
senting numerical examples obtained by the use of spedailgloped software packages
for quaternions.

2. THE COMPLEX CASE REVISITED

Let2 be a bounded simply-connected domain with bound#tyn the complex:—plane
(z = x+iy), and letL2(Q2) denote the Hilbert space of all square integrable functiamish
are analytic irQ2. Consider the inner product ib?(Q2)

< 01(2), g (2) >= / /Q 01(2) (@) dedy,

assume w.l.o.g. that € Q and letK(.,0) be the Bergman kernel function 6f with
respect td). Then, the kernel functio& (., 0) is uniquely characterized by theproducing

property
< g,K(.,,0)>= g(0), Vg € L*(Q).
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The kernel functionk(.,0) was introduced by Bergman in 1921. He spent most of his
life developing properties and applications of his kerneldtion, in particular, to conformal
mapping.

One of the most important aspects of conformal mappingsipéhnsistence of solutions
of Laplace’s equation. This property is very useful in phgbsproblems involving Laplace’s
equation, such as electrostatics, heat flow, fluid mechaeics In fact, once the equation
has been solved on a particular domain, the solution is inmtedyg known on all domains
which can be mapped onto the original via a one-to-one andlytction.

There are several methods for solving conformal mappinglenas. In contrast to most
conformal mapping techniques, the approximation of theitemi obtained by using the
Bergman Kernel method is an analytic function.

2.1. The Bergman Kernel Method.
The Bergman Kernel Method - BKM is a method for approximatimg conformal map

f:Q— D:={w:|w| <1}, such thatf(0) = 0 and f'(0) > 0.

The method is based on theproducing property(2) of the kernel function and on the well
known relation ofK (., 0) with f,

16 =\ 70 [, K0
(see1, 8,9, 13))

The numerical procedure for approximatirigs based on the above properties and in-
volves the following steps:

Step 1 Choose a complete set of functiofig; }5° for the space.?(2).

Step 2 Orthonormalize the function§; }} by means of the Gram-Schmidt process to ob-
tain an orthonormal sety; }7.

Step 3 Approximate the kernel functiok’(., 0) by the Fourier sum

Kn(2,0) =" < K(,0),0;>ni(z) =Y _n;(0)n;(2)
j= j=

Step 4 Approximatef by

fn(2) = \/an(gjo) /0 K, (t,0)dt.

The second step of the BKM involves the use of the Gram-Sdhpnitess which can be
extremely unstable. For this reason we construct the Grarmatrix by using the Maple
system, as this system provides integration routines gdtbanner products involved can
be computed without any loss of accuracy (cf. [11]).
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2.2. Numerical Example.

In this section we present a simple example, just to illastthe BKM. Consider the
square

S={s=w+iy:|z| <1, [y[ <1}
The usual choice of the basis setStep 1 is to take the polynomial, z, z2,---. In this
example, because of the symmetrysot suffices to consider the monomials 24, 28, - - -,

the other inner products being zero, (see Gaier [8]). Dagdiy» the number of monomi-
als used, we have, for example, foe= 2,

m=1 and Ny = 2%

The corresponding ON functions are
1

1 15
f=—- and = —V133 + —/1332*
m=5 I A TR
the approximationk’, to the Bergman kernel function is
83 105
K. = 4
2(2:0) = 357+ To16”

and finally, the approximatiorfi, to the conformal mapping function is
1 21
— — 1 V1 2
fa(z) =5 S57Tmz + 55932 57Tz
Denote bye,, the error estimate obtained by sampling the functibr- |f,,(2)|| at a
number of test points oflS. The following table contains the values ©f and the errors
E,, corresponding to results presented in [11], for severalesbfn.

n 2 9 18 26 28
en | 228 -2 |b52E -9 | 15E —17 |4.0E — 25 | 5.0E — 27
E, - 14F —8 | 1.5E — 17 | 1.0E — 24 -

TABLE 1. Errors estimates for the square

The resultskly and E»g were obtained by Levin et al [12] and Papamichael et al [14],
respectively, and are the best possible. The rdsyltwas obtained by Jank [11] by using
the Maple system. At that time it was not possible to reachesbfn > 18. Now it is
clear that by using the Maple system and thus avoiding, wegritis possible, the numeric
Gram-Schmidt process, it is possible to obtain better t&sul

2.3. Numerical Difficulties.

If the domains under consideration are “difficult”, i.e. lifetre are singularities of the
mapping function on or close 2, the convergence of the monomials is very slow. In
such cases it is convenient to use the ideas of Levin, Papaeliand Sideridis [12] (see
also ([14]) of including into the system of monomigls’ };.‘:0 functions that reflect these
singularities. The package BKMPACK is a Fortran packages ttuWarby [17] and is
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based on the BKM with the so-calledigmented basis seBKM-AB. For example, for the
L-shaped domain

L={z=x+iy:—1<z<3, |y <l}U{z=a+1iy:|z|] <1,y <3}

the use of BKM gives very poor approximations to the confdrmap f, (¢ ~ 1071). In
fact, f has a serious branch point singularity at the re-entramtezar= 1 + i of L.

