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Abstract 1 

Purpose: Colorectal tumors (CRC) with microsatellite instability (MSI) show resistance to 2 

chemotherapy with 5-fluorouracil (5-FU), the most widely used pharmacological drug for 3 

CRC treatment. The aims of this study were to test the ability of quercetin (Q) and luteolin (L) 4 

to increase sensitivity of MSI CRC cells to 5-FU and characterize the dependence of the 5 

effects on cells´ p53 status.  6 

Methods: Two MSI human CRC derived cell lines were used, CO115 wild-type (wt) for p53 7 

and HCT15 that harbors a p53 mutation. Apoptosis induction in these cells by 5-FU, Q and L 8 

alone and in combinations were evaluated by TUNEL and western. The dependence on p53 of 9 

the effects was confirmed by small interference RNA (siRNA) in CO115 cells and in MSI 10 

HCT116 wt and p53 knockout cells.  11 

Results: CO115 p53-wt cells are more sensitive to 5-FU than the p53 mutated HCT15. The 12 

combination treatment of 5-FU with L and Q increased apoptosis with a significant effect for 13 

Q in CO115. Both flavonoids increased p53 expression in both cell lines, an effect 14 

particularly remarkable for Q. The significant apoptotic enhancement in CO115 incubated 15 

with Q plus 5-FU involved the activation of the apoptotic mitochondrial pathway. 16 

Importantly, knockdown of p53 by siRNA in CO115 cells and p53 knockout in HCT116 cells 17 

totally abrogated apoptosis induction, demonstrating the dependence of the effect on p53 18 

modulation by Q.  19 

Conclusion: This study suggests the potential applicability of these phytochemicals for 20 

enhancement 5-FU efficiency in MSI CRC therapy, especially Q in p53 wt tumors. 21 

 22 

 23 

 24 
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Introduction 26 

 Chemotherapy with 5-fluorouracil (5-FU) is the basis for colorectal carcinoma (CRC) 27 

treatment, one important cause of cancer related death in western societies [1]. However, 28 

significant resistance to this drug has been reported [2-4]. To overcome resistance, drugs such 29 

as irinotecan and oxaliplatin are used in combination with 5-FU and have provided increased 30 

efficacy although not in all patients [3,5,6]. Particularly, tumors with microsatellite instability 31 

(MSI) do not generally respond satisfactorily to 5-FU [7-10]. MSI tumors, which occur in 32 

approximately 15% of sporadic CRC cases and in 90% of hereditary non-polyposis colorectal 33 

cancer (HNPCC), have mutations in the mismatch repair (MMR) genes, resulting in an 34 

inability to correct DNA replication errors and in the accumulation of mutations [8,9,11]. In 35 

vitro studies have also shown that DNA MMR deficiency may be responsible for tumor 36 

resistance to 5-FU [7,8,10].  37 

Previous studies have shown that, independently of MSI status, mutations in the gene 38 

P53 contribute to 5-FU resistance in CRC and have profound effects on drug responses 39 

[12,13] with reduced induction of apoptosis and inhibition of cell cycle [14,15]. The 40 

prognosis in patients presenting MSI tumors with p53 mutations have been shown to be 41 

poorer compared to those having MSI tumors with p53 wild-type [16].  42 

The induction of apoptosis by 5-FU may occur through p53 activation and both the 43 

intrinsic and extrinsic pathways with activation of caspases [17]. In the intrinsic pathway, 44 

Bcl-2 family proteins modulate mitochondrial membrane permeabilization, which leads to the 45 

release of cytochrome c and activation of caspase-9 that in turn activates the effector caspase-46 

3. Activation of death receptors on the cell membrane (extrinsic pathway), which 47 

subsequently activates caspase-8 and caspase-3, may also be induced by 5-FU [17].  48 

