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Abstract

This paper introduces a rigorous methodology for
requirements specification of systems that react to ex-
ternal stimulus and consequently evolve through dif-
ferent operational modes, providing, in each of them,
different functionalities. The proposed methodology
proceeds in three stages, enriching a simple state-
machine with local algebraic specifications. It resorts
to an expressive variant of hybrid logic which is lat-
ter translated into first-order to allow for ample auto-
matic tool support.

1. Introduction

Motivation and objectives. The successful de-
velopment and deployment of critical embedded sys-
tems, from the early concept and system defini-
tion phases, down to implementation and valida-
tion, poses a number of challenges that engineers
must overcome. In the software development do-
main, experience in industry has for long shown
(see, e.g., [Ber02]) that the most significant prob-
lems are due to poor quality of requirements.

Proper management of requirements through-
out the complete development life-cycle requires
their (i) elicitation, (ii) specification, (iii) verifica-
tion against ambiguities, omissions, and incoher-
ences, (iv) demonstration of traceability along the
different life-cycle stages, (v) adequate management
of possible changes imposed by external factors, and
(vi) validation against the implementation.

In practice, the best start to overcome many of
the difficulties imposed by each of these steps is to
adopt good engineering practices, establishing, for
example, rigorous processes and well defined bor-
ders between, e.g., user, system, hardware, software,
functional, and non-functional requirements.

A significant leap beyond engineering maturity
can yet be achieved by adopting advanced tech-
niques that provide rigorous and machinery support
for all these tasks, supported by well founded math-
ematical semantics.

There are two basic frameworks to formally cap-
ture software requirements: one emphasizes be-
haviour and its evolution; the other focus data and
their transformations.

Reactive systems are typically specified through
(some variant of) state-machines. Such models cap-
ture system’s evolution in terms of event occurrence
and its impact in the system internal state config-
uration. Automata theory, and its more recent, ab-
stract rendering in coalgebraic terms, provide a suit-
able formalism for both specification and analysis.
Crucial notions of bisimulation, minimization and
invariant, among others, play a fundamental, long
established in this framework.

The dual specification paradigm is focused on
system’s functional behavior given in terms of
input-output relations modeling operations on
data. It is, therefore, essentially algebraic: a spec-
ification is a theory in a suitable logic, expressed
over a signature, which captures its syntactic in-
terface. Specification models consists of con-
crete algebras which satisfy the specified theory
[DF02, MHSTO03].

In practice, however, the aspects considered on
both approaches are interconnected: the functional-
ity offered by the system system, at each moment,
may depend on the stage of its evolution. Such is
typically the case of complex, reconfigurable soft-
ware.

This paper explores such a interconnection.
Starting from a classical state-machine specifi-
cation, the approach illustrated in the sequel,
goes a step further: different states are inter-



preted as different modes of operation and each
of them is equipped with an algebraic specifica-
tion (over the system’s interface) of the corre-
sponding functionality. Technically, specifications
become structured state-machines, states de-
noting algebras, rather than sets. We call them
states-as-algebras models. The remaining of this pa-
per introduces their specification and illustrates
their use through a (partial) view of a cruise con-
trol system [HKL97].

Outline. Section 2 introduces the proposed
methodology and the application example. A clas-
sical, state-machine specification, resorting to a
form of hybrid logic [Bla00] is provided in sec-
tion 3. Section 4 introduces an alternative
states-as-algebras model for the same problem. Fi-
nally, Section 5 shows that specification in the
hybrid logic used can be translated to first or-
der logic (FOL), paving the way to suitable tool
support. Section 6 concludes, evaluating the ex-
tent to which our methodology covers the above
identified (i-vi) tasks.

2. A specification methodology

Figure 1 sums up the proposed methodology. The
block on the left hand side represents the spec-
ification framework, structured in two stages, as
explained below. The annotation on top — Hy-
brid logic — states the underlying logic used. The
block on the right concerns verification and anal-
ysis of specifications suitably translated to FOL.
The translation itself is depicted as a comorphism
between the two logic systems in presence: hybrid
logic, chosen for its expressive power, first order for
existent verification support. Before detailing the
methodology, let us explain both the choice of hy-
brid logic and the translation process.

