
FlexiXML
A portable user interface rendering engine for UsiXML

José Creissac Campos
Departamento de Informática/CCTC

Universidade do Minho
Campus de Gualtar, 4710-057 Braga, Portugal

jose.campos@di.uminho.pt

Sandrine Alves Mendes
ALERT Life Sciences Computing, S.A.

Rua Daciano Baptista Marques, 245
4400-617 Vila Nova de Gaia, Portugal

sandrine.mendes@alert.pt

ABSTRACT
A considerable amount of effort in software development is
dedicated to the user interaction layer. Given the
complexity inherent to the development of this layer, it is
important to be able to analyse the concepts and ideas being
used in the development of a given user interface. This
analysis should be performed as early as possible. Model-
based user interface development provides a solution to this
problem by providing developers with tools that enable
both modeling, and reasoning about, user interfaces at
different levels of abstraction. Of particular interest here, is
the possibility of animating the models to generate actual
user interfaces. This paper describes FlexiXML, a tool that
performs the rendering and animation of user interfaces
described in the UsiXML modeling language.

Keywords
Tool Support, User Interface Description Languages
(UIDLs), UsiXML

INTRODUCTION
User interface development is a complex process. In the
long run, the success of an interactive system hinges on
having considered both the users of the system
appropriately, as well as the technologies for its
development. Model-based development provides a
solution to manage such complexity. In this paradigm,
declarative models are created that range from abstract
concerns with domain and task knowledge, through the
design of the intended dialog, down to the concrete
interaction styles and execution platforms to be used.
A model-based approach encourages a more sustainable
development process. In particular it allows capturing a
rigorous description of the design, thus facilitating the
construction of prototypes via the animation of the models.
In turn, the development of prototypes fosters a better
understanding of a systems design, and facilitates the
participation of users in the development process. These

prototypes can be repeatedly tested and adapted to the
users’ needs. Prototyping and testing does not guarantee the
absence of errors, but minimizes the likelihood of such
errors in more advanced stages of the project, making it
possible to assess the users’ reactions to the interface
design under development.
This paper describes FlexiXML, a new user interfaces
rendering tool for the UsiXML modeling language.
FlexiXML acts as a renderer and animator, enabling users
to interact with an interface expressed in UsiXML.
The rest of the paper is organized as follows. First related
work is discussed. Then the UsiXML modeling language is
described. Next the technology used to implement the
FlexiXML tool is described, followed a description of the
tool itself, and an example of application. The paper ends
with conclusions and an outline of future work.

RELATED WORK
As stated above, the core language for this project is
UsiXML (USer Interface eXtensible Markup Language)
[14]. UsiXML is a User Interface Description Language
(UIDL), and will be discussed in the next section. Besides
UsiXML, other UIDLs dealing with different aspects of a
graphical interface have been put forward. Examples
include: AUIML (Abstract User Interface Markup
Language) [3], that focuses on enabling user interfaces to
be deployed to different device types; UIML (User
Interface Markup Language) [2], a markup language
standardized by OASIS; XIML (eXtensible Interface
Markup Language) [1]; IBM’s WSXL (Web Service
Experience Language) [2]; or Mozilla’s XUL (XML User
Interface Language) [9]. For an extensive survey of XML-
compliant languages for user interface description see the
paper by Garcia et al. [12].
The selection of UsiXML was a result of its broad scope,
which allows the specification of the different models
needed during interface development, and a result of the
fact that there is an active community supporting the
development of the language. The UsiXML language
allows for the interface specification to be made at different
levels of abstraction, and provides transformation
mechanisms between them. Of particular interest in this
context are models that deal with the design of the concrete

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

user interface (the components that make up the interface,
their layout, and behaviour), and the execution context.
To support user interface modeling and manipulation of the
models, UsiXML has a set of tools, which can be divided
into two categories:
• Editors – Tools for the creation of UsiXML

descriptions. The way the descriptions are created
varies with the type of tool. Examples of this type of
tool include, SketichXML [5] that uses as input hand-
drawn interfaces (sketchs), GrafiXML [8] where the
interface is created by direct manipulation of
components on the screen, VisiXML [5] where the
interface design is done in Microsoft Visio, among
other tools.