Dietary phytochemicals have been shown to induce apoptosis through modulation of 49 

different pathways contributing to decrease tumor malignance and chemoresistance [18-20]. 50 
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In addition to effects on mitochondrial and death receptors pathways, some proapoptoitc 51 

effects of natural compounds have also been attributed to c-Jun N-terminal kinase (JNK) and 52 

p38 stress-activated protein kinases [19,21-23].  53 

In a previous study, we showed that two structurally related flavonoids quercetin (Q; a 54 

flavonol) and luteolin (L; a flavone), commonly found in fruits and vegetables, have 55 

antiproliferative effects in HCT15 (mutant KRAS) and CO115 (mutant BRAF) human CRC 56 

cells through regulation of KRAS and both the MAPK/ERK and the PI3K pathways [24]. The 57 

anticarcinogenic effects of these flavonoids suggest the suitability of diet rich in Q and/or L 58 

for CRC patients undergoing treatment with 5-FU. In the present study, we tested the possible 59 

therapeutic efficacy of Q and L in combination with the  pharmaceutical drug 5-FU in a MSI 60 

p53 wild-type (wt) and a p53 mutant CRC cell lines, CO115 and HCT15, respectively 61 

[25,26]. In addition, the mechanism of Q and L in inducing apoptosis in these MSI CRC cell 62 

lines was investigated and the dependence on p53 confirmed by siRNA. Our data shows the 63 

potential applicability of these flavonoids for use in combination with 5-FU to induce 64 

apoptosis in CRC, particularly for Q in a p53 wt background. 65 

 66 

Material and methods 67 

 68 

Reagents and antibodies 69 

 Quercetin (Q), z-VAD-fmk (zVAD), staurosporine (STS), 5-fluorouracil (5-FU) and 70 

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were purchased from 71 

Sigma-Aldrich (St. Louis, MO, USA). Luteolin (L) was purchased from Extrasynthese 72 

(Genay, France). Stock solutions of test compounds were made in dimethyl sulfoxide 73 

(DMSO) and aliquots were kept at -20ºC. All other reagents and chemicals used were of 74 

analytical grade. 75 
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 Primary antibodies were purchased to the following sources: anti-cleaved caspase-9 76 

and anti-phospho-p38 MAPK (Thr180/Tyr182) to Cell Signaling (Danvers, MA, USA); anti-77 

caspase-3 to Calbiochem (San Diego, CA); anti-Bcl-2, anti-Bax, anti-PARP-1, anti-phospho-78 

JNK, anti-JNK, anti-p38 total and anti-p53 to Santa Cruz Biotechnology, Inc. (Santa Cruz, 79 

CA, USA) and anti-β-actin to Sigma-Aldrich. Secondary antibodies HRP donkey anti-rabbit 80 

and sheep anti-mouse were purchased to GE Healthcare (Bucks, UK).   81 

 82 

Cell lines  83 

 HCT15 and CO115 human colon carcinoma-derived cell lines were kindly provided 84 

by Dr. Raquel Seruca (IPATIMUP, University of Porto, Portugal. The two isogenic HCT116 85 

colon carcinoma, p53-wild type (p53-wt) and p53 complete knockout for p53 (p53-null) cells 86 

were kindly provided by Vogelstein [27]. The cell lines were maintained at 37ºC in a 87 

humidified 5% CO2 atmosphere in RPMI-1640 medium (Sigma-Aldrich) supplemented with 88 

10mM HEPES, 0.1mM pyruvate, 1% antibiotic/antimycotic solution (Sigma-Aldrich) and 6% 89 

heat-inactivated fetal bovine serum (FBS; EU standard, Lonza, Verviers, Belgium).  90 

 91 

Cell viability/proliferation assay  92 

 To investigate the effects of 5-FU on cell viability/proliferation in HCT15 and CO115 93 

cells, as well as, the effect of Q and 5-FU in the two isogenic HCT116 cell lines, the MTT 94 

reduction assay were used as described previously [24]. Cells were treated with different 95 

concentrations of 5-FU and Q for 46h and then two more hours in the presence of MTT (final 96 

concentration 0.5 mg/ml). Hydrogen chloride 0.04M in isopropanol was then used to dissolve 97 

the formazan crystals. The number of viable cells in each well was estimated by the cell 98 

capacity to reduce MTT, using a spectrophotometer. The results were expressed as percentage 99 

relative to the control (cells without any test compound), and MTT reduction at the beginning 100 
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of incubation (t= 0h) was subtracted from all experimental conditions, including the control. 101 

Since the effects of the compounds were studied in 48h incubations and cells grow 102 

significantly during this period, this treatment of the results allows to distinguish between 103 

significant cell death (negative values) and inhibition of proliferation (values between 0 and 104 