—~14

FiIcure 1. A “difficult” domain

The application of BKM-AB (with appropriated singular fuiems) can give more ac-
curate approximations. The numerical implementation ofMBKB produces an error
e ~ 1078 (see [14] for the details about the choice of the basis settl@dumerical
results).

Another well-known difficulty in conformal mapping is tieeowdingphenomenon. Crow-
ding is a form of ill-conditioning that causes trouble in alsh all numerical methods for
conformal mapping. It occurs whenever the domaifoigy, that is, the target region has
areas that are relatively long and thin. A common answerisddifficulty is to use a domain
decomposition (see [6, 7]). As an example illustrating tliificulty, consider the rectangles

Ro={z=z+iy:|z| <a, |y <1}.

Next table contains the numerical results obtained by denisiga = 1, 2, 4, 6 and8.

a 1 2 4 6 8
€| 84FK —12|28F -8 |18E -5 |1.7TE—-4|1.1F -3

TABLE 2. The effects of crowding

Heree denotes the error estimate corresponding:te= 25. We note that in the case
of the rectangle it is sufficient to consider the monomials?, 2%, ---. For comparison
purposes we consider also these monomials.fer 1, instead ofl, z*, 28, ---, asin last
section.



Numerical experiments with Bergman kernel functions

3. FRoMmC TOH

3.1. Basic Notions and Results.
Let {1,e1, ez, e3} be an orthonormal base of the Euclidean vector spdoeith a prod-
uct according to the multiplication rules
e% = e% = e% = —1, ejeg = —ege] = e3.

This non-commutative product generates the algebra ofjestbrniond. The real vector
spaceR? will be embedded i by identifying the element

x = (zg, 1, 22,23) € R4
with the element
q = x0+ e1x1 + eaxo + ezxg € H.
The conjugate of is
q = xo— €171 — €2T2 — €3T3.

Instead of the real and the imaginary parts we will distispuietween the scalar partof

1 _
Scq =0 = 5(¢+4q)

and the vector part of
Vecq := e1x1 + eawa + e3w3 = %(q —q).
The norm|q| of ¢ is defined by
lal* = 47 = qq = @f + aF + 25 + 23

and it immediately follows that each non-zera& H has an inverse given by

1 q
¢ =3
lq?
Introducing the hypercomplex variables
ge1 + e1q
2= = T1— €1%p
2
and
qes + eaq
e N A
we get

H? = {(21,22) : 21 = 71 — €120, 22 = To — eaxp} = R 2 A= spang{1,e1,e2}.
Now, let be a domain irR? and consider th&l-valued functions defined ift:
RS RY~H
f(z) = fo(z) +erfi(x) + eafo(x) + e3f3(x),
wherex = (zg,21,72) € R? and f;, are real valued iff2 functions. On the sef'! (2, H)

define the quaternionic Cauchy-Riemann operator
0 0
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and its conjugate

_ 0 0 0
D—a—xo—ﬁla—wl 628—1'2.

Definition 1. A C'-function f is called left-monogenic (resp. right-monogenic) in a doma
Qif
Df=0,inQ (resp.fD=0in{).

Definition 2. If 2= (21, 22) then the “symmetric power” of Z'is defined as

V!
Vo v vy __
zZ0 =21 X 2977 = — g Zip ot Zi‘,,‘a

|t =
[TGins i)
wherev = (v, 12) is a multi-index,|v| = v; + v,, V! = v1l! and the sum is taken over
all permutations ofiy, - - - ,ip,)).

Result 1. LetZ = (z1, 22) andv = (v, v2). The permutational product ** x z,"2 satisfies
the recursion formula

1
2 X 2" = {1 (217 X 282) 2 + (24 x 2527 1) 20,
v+ o

Result 2. Let H¥(Z) := 21! x 2”2, with |v| = k.
1. HF¥(Z), are homogeneous polynomials of degkee

2. H*(%), are monogenic functions.
3. {H(%)} U {1} are alinearly independent system, for edch N.

(These polynomials are also called Fueter-polynomials).

3.2. The Bergman Kernel Method.

The construction of reproducing kernel functions is notriefed to real dimension 2.
Nowadays, reproducing kernels are a well known tool in theoth of functions of one
or several complex variables and also in Clifford Analys® @ review see [3, 10]). For
more practical applications it is necessary to know theaaypcing kernel explicitly. Results
concerning the construction of Bergman kernel functiordased form for special domains
(the ball, the half-plane, strip domains, rectangular domeetc) can be found in [3, 4, 5,
15, 16]. In this paper we construct the Bergman kernel fonctiumerically and propose
an analogous BKM for 3 dimensional cases.