• Interpreters – Engines to generate graphical user
interfaces described in UsiXML. Each interpreter
generates interfaces with a set of specific
characteristics. Examples of this type of tool include:
FlashiXML [16] that generates vectorial interfaces,
HaptiXML [7] that generates graphical user interfaces
in 3D with interaction by touch, QtkiXML [6] setting
interfaces for multiple platforms, InterpiXML [15] that
allows simultaneous interpretation of various UsiXML
descriptions.

Although the UsiXML community already has several tools
focusing on different aspects of the language, ongoing
development of the language means that it does not have an
updated animation tool to facilitate a process of rapid
prototyping and analysis. The tool that more closely
approximates the desired outcome is FlashiXML. However
this tool is not compatible with the current version of
UsiXML, and not easily upgradable. Currently UsiXML is
in version 1.8, and FlashiXML is compatible with version
1.4.6 only.
This project aims to create a completely new interpreter
tool that supports the current version of UsiXML,
providing a number of additional features when compared
with FlashiXML. Specifically, the main goals are to
provide a tool that:
• is capable of both interpreting the latest version of

UsiXML, and adapting to new versions;
• is implemented in a platform independent technology

enabling web access.
Additionally, we intend to take the opportunity to create a
generic and expandable application, as exposed in the
FlexiXML Platform section.
Regarding the technologies to implement the tool, the
choice was made to use the Adobe Flex software
development toolkit. The use of Flex and ActionScript 3
provides a robust solution, with better performance, and a
more modular architecture, than what can be achieved by
using Flash and ActionScript2. The use of the Adobe’s AIR
runtime environment allows FlexiXML to be relatively
independent of the computing platform where it runs. The

only requirement is that there is an AIR runtime for the
target platform.

USIXML
UsiXML (USer Interface eXtensible Markup Language) is
an XML-compliant markup language for user interfaces (a
XML-based User Interface Development Language –
UIDL) that describes a user interface independently of
programming language, computing platform and working
environment. This UIDL enables description of a user
interface at a high level of abstraction without requiring
programming skills, enabling analysts, designers,
programmers and end-user to use it during the development
life cycle.

Levels of abstraction
UsiXML allows for user interfaces to be modelled at
several levels of abstraction. The language is inspired by
the Cameleon framework (Context Aware Modelling for
Enabling and Leveraging Effective interactiON) [13],
which defines development stages for interactive
applications with multiple contexts. In the current context
the relevant layers are the Concrete User Interface (CUI)
layer, comprising specifications of the user interface (in
terms of interaction objects and their relationships) which
are independent of the computing platform; and the Final
User Interface (FUI) layer, the interface that can be
executed or interpreted in a context of use (a specific
computing platform and a set of specific devices, using
specific interaction objects). A rendering engine performs a
transformation from a CUI to a FUI. That is, a Reification
transformation – converting an interface model at a more
abstract level to a more concrete one.

Relevant models
The UsiXML language consists of a number of models that
together address the needs of the framework described in
the previous section. A detailed description of the different
UsiXML models falls outside the scope of this paper.
However, in order to contextualize the work, a brief
presentation of the main models interpreted by FlexiXML
will be made.

UiModel – User Interface model
The UIModel is the core model of the graphical interface
specification. This component contains the common
features to all models, such as version, author, or creation
date, among others.
The UIModel aggregates a number of other models. In the
specific case of the FlexiXML interpreter only the
following are required: the concrete user interface model
(cuiModel), the context model (contextModel) and the
resources model (resourceModel). These are the models
that contain information needed for constructing the final
user interface.

CuiModel – Concrete User Interface model
The CuiModel specifies the concrete user interface as
described previously. It defines the objects that make up the
graphical interface (CIO - Concrete Interaction Objects),

and the relations between them (CUIR - Concrete User
Interface Relationships). Particularly relevant are graphical
transitions, which enable the specification of control flow.
Since FlexiXML has a fixed platform (the Air runtime),
only the Environment and Stereotype features can vary. At
this stage Stereotype was considered the relevant feature. In
the stereotype, the feature that has more interest is the
language. Using it, it is possible to define the language in
which the generated application will be viewed. A UsiXML
model can define more than one context, allowing user to
view the application in different languages.