100%). The IC50 corresponds to the concentration that inhibits cell viability/proliferation by 105 

50%. Results are presented as mean ± SEM of at least three independent experiments. 106 

 107 

TUNEL assay  108 

  TUNEL (TdT mediated dUTP Nick End Labelling) assay was performed to estimate 109 

the percentage of apoptotic cells treated for 48h with different concentrations of 5-FU alone 110 

and in combination with Q and L. In HCT15 and CO115 cell lines, the concentrations of Q 111 

and L used induce significant inhibition of cell proliferation and cell viability without 112 

substantial severe and acute cell death, as determined by BrdU assay and MTT test in a 113 

previous study using the same cells and conditions [24]. Both cell lines were also treated with 114 

Q and L in combination with 20µM z-VAD-fmk (zVAD), a general caspase inhibitor, for 48h, 115 

to assess the involvement of caspases activation in the apoptotic process induced by the test 116 

compounds. Staurosporine (STS) 0.25µM, an apoptosis inducer, was also used as a positive 117 

control. In HCT116 isogenic cell lines (p53 wt and p53-null) and CO115 cells depleted for 118 

p53 by small interference RNA (siRNA), the concentrations of 5-FU and Q used significantly 119 

inhibited cell proliferation without substantial severe and acute cell death. 120 

After treatments, cells were collected (both floating and attached cells), fixed with 4% 121 

paraformaldehyde for 15min at room temperature and attached onto a polylysine treated slide 122 

using a Shandon Cytospin. Cells were then washed in PBS and permeabilized with 0.1% 123 

Triton X-100 in 0.1% sodium citrate for 2min on ice. TUNEL assay was performed using a 124 

kit from Roche (Mannheim, Germany), following the manufacturer’s instructions. Hoechst 125 
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was used for nuclei staining. The percentage of apoptotic cells was calculated from the ratio 126 

between TUNEL positive cells and total number of cells, from a count higher than 500 cells 127 

per slide under a fluorescent microscope. Results are presented as mean ± SEM of at least 128 

three independent experiments. 129 

 130 

Western blot analysis  131 

 Cells were treated with Q, L, 5-FU and STS alone and co-incubated with Q and 5-FU 132 

for 48h and total cell lysates were prepared to measure the expression of different proteins. 133 

The cells were washed with PBS and lysed for 15min at 4ºC with ice cold RIPA buffer (1% 134 

NP-40 in 150mM NaCl, 50mM Tris (pH 7.5), 2mM EDTA), supplemented with 20mM NaF, 135 

1mM phenylmethylsulfonyl fluoride (PMSF), 20mM Na2V3O4 and protease inhibitor cocktail 136 

(Roche, Mannheim, Germany). Protein concentration was quantified using a Bio-Rad DC 137 

protein assay (Bio-Rad Laboratories, Inc., Hercules, CA, USA) and BSA used as a protein 138 

standard. To perform western blot analysis, 20µg of protein were resolved by SDS-139 

polyacrylamide gel and then electroblotted onto a Hybond-P polyvinylidene difluoride 140 

membrane (GE Healthcare). Membranes were blocked in TPBS (PBS with 0.05% Tween-20) 141 

containing 5% (w/v) non-fat dry milk or BSA (bovine serum albumin), washed in TPBS and 142 

then incubated with primary antibody. After washing, membranes were incubated with 143 

secondary antibody conjugated with IgG horseradish peroxidase and immunoreactive bands 144 

were detected using the Immobilon solutions (Millipore, Billerica, MA, USA) under a 145 

chemiluminescence detection system, the Chemi Doc XRS (Bio-Rad Laboratories, Inc.). 146 

Band area intensity was quantified using the Quantity One software from Bio-Rad. β-actin 147 

was used as loading control. 148 

 149 

p53 knokdown in CO115 cells  150 
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 CO115 human colon cancer cells were transiently transfected with Oligofectamine 151 

(Invitrogen, Carlsbad, CA) and 100nM of p53 siRNA in OPTI-MEN (Invitrogen) according 152 

to the manufacturer’s instructions. The p53 siRNA target sequence was 153 

guggaguauuuggaugaca, which was purchased from Invitrogen. Control of siRNA experiments 154 

were included by using a siRNA against GFP. Confirmation of p53 knockdown was done by 155 

western blot analysis. Twenty four hours after transfection, cells were incubated with 5-FU or 156 