Modal and temporal logics are widely used to ex-
press properties of reactive systems. However, they
lack any mechanism to make explicit references to
specific states in a model. Such limitation is over-
come with hybrid logic! [Bla00], through the intro-
duction of special symbols, called nominals to ref-
erence individual states This is achieved through a
family of connectives @Q;, indexed by nominals : in-
tuitively @, p states the validity of p at the state
identified by nominal i.

1 Observe that qualifier hybrid in hybrid logic has nothing to
do with the usual meaning the word has in computer sci-
ence, e.g. in ‘hybrid systems’.
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Figure 1. Specification methodology

A basic property to require from a specification
formalism is its ability to be framed as an institu-
tion [GB92, Dia08]. This is not a formal idiosyn-
cracy: institutions, as abstract, general representa-
tions of logical systems, provide modular structur-
ing and parameterization mechanisms which are de-
fined ‘once and for all” abstracting from the concrete
particularities of the intended logics [Tar03], with
suitable tool support. CASL [MHSTO03], for exam-
ple, is a well known system where the semantics of
a set of combinators for specifications are charac-
terized at such a level of generality. Moreover in-
stitutions provide a systematic way to relate logics
and transport results from one to another [Mos03],
which means that a theorem prover for the latter
can be used to reason about specifications written
in the former. This is achieved through a special call
of maps between institutions, referred to as comor-
phism, as depicted in Figure 1.

The methodology proposed in this paper is,
therefore, institution-based. That our hybrid for-
malism constitutes an institution is proved in
[MMDBI11]. In the same reference a comor-
phism from this institution into FOL is established,
which allows to translate any specification ex-
pressed in our logic into an equivalent first order
specifications. The real relevance of this result can-
not be understated: it is well-known that FOL en-
joys mature tool support which becomes available
to verification of our own specifications. In par-
ticular, in this paper, the HETS-heterogeneous
tool set [MMLO7] was used to analyze the exam-
ples reported here, once translated to FOL. HETS
provides a proof management tool which incorpo-
rates a number of theorem provers.

Let us now detail the proposed methodology, as



depicted in Figure 1, in three main stages:

I (I.1) Express the requirements in hybrid propositinal
logic (HPL), identifying states and transitions to
build a first state-machine; (1.2) Specify local prop-
erties as propositions; At this stage, traditional tech-
nics of state machine analysis/refinement may be ap-
plied, and available reasoning tools for HPL used (see
Section 3).

II (IL.1)Define the actual system’s interface through the
set of (external) services offered. Technically, this is
supported by the definition of a (multi-sorted) al-
gebraic signature. (I1.2) Express, whenever possible,
the attributes of the first machine as functional prop-
erties over this signature.

IIT Translate both specifications into FOL, providing a
common ground for testing and verification.

In the sequel the methodology is illustrated in
a number of specification fragments of a automatic
cruise control (ACC) system. The example is taken
from [HKL97]:

“The mode class CruiseControl contains
four modes, Off, Inactive, Cruise, and Owver-
ride. At any given time, the system must be in one
of these modes. Turning the ignition on causes
the system to leave Off mode and enter Inac-
tive mode, while turning the cruise control level
to const when the brake is off and the engine run-
ning causes the system to enter Cruise mode. (...)
Once cruise control has been invoked, the sys-
tem uses the automobile’s actual speed to determine
whether to set the throttle to accelerate or deceler-
ate the automobile, or to maintain the current speed
(...)To override cruise control (i.e., enter Over-
ride), the driver turns the lever to off or applies the
brake”.

3. Hybrid specifications

The requirements for the cruise control system
example can be modeled as the state machine de-
picted in Figure 2. This section introduces its spec-
ification in propositional hybrid logic (HPL). Such
a presentation has the advantage of being compact,
unambiguous and closer to the input format of typ-

ical verification engines.
The set of HPL formulas is defined by the follow-
ing grammar:

o, u=plil-plAe|QeleAd oVl =14 (1)

where A ranges over a set A of modal operators.
Models of this logic are state-machines with an ad-
ditional function state : Nom — S which assigns
each nominal to the respective state. Thus, models
are tuples P = (S, state, (Rx)xea, (Ps)ses) where
S is a set of states, Ry C S x S is the acces-
sibility relation associated to the modality A and
P, : Prop — {T, L} is the function that assigns the
propositions on the state s € S. The satisfaction re-
lation is defined as on the standard modal logic (e.g.