ResourceModel – Resources Model
The ResourceModel defines values for the attributes of the
graphical objects that depend on the context (e.g. location,
language, culture, etc.). This model contains all kinds of
content that can be attributed to an interaction object
(content, tooltip, etc).

ADOBE FLEX
As stated above the FlexiXML has been developed using
the Adobe Flex1 software development toolkit (hence the
name FlexiXML).
Adobe Flex (or simply Flex) is an open-source framework
for the development of cross platform Rich Internet
Applications. The framework provides a library of
components to build graphical user interfaces. These
components can be extended to build new ones. User
interface layout is declaratively defined using MXML, an
XML-based user interface markup language. MXML also
supports a predefined set of behaviors, such as transitions
between elements. For more complex control logic, the
object oriented Action Script 3 language is used. Action
Script is a dialect of ECMAScript, and as such it shares its
syntax and semantics with JavaScript.
Applications developed in Flex are compatible (i.e. can
run) with all main browsers and operating systems. They
can be run on a browser resorting to the Adobe Flash®
Player plug-in, or directly on the desktop with the cross-
platform Adobe AIR runtime environment.
Adobe AIR2 is a cross platform runtime environment that
enables Rich Internet Application to be run on the desktop
to simulate native applications. Properly packages and
signed applications will gain access to local resources in
the host machine, bringing them closer to the flexibility and
power of native applications. Runtime environments are
available for most mainstream operating systems, including
mobile operating systems such as Android and iOS. This
enables an application developed in Flex to be run in a
multitude of different platforms as either a Web or desktop
application.
Besides the discussion above, other motivation to choose
Adobe Flex as the implementation technology included:

1 http://www.adobe.com/products/flex/ (visited 14/07/2011)
2 http://www.adobe.com/products/air/ (visited 14/07/2011)

• the fact that it enables access to a number of different
data sources (different databases, XML files, etc.);

• the fact that it supports changing the user interface at
runtime;

• the fact that it provides better performance when
compared with previous versions of Flash.

USIXML vs. FLEX
One of the problems with tools such as FlashiXML is that
the mapping between UsiXML and the implementation
technology is hardcoded in the tool. This makes keeping
the tool up-to-date with the language difficult. To avoid this
pitfall we have opted for a configuration based approach
when designing FlexiXML. Instead of hard coding the
mapping in the tool, a configuration file is used to
explicitly provide this mapping. This creates a decoupling
between the tool implementation and the specific version of
the language being used with the goal of easing
maintenance and upgrades. It also should enable FlexiXML
to support other markup language than UsiXML.
Three types of mapping were identified as being needed. A
mapping between the user interface elements of the markup
language and the widgets in the implementation
technology; a mapping between the events in the markup
language and the events supported by FlexiXML (in this
case those supported by Action Script 3); and finally a
mapping between window transitions in UsiXML and
animation effects in Flex.
Regarding the first mapping, Figure 1 illustrates the
mapping of four elements: windows, buttons, text
components and checkboxes. In each case, a class in the
Flex implementation is identified. In the first three cases,
special purpose widgets, derived from the native widgets,
are used. In the last case, a native widget is used.

<ComponentsMapper>

 <window component =
 "Classes.Components.FlexiXMLWindow"/>

 <button component =
 "Classes.Components.FlexiXMLButton"/>

 <textComponent component =
 "Classes.Components.FlexiXMLText"/>

 <checkBox component = "mx.controls.CheckBox"/>

<ComponentsMapper>

Figure 1 - Components mapping

Regarding the second mapping, Figure 2 illustrates how
UsiXML events are mapped to events in the FUI. In this
case four events are mapped: release, depress, rollOver and
rollOut. These vents are mapped to corresponding mouse
events: mouse up, mouse down, mouse over, and mouse
out.