Q alone and with both in combination, for 48h, and apoptosis measured by the TUNEL assay. 157 

 158 

Statistical analysis 159 

 Statistical analyses were done using t-test, GraphPad Prism 4.0 software (San Diego, 160 

CA, USA). P-values ≤ 0.05 were considered statistically significant.  161 

 162 

Results  163 

 164 

Colon cancer cells` sensitivity to 5-FU  165 

 The effect of 5-FU on cell viability/proliferation and apoptosis in HCT15 and CO115 166 

cells were established by the MTT and TUNEL assays, respectively. As shown in Fig. 1a, 5-167 

FU was more effective in decreasing cell viability/proliferation in CO115 than HCT15 after 168 

48h treatment. The 5-FU concentrations that inhibit cell viability/proliferation by 50% (IC50) 169 

are around 100µM in HCT15 and 1µM in CO115. The differences in susceptibility of the two 170 

cell lines to 5-FU were also observed for apoptosis, with HCT15 being more resistant to 171 

apoptosis compared to CO115 (Fig. 1b). IC50 concentrations of 5-FU were selected for the 172 

next experiments (100µM for HCT15 and 1µM for CO115). 173 

 174 

Combined effect of 5-FU and test compounds on apoptosis  175 
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 The induction of apoptosis in both cell lines treated with Q or L, at IC50 176 

concentrations, as tested previously [24], or 5-FU (IC50), was monitored by the TUNEL 177 

assay in both cell lines. As shown in Fig.2, the flavonoids induced a higher percentage of 178 

apoptotic cells in CO115 when compared with HCT15. In HCT15 cells, L or Q in 179 

combination with 5-FU demonstrated an additive effect on the induction of apoptosis, i.e., the 180 

effects of the combination was similar to the sum of the effects of Q and 5-FU when used 181 

alone (Fig. 2a). In CO115 cells, L in combination with 5-FU showed an additive effect in 182 

apoptosis induction whereas Q demonstrated to significantly potentiate the induction of 183 

apoptotic cell death when combined with 5-FU (Fig. 2b). In all cases, the effects on apoptosis 184 

of co-incubations were higher than 5-FU alone or test compound alone.  185 

 186 

Effects of Q, L and 5-FU on markers of pathways related with apoptosis 187 

 In order to determine the role of caspase activation on the apoptotic effects of the test 188 

compounds, the caspase inhibitor zVAD was used and apoptosis measured by TUNEL assay. 189 

Apoptosis induced by the test compounds, Q and L, and STS, the apoptosis inducer, were 190 

inhibited by zVAD in CO115 (Fig. 3b) but not in HCT15 (Fig. 3a). In addition, as shown in 191 

Fig. 3c, none of the compounds induced cleaved (active) caspase-9 in HCT15 cells, and only 192 

STS induced cleavage of caspase-3 (active form) and of PARP (inactive form). On the other 193 

hand, in CO115 cleaved caspase-9 and caspase-3 were observed with all compounds as well 194 

as cleavage of PARP and/or a remarkable decreased of uncleaved PARP (active form).  195 

 To further elucidate the apoptotic effects of the test compounds and 5-FU, the 196 

expression of the positive mediators of apoptosis, p53 and Bax, as well as the negative 197 

regulator, Bcl-2, were analysed by western blot (Fig. 4a). It was observed that Q, L and 5-FU 198 

induced p53 levels in both cell lines. Levels of Bcl-2 were notably decreased by all the 199 

compounds in both cell lines. On the other hand, Bax levels were increased by all the 200 
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compounds in HCT15, although only slightly by Q. Bax was not detected in CO115, which is 201 

in accordance to a previous report [28].      202 

 In addition, the possible involvement of the JNK and p38 pathways on the induction of 203 

apoptosis by the test compounds and 5-FU were evaluated. The results show no effect on 204 

phospho-JNK levels by Q, L and 5-FU in neither of the cell lines (Fig. 4b). In HCT15 cells no 205 

effect on phospho-p38 levels was observed by the flavonoids and 5-FU while in CO115 cells 206 