—IgnOn m‘ brake
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Figure 2. State-machine of the system

P =5 piff Py(p) = T; P =5 [N iff P =% ¢ for any
s’ such that (s,s’) € Ry) adding the cases

o P @piff P ) o

o P |=° iiff state(i) = s.

Moreover, we abbreviate formulas —[A\]-¢ with
(A and formulas (A)¢ A [A]e with (A\)°p. For our
running example, a modality {next} is introduced
to denote the state-machine accessibility relation.
Nominals in {of f, inactive, override, cruise} corre-
spond to the above mentioned modes. Finally, a set
of propositions is considered corresponding to la-
bels in Figure 2. With such signature, transitions
are specified as follows:

o (T1)Qu¢¢( IgnOn = (next)®inactive )
o (T2)— IgnOn = (next)® off
o (T3)Q;pnactive (LeverCons A IgnOn A — Brake

= (next)° cruise)
o (T4)Qcryise (— EngRunning V LeverOff = (next)®inactive)
o (T5)Qcryise ( Brake = (next)® override)
o (T5)Qpyerride (LeverCons A IgnOn)

A EngRunning A = Brake = (next)® cruise)

We are also able to express local properties, individ-
ual states being referenced through the satisfaction
operator @;, where i is the corresponding nominal.
For instance, the requirement that the engine con-
trols speed decelerating the car if the speed is high
and maintaining it when it is considered adequate is
modelled by

) (L;ruise)@”uise( IgnOn A EngRunning A HighSpeed = decel)
o (L Qcpyise(IgnOn A EngRunning A AdmissibleSpeed
= mantain)

Admissibility properties, concerning propositions,
are also captured. For instance, the fact that the
lever cannot be switched in more than one position at
each time, and equally so for the acceleration and
speed modes, is expressed as

o (A1) LeverOff < — LeverCons
e (As)accel = — decel A =~ mantain

eruise)

o ...
e (A4)HighSpeed = — CruiseSpeed A - LowSpeed



As it stands, this hybrid specification enjoys a
rich tool support through recent implementations
of logical calculus for HPL (e.g. HTAB [HA09], Hy-
LoTaB [vE02] and SpaRrTACUS [GKS10]). More-
over, model checking for HPL models is also an ac-
tive research issue (e.g. [Lan09, HS08]). Our focus is,
however, a different, somehow more santdard, one:
hybrid specifications are translated to FOL through
a suitable comorphism. This solution provides a
uniform first order logical framework for analysis
and verification supporting the whole methodology.
Moreover, to the best of our knowledge, richer ver-
sions of hybrid logic, as required for the ‘states-as-
algebras specification’ stage described in the follow-
ing section, lack effective tool support, which makes
our approach by translation the only option avail-
able.

4. States as algebras

The logic. The second stage in the envis-
aged methodology equips each state in the un-
derlying state-machine with an algebra mod-
eling its local functionality. Therefore, mod-
els are enriched with a family of algebras indexed
by the set of states, i.e., they become struc-
tures M = (S, state, (Rx)aea, (Ps)ses, (As)ses),
where algebras? in the family (Ag)secs are de-
fined over the same signature and universe. Each
A, models the system behaviour on state s € S.
Taking the algebraic signature X (of the system in-
terface), sentences correspond to the set of formulas
defined by the following grammar:

@, = plile]l P(&) [ ol o x¢] [Ne | Qip | Vop (2

where x € {V,A,=}, p is a proposition, i is a
nominal, e is a Y-equation over a contable infinite
sorted-set of variables X, P is a ¥-predicate of type
S1,.-.,5n, Where t :==1t1,...,t, and ¢; € (T%)s,. An
assignment for M consists of a function g : X — A,
where A is the carrier set of the algebras of M. Sat-
isfaction relation on these structures is defined as
follows:

o M, g [=° iif state(i) = s;

o M,g°*pif Ps(p) =T;

o M, g |=° eif A; = e[g];

o M,g=® P(t1,...,tn)if As = P(t1, ..., tn)[g);

e M,gE* oV it M,g " por M, g=* ¢;

e M, g =° VY if, for any assignment g’ such that for any y #

z,g(y) = ¢’ (y), one has M, g' = .