Let Q be a bounded simply-connected domairRihand denote by.2(£2, H) the right-
Hilbert space of all square integralifevalued functions, endowed with the inner product,

1) < f(a), gla)>= /Q F@g(a) dv.

The right linear setf.?(Q2, H) N ker D is a subspace i2(£2, H) and has also a unique
reproducing kerneK (z, (), i.e

<K(.,0), f>= f(0), Vf € L*(Q,H) nker D.
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and if we now take an orthonormal complete system of funst{@gl} then it can be proved
a Fourier series expansion for all functiofis L2(Q2, H) N ker D

flx) = mj(x) <, f>
j=1

and therefore

K(z,0) =Y ni(x) <nj, K(z,0)>= > ni(x)n:(0).
j=1 Jj=1

This result suggests a numerical procedure to construcozinpations toK similar to the
complex case. More precisely, and assuming w.l.o0.g. @thaft2, we rewriteSteps 1-3 of
BKM as follows:

Step 1 Choose a complete set of functiofig; }5° for the spacd.?(£2, H) N ker D.

It is well known that the monogenic Fueter polynomials idtroed in Section 3.1,
HE, |v| = k; k = 0,1,---, are a complete set of functions and are therefore the
natural choice in this step.

Step 2 Orthonormalize the function§; }} by means of the Gram-Schmidt process to ob-
tain an orthonormal sefty; }7.
The use of Fueter polynomials up to degréecorresponds to a total of

(N+1)(N+2)

2
functions. More precisely, the homogeneous polynomials of degreeV are
k(k+1
miim HE g k=0 Nyi =0, k= 20D gy

Step 3 Approximate the kernel functiok’(., 0) by the Fourier sum

Kn(2,0) = nj(@)n;(0); N=0,1,--
j=1

All these results underline that the Clifford analysis am& complex variable analysis
are closely connected. Thus, if we go further and introduce

Step 4 Compute

0

whereC'y denotes some constant (depending@n(0, 0)), shall we get a “mapping” func-
tion from the domairf2 onto a sphere?

Before attempting to answer this question, we should makesemarks.
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Remark 1. We don’t expectf to be conformal as it is well known that iR? the set of
conformal mappings is restricted to the set of Mobius ti@mnsations as firstly shown by J.
Liouville in 1850.

Remark 2. The polynomialsy; are inQ ¢ R? = A := spang{1,e;, ez}, but the cor-
responding ON polynomialg? are, in general, il = R%. This means that the kernel
function I and the mapping functioifi are, in fact, functions frorf2 in R*.

Remark 3. From the geometric and practical point of view, we would lfki® map domains
Q) C R3 to a sphere (for the moment, not necessarily the unit sphere)

Next two results are the starting point for the numerical BK#& propose.
Result 3. If a function f of the form
f=f(z)= folz) + fi(x)er + fa(x)ez,

is left-monaogenic thet is also right-monogenic.

Proof. Letz = (x,x1,x2) and denote by, de partial derivativesa%, k=0,1, 2. 1If
k

f is left-monogenic then
((90 +e101 + 62(92)(f0 + flel + f262) =0,

and after some simple calculations, we get

Oofo—01f1 —O2fa =0
O1fo+0of1 =0
O2fo+ 0of2 =0
O1fa —02f1 =0

and these conditions imply thdtis right-monogenic, i.e.

(fo+ fier + fae2)(0o + €101 + e202) = 0.0

Result 4. Let f : Q ¢ H?> — H = R* be a function of the form
f=[@)=fo(z) + fix)er + fa(x)ez2 + f3(x)es,
monogenic from both sides and such that
daeN: f(a)=0.
Then,
f3=0, i.e. f:H>?— A=R3
Proof. Let f : Q — H be a function of the form

f=f(@) = fol@) + filz)er + fa(x)e2 + fs(w)es.
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If Dr.f = fDr =0, then

Oofo—01f1 —O2fa =0
O1fo+00f1 +02f3=0
Oafo+00fa —01f3=0
O1fa —02f1 +00f3=0
O1fo+00f1 —02f3=0
Oafo+00fa+01f3=0
O1fa —02ft —Opf3 =0

This means that
Oofs =01f3=02f3=0
and thusfs(xg, x1,x2) = C, whereC' is some constante. Thereforgjs a function of the
form
[ = fo(xo, x1,22) + f1(x0, 1, 22)e1 + fa(xo, T1,22)e2 + Ces.