Q and L slightly increased the levels of phospho-p38 (Fig. 4c). STS significantly induced 207 

phospho-JNK levels and decreased the expression of phospho-p38 in both cell lines. 208 

 209 

Combination of Q and 5-FU: dependence on p53  210 

Since a significant enhancement of 5-FU-induced apoptosis was observed in CO115 211 

p53-wt cells with Q, an effect concomitant with a robust p53 induction, we further 212 

investigated this effect. First, as shown in Fig. 5, combination of Q with 5-FU in CO115 cells 213 

also remarkably increased the cleavage of caspase-3, caspase-9 and PARP and decreased Bcl-214 

2 expression, but no further induction of p53 was observed. These results indicate that the 215 

apoptosis enhancement of Q with 5-FU is at the mitochondrial caspase pathway. 216 

To explore the involvement of p53 in the induction of apoptosis by Q and 5-FU, 217 

CO115 cells were depleted for p53 (around 80%) by siRNA. As shown in Fig. 6a, p53-218 

depleted CO115 cells were significantly resistant to apoptosis when incubated with Q or 5-219 

FU. In addition, the synergy between Q and 5-FU on the induction of apoptosis was absent in 220 

the p53 knockdown cells.  221 

The role of p53 in the induction of apoptosis by Q was further confirmed by using two 222 

isogenic KRAS activated HCT116 CRC cell lines, one p53-wt and the other with a complete 223 

knockout of p53 (p53-null). These cells were incubated with 5-FU or Q alone or with both in 224 

combination, at concentrations that induce significant inhibition of cell proliferation without 225 
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substantial necrotic death (as observed by the MTT assay; data not shown). HCT116 p53-wt 226 

cells were much more susceptible than HCT116 p53-null cells to apoptosis induced by Q and 227 

5-FU (Fig. 6b). As in CO115 (KRAS wt), a synergy between Q and 5-FU in the induction of 228 

apoptosis was observed in the KRAS mutated HCT116 p53-wt cells. 229 

 230 

Discussion 231 

5-Fluorouracil (5-FU) is the pharmaceutical drug most commonly used in CRC 232 

chemotherapy, however, tumor cell resistance to this drug remains a significant concern. 233 

Failure to induce apoptosis has been reported to reduce the efficacy of 5-FU, particularly in 234 

tumors presenting MSI and/or mutant p53 [7,13,15]. Thus, new compounds are needed to use 235 

in combination with 5-FU in order to increase treatment efficacy. In a previous paper, we 236 

reported that Q and L, two structurally related dietary flavonoids, possess potential 237 

anticarcinogenic effects in two MSI resistant CRC cell lines, HCT15 and CO115, through 238 

inhibition of PI3K/Akt and MAPK/ERK pathways [24]. Inhibitory effects on these two 239 

pathways have showed to contribute to an induction of apoptosis and to sensitize to 240 

chemotherapeutic drugs [29-33]. Here, we tested these flavonoids in combination with 5-FU 241 

and an enhancement of apoptosis was found. HCT15 and CO115 cell lines showed different 242 

susceptibilities to 5-FU. As expected, HCT15 cells, harboring a p53 mutation, were more 243 

resistant to 5-FU than CO115 cells (wt for p53). Q (in HCT15 cells) and L (in both cell lines) 244 

in combination with 5-FU showed to increase apoptosis additively. A significant potentiation 245 

of apoptosis induction was detected when treating CO115 p53-wt cells with Q and 5-FU, 246 

which indicates a synergy between these two compounds in CO115. The effect on apoptosis 247 

of this combination was even more pronounced than that of a 100 times higher concentration 248 

of 5-FU when tested alone.  249 
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In CO115 cells, we observed that the caspase inhibitor zVAD totally abrogated 250 

apoptosis induction by Q and L, which was in agreement with the expression of apoptotic-251 

associated molecular markers, such as cleaved (activated) caspase-9 and caspase-3 as well as 252 

a decrease in Bcl-2 expression. These results indicated that Q and L induce apoptosis via 253 

caspase dependent pathway in CO115 cells with a contribution of the mitochondrial pathway. 254 