2 Strictly speaking they are first-order-structures, the lan-
guage abuse is justified by the fact that, in a multi-sort
specification, predicates can be regarded as boolean-valued
functions.
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Figure 3. HETS development graph

e M,g E=° [Meif, for any s’ € S such that (s,s’) € Ry, one

has M, g \:S/ .
and similarly for the remaining boolean connectives.
We write M |=° ¢ when for any assignment g,
M, g E* .
The interface. In order to model the system’s
functionality as physically provided by the car ar-
tifact, we resort to a classical algebraic specifica-
tion. This entails the need for introducing data
types able to support the envisaged notions of time,
speed and acceleration. In a simple model integer
numbers, with the usual operations and predicates
{+,<,>,<,>}, can do the job.
spec TIMESORT =

INT with sort Int — time,
ops 0 — init, suc — after end
spec SPEEDSORT =

INT with sort Int — speed end

spec ACELLSORT =
INT with sort Int — accel end

There is also a need to consider a set of opera-
tion symbols to represent the interface of the sys-
tem (technically, a signature). Thus, the operation
Pedal models the accelerations applied by the driver
at each moment. On the other hand, Automatic
captures accelerations applied on the engine by the
ACC, and CurrentSpeed records the current speed.
Finally, constant MaxCruiseSpeed represents the

maximum speed allowed on the ACC mode:
spec ACCSIGN =
TIMESORT and SPEEDSORT and ACELLSORT
then ops Pedal : time — accel;
Automatic : time — accel;
Speed : speed X accel — speed;
CurrentSpeed : time — speed;
MazCruiseSpeed : speed

There are properties that globally hold, in all the
configurations of the system. For instance,



V s : speed; a : accel
e (G1) Speed(s,a) >0
e (G2) CurrentSpeed(t) = 0 A Pedal(t) >0

= CurrentSpeed(after(t)) >0
e (G3) Pedal(t) > 0 <

CurrentSpeed(t) < CurrentSpeed (after(t))
o (G4) Speed(s,a)=s<a=0
e (G5) CurrentSpeed(after(t)) =

Speed (CurrentSpeed(t),Pedal(t))

Local properties. Differently from the properties
above, local requirements hold only on particular
configurations. Let us explore some of them. First,
in state of f, it is required that speed and acceler-
ation are null and no other operations in the inter-
face react:

V t: time; s : speed; a : accel

. (L(l)ff) Q,f 5 CurrentSpeed(t) =0

. (Li.ff) Q,¢¢Speed(s, a) =0

In state inactive, the speed and acceleration depend
on the accelerations automatically introduced in the
system, i.e,

V s : speed; a : accel

. (Ll Q;pactiveSpeed(s, a) = s+ a

inactive)

Whenever the cruise control is active, control gets
less simple. Thus, if the car’s speed is higher than
MaxCruiseSpeed it has to decelerate until reach-
ing MaxCruiseSpeed. If the speed is lower that
MaxCruiseSpeed, the car should pursue at the cur-
rent speed. To capture these requirements, (L., . .)
and (L2 ) are replaced by

. cruise
V t: time; s : speed; a : accel

. (Li;uise) Qcpyise| CurrentSpeed(t) > MazCruiseSpeed =
Automatic(after(t)) < 0]

. (Lii‘uise) Qcryise[ CurrentSpeed(t) < MaxzCruiseSpeed
& Automatic(after(t)) = 0]
o (L7 )Qeruise Speed(s, a) =s +a

cruise

o (L2 )Qcryise Pedal(t) > 0= Pedal(t) = Automatic(t)

An interesting feature in this example is that prop-
erties local to states override and of f do coincide.
The system’s behaviour on both states only differs
in what concerns the definition of the allowed tran-
sitions. The latter are dealt as follows.
Transitions specification. To specify state tran-
sitions we simply resort to the state-machine built
in the first stage of our methodology, through ax-
ioms (T1),...(T,) from Section 3. However, some
propositions may now be expressed by means of al-
gebraic properties of local states. For instance, we
may replace (Ty) by

V t: time
® (T )Qcryise[CurrentSpeed(t) = 0V LeverOf f

= (next)® (inactive A CurrentSpeed(after(t)) = 0)].