Applying now the fact thaff (a) = 0, for somea € 2, we conclude tha€ = f3(a) = 0
and the result is proved.l

We don't expectf to be monogenic from both sides. We recall that Mobius faans
mations are the only conformal mappingsRf*™!, (m > 2), but quaternionic Mobius
transformations themselves are neither left nor right genic. However, Results 3 and 4
give the motivation for the numerical procedure we propasedmputingf in Step 4 of
BKM.

Step 4.1 Approximate the mapping function: 2 — H by

@ an(e) = [ Kn(t.0)dt N =12,
0
Step 4.2 Approximate the mapping functiofi by “cutting” the “es-part” in (2), i.e. ifgy is
of the form
3) gn(@) = g3 (@) + g8 @)er + 9 (@)ea + g (@)es,

then construct the functiofiy from Q into A = R3 by means of
(@) (@) =g @) + g (@)er + g3 (2)ea.
3.3. Numerical Examples.

We illustrate this method by presenting some examples. h&lltumerical results pre-
sented in this work were obtained by using a specially dpezidVaple software package -
confMapPackage, [2].

Example 1.Consider the cube
Fy = {(1’0,1’1,1’2) S RS : |l’0| <1, |SL’1| <1, |SL’2| < 1},

and denote, as usual, hy and z; the homogeneous polynomials = x; — zge; and
z9 = T9 — xgeo. FOr example, forN = 2, the BKM details are as follows:
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Step 1 The6 homogeneous polynomials of degree are:
m = Hy g (21,22) = 1,
2= HYy g (21, 22) = @1 — zoer,
ns = Hy (21, 22) = 22 — woea,
Ny = H(2270)(z1, 29) = a2 — x% — 2xgT1€1,
N5 = H(2171)(z1, 29) = X1XTy — ToToe1 — 2T0T1 €2,
NG = H(2072)(21, 29) = 23 — 23 — 2z02900.
Step 2 The corresponding orthonormal polynomials are:
n=1v2,
5 = 1V3(x1 — zoer),
ns = %\/3(2952 — xpeg + x1€3),

_ 3 2 2
n; = 5V 10(x] — x5 — 2x170€1),

nE = % 14(14x 29 — 1dz9m0er — 413062 + (52 — 523)e3),

7]%‘ = % 10(—x% — x% + 2%% — 2xox0€9 + 22171217263).

Step 3 The approximatiornks to the Bergman kernel function is
1
K (z,0) = ]’

Step 4 The approximatiory, to the mapping function is

r € k.

1
fo(x) = gD T € b.

Next figures correspond to the plots obtained with BKM foresal/values ofV.

FIGURE 2. The original cube
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FIGURE3. N =2

FIGURE4. N =4

FIGURES. N =8

FIGUREG6. N =12

The first obvious remark is that the image of the cube consitler Example 1 seems,
in fact, to be a sphere, but not unitary. Moreover, numerggleriments show that the
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N0

used in the complex case is not adequate. For the momentat isompletely clear what
should be the choice @y .

The analysis of theés-part” in (3), i.e. g}{\?}(az) shows some evidence that Asgrows
this function gets smaller. However we did not go furthemtida = 14, as our program
becomes very time consuming. Figure 7 corresponds to theoplgﬁ} (), wherez €
{(zg,z1,22) ER3 129 =1, |m1] < 1, |22] < 1}.

constant factor

FIGURE 7. The functiongﬁ’} (x)

Example 2For the parallelepiped
E2 = {(1‘0,1‘1,1‘2) S ]R3 : ‘:L‘o‘ < 2, |x1\ < 1, |x2\ < 1},

the BKM results are as follows:

FIGURE 8. The original parallelepiped

FIGURE9. N =1
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FIGURE10.N =2

FIGURE11l. N =4

FIGURE12. N =8

FIGURE13. N =12

Next figure corresponds to the plot of the functyﬁ}(az), for x € {(wg, x1,22) € R3:
o = 27 |$1‘ < 17 ‘.’L’g| < 1}
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FIGURE 14. The functioryg’} (x)

We end this section by presenting a last example of an L-shdpmain. Even for this
“difficult” domain, the BKM results are very encouraging.

Example 3Consider the L-shaped domain presented in Figure 15. The Bi6Mts are as
follows:

FIGURE16. N =0

FIGURE17.N =1
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FIGURE18. N =2

FIGURE19. N =4

0.1

-0.1

FIGURE20. N =6

FIGURE21. N =8

15
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4. CONCLUSIONS

Although we don’t have for the moment a theoretical justtfarafor the remarkable re-
sults achieved by the BKM propose (even for small value§ pfwe are convinced that this
BKM-approach for 3 dimensional cases works and it is usefabintinue the investigation
in this direction. We expect to get theoretical results anlolet able to improved this method
by extending the complex idea of domain decomposition todriglimensions.
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