Even though CO115 cells do not express Bax, apoptosis induction mediated by mitochondria 255 

occurs possibly through interaction with the pro-apoptotic protein Bak. The induction of 256 

apoptosis by 5-FU in these cells was low, but also caspase dependent. A remarkable synergy 257 

was found for the co-incubation of Q with 5-FU in CO115. In these cells, Q showed a more 258 

dramatic induction of p53 compared to L, indicating a possible implication of p53 in the 259 

synergy observed between Q and 5-FU in CO115. The co-incubation of Q with 5-FU also 260 

remarkably enhanced cleavage of caspase 9, caspase 3 and PARP as well as decreased Bcl-2 261 

levels, compared with each of the compounds alone, suggesting the involvement of the 262 

apoptotic mitochondrial pathway in the synergy observed for Q and 5-FU in CO115. This 263 

synergy was not observed for HCT15 (p53 mutated) cells which corroborates the dependence 264 

of Q on p53 for the observed effect.    265 

In order to elucidate the dependence on p53 of the apoptosis induced by Q and 5-FU, 266 

p53 expression was decreased by siRNA in CO115 cells. A phenotype more resistant to 267 

apoptosis was observed, and interestingly, the synergy between Q and 5-FU observed in 268 

control cells (transfected cells with no p53 silencing) was lost in CO115 cells after p53 269 

knockdown. This dependence on p53 was further confirmed using two isogenic MSI (KRAS 270 

mutated) HCT116 cell lines. HCT116 p53-null cells showed a smaller apoptotic response to Q 271 

and 5-FU as compared to HCT116 p53-wt cells. Furthermore, apoptosis was significantly 272 

enhanced when Q was combined with 5-FU only in HCT116 p53-wt cells, with the effect 273 

being lost in the HCT116 p53-null cells. These results clearly indicate that Q induces 274 
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apoptosis through modulation of p53, and that this contributes to the synergy found for the 275 

combination with 5-FU in p53-wt CRC cells. Moreover, the dependence on p53 in induction 276 

of apoptosis by Q seems to be independent of KRAS status, since this effect was observed in 277 

CO115 KRAS-wt cell line as well as in the KRAS mutant HCT116 cell line.  278 

The resistance to 5-FU of TP53-deficient CRC cells has previously been reported [15]. 279 

In some studies, this chemotherapeutic drug has been combined with natural compounds in 280 

different genetic backgrounds, such as triptolide and rosiglitazone in microsatellite stable 281 

(MSS) CRC cell lines [34,35] and notoginseng and its ginsenosides in MSI HCT116 p53-wt 282 

cells [36], with favourable outcome. Moreover, luteolin was also demonstrated by others [37] 283 

to increase the apoptotic effect of the chemotherapeutic drug, cisplatin, in a p53 dependent 284 

manner in different cell types including in HCT116 p53-wt cells.  285 

In HCT15 cells zVAD did not inhibit apoptosis induced by any of the test compounds 286 

or the reference inducer STS. The lack of caspase-dependent apoptosis was corroborated by 287 

the absence of cleaved caspase-9 and caspase-3 when these cells were incubated with Q, L or 288 

5-FU. Although all compounds induced p53 expression in HCT15 cells, alteration in the 289 

expression of p53 protein is not expected to be of functional significance for apoptosis in this 290 

p53 mutated cell line. Also, Bax expression levels increased and Bcl-2 decreased in response 291 

to test compounds which, however, did not activate apoptosis through mitochondrial caspase 292 

pathway in HCT15 cells. JNK and p38 pathways seem not to be involved in the induction of 293 

apoptosis in these cells, contrarily to what was observed with CO115 where the p38 pathway 294 

may contribute to the induction of apoptosis. An induction of JNK phosphorylation and a 295 

decrease on p38 expression was observed for STS in both cell lines. The activation of JNK by 296 

STS has been reported in breast cancer cells [38] but the effect of this compound on these two 297 

stress activated kinases in CRC is not well established.  298 
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CRC MSI patients require treatment alternatives that enhance 5-FU responsiveness 299 

and would gain from customized treatment modalities based on p53 status. The present study 300 

shows the potential applicability of Q and L in the enhancement of the apoptotic effects of 5-301 