<EventsMapper>

 <release event = "mouseUp"/>

 <depress event = "mouseDown"/>

 <rollOver event = "mouseOver"/>

 <rollOut event = "mouseOut"/>

</EventsMapper>
Figure 2 - Events mapping

Finally, regarding the third and last mapping, Figure 3
examples of mapping between window transitions in
UsiXML, and animation effects in Flex. Hence, box in/out
transitions are mapped to zoom effects, fade in/out
transitions are mapped to corresponding fade effects, and
close/open transitions are mapped to corresponding
visibility effects.
Using these mappings, it becomes possible to easy tailor
how the user interface is generated. For example, we could
change how a depress or release event is detected at the
interface, or specify that a fade event should be mapped to
a zoom animation.

<ActionsMapper>

 <transition>

 <boxOut effect="Classes.Animation.Zoom"
 direction = "OUT"/>

 <boxIn effect="Classes.Animation.Zoom"
 direction = "IN"/>

 <fadeOut effect="Classes.Animation.Fade"
 direction = "OUT"/>

 <fadeIn effect="Classes.Animation.Fade"
 direction = "IN"/>

 <close effect="Classes.Animation.Visibility"
 direction= "OUT"/>

 <open effect="Classes.Animation.Visibility"
 direction = "IN"/>

 </transition>

</ActionsMapper>

Figure 3 - Actions mapping

FLEXIXML
Put simply, the main goal of FlexiXML is to produce Final
User Interfaces from Concrete User Interfaces. Context and
Resources models provide additional information that
shapes the generation of the generated user interface. By
definition Adobe’s Air runtime environment is considered
as belonging to the context of use. Currently the CUI model
defines the user interface, the Context model defines the
available user languages, and the Resources model defines
language dependent attributes.
In the next sections the main features of the FlexiXML tool
are introduced. An overview of the application is made, its
architecture is described, and an example of use presented.

FlexiXML is structured around the concept of plugins,
where each plugin implements a set of specific functions.
This approach allows for constant evolution of the tool
through the integration of new plugins and other features,
with no impact on existing ones.
Figure 4 presents the architecture of the tool. This
architecture can be divided into 3 layers:
• Application Manager – this layer performs application

management. Its main responsibilities include loading
and coordinating available plugins, and dealing with
messages localization.

• Plugins – This is the layer where plugins are stored. In
addition to the two default plugins (Project and
Player), it is possible (through the Application
Manager) to integrate additional plugins into this layer.

• CORE Data Manager – This layer is responsible for
storing and providing information that is shared by all
plugins, the most relevant being the CUI model to be
rendered and animated.

Figure 4 - FlexiXML platform

As stated, besides allowing FlexiXML to integrate new
plugins, the current version provides two default plugins:
Project and Player.

Project plugin
The Project plugin is responsible for loading the project. A
project file identifies two further files: a UsiXML file with
the CUI model describing the interface, and an
ActionScript file with the dialogue control (i.e. the event
handlers associated to controls in the CUI model). This
arrangement promotes reuse since different CUI models
can be used with the same event handlers and vice-versa.
The Project plugin loads the two files. A parser is then
responsible for interpreting the file describing the interface
and for filling the core data structures with this information
so that others plugins might be able to use it. The parser to

be used is determined by the UIDL selected by the user in
this plugin. The mapping between the parsers and the
UIDLs is defined in a configuration file. Configuration files
are explained later in this article. Currently, only the
UsiXML parser is available, but other can be integrated. To
do this the parser must implement the parse() method.

Player plugin
The Player plugin is responsible for generating the
graphical interface of the loaded project. In addition to
generating the interface, it allows changes to the generated
interface at runtime, such as changing the style or language.
This is the plugin where the user specifies the programming
language to be used for user interface generation.
At the time of generation of the interface, the Player Plugin
accesses the CORE Data Manager to get information about
the current model. This information is then interpreted, and
the relevant components and/or objects created that
represent it. For each component defined in the model the
corresponding graphical component, its behavior, its
content and the possible transitions to other components are
created. The mapping between each UsiXML element and
the widgets/controls in the interface is defined in a
configuration file (described later in this paper).
Presently FlexiXML includes a generator for ActionScript
3 only. However, other generators can be integrated. To do
this the generator must implement the interface defined in
Figure 5.