Furthermore, the fact that when ACC is activated
by transition Tg, the speed should to be maintained,

is captured by

YV t: time; V s: speed

o (T )Qoyerride[(LeverConsA CurrentSpeed(t) = s A s > 0)
= (next)®(cruiseACurrentSpeed(after(t)) = s)].

5. Translating to FOL

This section briefly illustrates how hybrid-
specifications are translated to FOL. For lack of
space the formal definition of the comorphism
which actually does the job is omitted here (de-
tails and proof are available in report [MMDB11] to
which the interested reader is referred). The trans-
lation proceeds through the inclusion of a special
sort st which denotes states. Hence, in order to ‘col-
lapse’ all the local state algebras in a unique struc-
ture, the signature of all operations and predi-
cates is enriched with an argument of this sort.
For instance, predicate <: speed X speed is trans-
formed into <*: st* X speed x speed. On the other
hand, nominals are regarded as constants over st,
modalities as usual first-order relations and propo-
sitions as unary predicates over st. Therefore, we
end up with the following signature
ops

Speed™ : st* x speed X accel — speed;
Pedal™ : st* x time — accel;. ..

pred
next : st* X st*; IgnOn™ : st™; ...

Note that, now, global properties are universally
quantified, and local properties take as state argu-
ment the respective nominal. For instance, global

properties (G;) and gGg) are translated into
V s:speed; w: st™; a: accel;t : time
o (Gyx) >"(w ,Speed*(w, s, a), 0" (w))

o (Gox ) CurrentSpeed* (w,t) = 0% (w) A >*(w, Pedal*(w,t), 0" (w)).

and local properties (L}, ;) and (L¢,,;.), into
Vt:time

. (Lzl)Zf) CurrentSpeed*(of f,t) = 0" (of f)

o (L4 ) >"(cruise,Pedal*(cruise,t),0” (cruise))=

cruise

Pedal(cruise,t) = Automatic*(cruise,t).

For instance, transition (77) is expressed by
o(T1,) IgnOn(of f)= [(Vw : st™) (of f,w) € next

= inactive = w A (3w’ : st*) (of f,w’) € next = inactive = w'],
i.e.,
eIgnOn(of f)=(of f,inactive) € next.

6. Conclusion and future work

This paper presents a methodology for require-
ments specification of reactive systems, using hybrid
logics, in three stages: firstly the modes and sys-
tem evolutions are identified (on a standard state-
machine), then the functionalities of the system,
in each mode, are specified as an algebraic theory
(modeled on a states-as-algebras structure), and, fi-
nally, the specifications are translated and analyzed
in FOL. The combination of the first two stages pro-
vides a significant gain in expressivity, when com-
pared to the individual use of classical state ma-
chines and algebraic specifications. The comorphism



to FOL allows the (otherwise impossible) adoption
of existing mature verification tools.

An interesting direction to pursue is the further

exploration of such FOL-specifications as a com-
mon support to relate aspects of both machines,
namely, through the formalization of the a refine-
ment notion between both machines. Evaluating the
initially identified (i-vi) requirements management
tasks, this approach increases the verification capa-
bility of traceability relations between requirements.
Actual full coverage throughout the complete devel-
opment life-cycle is yet an open issue; a possible ap-
proach would be further mapping of the presented
methodology to behavioural interface specification
languages [HLL™10], which can in turn provide for-
mal code verification. Requirements elicitation is
an engineering task preceding the scope of the for-
malization. Specification and verification of require-
ments are clearly covered by the presented method-
ology. Validation against implementation can yet be
boosted by the automatic generation of test cases
from formal requirements, a current topic of signifi-
cant research, and clearly a promising expansion of
this work.
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