FU in MSI CRC cells. Of particular relevance, Q shows the ability to cooperate with 5-FU to 302 

potentiate the induction of apoptosis in p53 wt colorectal cancer cells through p53 signaling.  303 
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Figure legends 

 

Figure 1 - Effect on cell viability/proliferation (a) and apoptosis (b) of different 

concentrations of 5-fluorouracil (5-FU), for 48h, in HCT15 and CO115 colon cancer cells, 

using MTT and TUNEL assay, respectively. The MTT value in the beginning of the assay (t= 

0h) was subtracted from all experimental conditions at 48h. Negative values in MTT assay 

indicate induction of severe and acute cell toxicity after 48h incubation with test compound. 

Results are presented as mean ± SEM of at least 3 independent experiments. * P≤ 0.05, ** P≤ 

0.01 and *** P≤ 0.001.  

 

Figure 2 - Effect on apoptosis by 5-fluorouracil (FU) 500, 100 and 1µM, quercetin 12µM 

(Q12) and luteolin 12µM (L12) alone, as well as the natural compounds co-incubated with FU 

for 48h, in HCT15 (a) and CO115 (b) cells, using TUNEL assay. Results are presented as 

mean ± SEM of at least 3 independent experiments. *** P≤ 0.001, when compared with 

control; ++ P≤ 0.01, when compared with the respective natural compound alone; ## P≤ 0.01 

and ### P≤ 0.001, when compared with FU alone; NS, not significant differences observed 

between each other.  

 

Figure 3 - Effect of a caspase inhibitor zVAD-FMK (zVAD) 20µM on the apoptosis 

induction by quercetin 12µM (Q12), luteolin 12µM (L12) and staurosporine (STS) 0.25µM, 

for 48h, in HCT15 (a) and CO115 (b) cells, using TUNEL assay. Results are presented as 

mean ± SEM of at least 3 independent experiments. * P≤ 0.05, *** P≤ 0.001, when compared 

to control; ++ P≤ 0.01 and +++ P≤ 0.001, when compared with the respective compound 

alone; ## P≤ 0.01 and ### P≤ 0.001, when compared with zVAD alone; NS, not significant 

differences observed between each other. Effects on caspase-9, caspase-3 and PARP-1 

expressions, for 48h, of Q, L, 5-FU (FU) and STS alone, in HCT15 and CO115 cells (c), by 

western blot. Images are representative of at least 3 independent experiments. 

 

Figure 4 - Effects on p53, Bax and Bcl-2 (a), phospho-JNK and total JNK (b) and phospho-

p38 and total P38 (c) expressions, for 48h, of quercetin 12µM (Q12), luteolin 12µM (L12), 

staurosporine (STS) 0.25µM and 5-fluorouracil (FU) 1µM and 100µM, in HCT15 and CO115 

cells, by western blot. Images are representative of at least 3 independent experiments.  
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Figure 5 – Effects on caspase-9, caspase-3, PARP-1, p53 and  Bcl-2 expressions, for 48h, of 

co-incubation of quercetin 12µM (Q12) and 5-fluorouracil 1µM (FU1) in CO115 cells, by 

western blot. Images are representative of at least 3 independent experiments. 

 

Figure 6 – Dependence on p53 for apoptosis induction by quercetin (Q) and 5-fluorouracil 

(FU). (a) CO115 cells knockdown for p53 by siRNA (100nM) were incubated with FU 1µM 

(FU1) or Q 12µM (Q12) alone, and with both in combination for 48h and apoptosis assessed 

by TUNEL assay. Control cells were transfected with control siRNA. Compounds were added 

24h after transfection. p53 knockdown efficiency was monitored by western blot (inset). (b) 

HCT116 p53-wt (p53 +/+) and HCT116 p53-null (p53 -/-) cells were used to observe effects 

of FU, Q and both in combination on apoptosis after 48h of incubation, as assessed by 

TUNEL assay. FU10: FU 10µM; FU100: FU 100µM; Q15: Q 15µM. (a; b) Results are 

presented as mean ± SEM of at least 3 independent experiments. * P≤ 0.05, ** P≤ 0.01 and 

*** P≤ 0.001, when compared with control; + P≤ 0.05, when compared with each other; ### 

P≤ 0.001, when compared with respective FU alone; Ø P≤ 0.05, when compared with 

respective Q alone; NS, not significant differences observed between each other.  
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Figure 1 - Effect on cell viability/proliferation (a) and apoptosis (b) of different concentrations of 5-
fluorouracil (5-FU), for 48h, in HCT15 and CO115 colon cancer cells, using MTT and TUNEL assay, 

respectively. The MTT value in the beginning of the assay (t= 0h) was subtracted from all 
experimental conditions at 48h. Negative values in MTT assay indicate induction of severe and acute 

cell toxicity after 48h incubation with test compound. Results are presented as mean ± SEM of at 
least 3 independent experiments. * P≤ 0.05, ** P≤ 0.01 and *** P≤ 0.001.  
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Figure 2 - Effect on apoptosis by 5-fluorouracil (FU) 500, 100 and 1µM, quercetin 12µM (Q12) and 
luteolin 12µM (L12) alone, as well as the natural compounds co-incubated with FU for 48h, in HCT15 

(a) and CO115 (b) cells, using TUNEL assay. Results are presented as mean ± SEM of at least 3 
independent experiments. *** P≤ 0.001, when compared with control; ++ P≤ 0.01, when 

compared with the respective natural compound alone; ## P≤ 0.01 and ### P≤ 0.001, when 
compared with FU alone; NS, not significant differences observed between each other.  
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Figure 3 - Effect of a caspase inhibitor zVAD-FMK (zVAD) 20µM on the apoptosis induction by 
quercetin 12µM (Q12), luteolin 12µM (L12) and staurosporine (STS) 0.25µM, for 48h, in HCT15 (a) 

and CO115 (b) cells, using TUNEL assay. Results are presented as mean ± SEM of at least 3 
independent experiments. * P≤ 0.05, *** P≤ 0.001, when compared to control; ++ P≤ 0.01 and 
+++ P≤ 0.001, when compared with the respective compound alone; ## P≤ 0.01 and ### P≤ 
0.001, when compared with zVAD alone; NS, not significant differences observed between each 

other. Effects on caspase-9, caspase-3 and PARP-1 expressions, for 48h, of Q, L, 5-FU (FU) and STS 
alone, in HCT15 and CO115 cells (c), by western blot. Images are representative of at least 3 

independent experiments.  
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Figure 4 - Effects on p53, Bax and Bcl-2 (a), phospho-JNK and total JNK (b) and phospho-p38 and 
total P38 (c) expressions, for 48h, of quercetin 12µM (Q12), luteolin 12µM (L12), staurosporine 

(STS) 0.25µM and 5-fluorouracil (FU) 1µM and 100µM, in HCT15 and CO115 cells, by western blot. 
Images are representative of at least 3 independent experiments.  
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Figure 5 – Effects on caspase-9, caspase-3, PARP-1, p53 and  Bcl-2 expressions, for 48h, of co-
incubation of quercetin 12µM (Q12) and 5-fluorouracil 1µM (FU1) in CO115 cells, by western blot. 

Images are representative of at least 3 independent experiments.  
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Figure 6 – Dependence on p53 for apoptosis induction by quercetin (Q) and 5-fluorouracil (FU). (a) 
CO115 cells knockdown for p53 by siRNA (100nM) were incubated with FU 1µM (FU1) or Q 12µM 

(Q12) alone, and with both in combination for 48h using, and apoptosis assessed by TUNEL assay. 
Control cells were transfected with control siRNA. Compounds were added 24h after transfection. 
p53 knockdown efficiency was monitored by western blot (inset). (b) HCT116 p53-wt (p53 +/+) 

and HCT116 p53-null (p53 -/-) cells were used to observe effects of FU, Q and both in combination 
on apoptosis after 48h of incubation, as assessed by TUNEL assay. FU10: FU 10µM; FU100: FU 
100µM; Q15: Q 15µM. (a; b) Results are presented as mean ± SEM of at least 3 independent 

experiments. * P≤ 0.05, ** P≤ 0.01 and *** P≤ 0.001, when compared with control; + P≤ 0.05, 
when compared with each other; ### P≤ 0.001, when compared with respective FU alone; Ø P≤ 
0.05, when compared with respective Q alone; NS, not significant differences observed between 

each other.  
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