Figure 5 – Generator interface.

As showed in the figure, a generator must be able to:
• Add behavior to a widget (addBehaviourGUI-

Item);
• Apply a style to the graphical user interface (apply-

Style);
• Draw a graphic component (drawFUIItem);
• Play transitions between components (execute-

Transition);
• Update the contents of a widget (refreshGUI-

ItemContent).

New plugins
The list of plugins that FlexiXML provides is defined in an
XML configuration file. The Application Manager reads
this file during the initial process of starting the application.
For each plugin, this file indicates its name, description,

and the class implementing it. It is this class that the
Application Manager will load to make the plugin
available.
For the integration of a plugin into the platform to be
possible, the plugin must be defined as a specialization of
class PluginBase (see Figure 6).

Figure 6 - Class diagram of a FlexiXML plugin.

The subclasses of PluginBase inherit and must set a
PluginType object, which contains all the necessary
properties for plugin characterization: name, description,
icon, etc. In addition to setting these properties, the class
must implement the IPlugin interface. This interface
defines all required methods for FlexiXML to be able to
interact with the plugin. The methods defined in this
interface are:
• setInitialStatus() – defines the initial state of

the plugin: active or inactive;
• setEnabled(enabled:Boolean) – assigns a

specific state to the plugin: active or inactive;
• projectLoaded(event_evt:Event) – method

executed whenever a new project is uploaded into the
application;

• projectIsNotLoaded(event_evt:Event) –
method executed whenever there is no longer a project
in the application.

Configuration
As already mentioned, a set of configuration files allows
changing the behavior and visual aspects of user interfaces
generated by FlexiXML. The main configuration files are:
• Messages – All messages used in the application have

an associated code. The message string associated with
each code is defined in a XML configuration file. The
existence of this file allows the FlexiXML to be
localized without the need to recompile the code.

Figure 7 - FlexiXML workflow.

• Plugins – Defines the list of available plugins. If a new

plugin needs to be inserted, it is necessary to include
its information in this file for the application be able to
load it.

• UIDLs – This file defines the list of UIDLs that
FlexiXML interprets. In addition to listing the
available UIDLs, it defines all the characteristics
needed for their integration into the application. These
include: the parser for the UIDL, the available
programming languages for generating the interface,
the mapping between the UIDL objects and the
widgets that can represent it, among others.

• Styles – The list of styles available in the Player plugin
is defined in this XML file. Thus, whenever there is
the need to insert new styles, they simply have to be
added to this file.

Workflow of the Generation Process
Previous sections, have described the basic building blocks
of the FlexiXML’s architecture. The process carried out by
the tool for generating a graphical interface is now
described. This process is depicted in Figure 7. The figure
identifies both the inputs to the tool (labeled with letters a

to d), and the flow of information (labeled with numbers 1
to 9).
FlexiXML takes as input a set of configuration files (labels
a, b and c in Figure 7) that are interpreted by dedicated
managers (steps 1, 2 and 3 in Figure 7). These managers
keep this information, which (once the tool is running) can
then be accessed by any one of the plugins that has been
loaded (see below). The managers are:
• System Messages Manager – this component is

responsible for loading of the messages to be used in
the application;

• Plugins Manager – this component is responsible for
loading the listed plugins into the application;

• UIDLs Manager – this component is responsible for
loading information of available UIDLs, and making
this information available to plugins.

Once this initial processing has been done, the application
becomes available, with all the plugins that have been
configured.
Once the configuration of the tool is set up, the process for
generating a graphical interface can start. For that, the tool

needs to load the two project files: one containing the
UsiXML model (label e), and the other containing dialogue
control written in ActionScript (label f). The process starts
(step 4) by receiving as input a project file (label d) where
the location of these two files is provided. The UsiXML
model is interpreted by the Project plugin (step 5), which
sends the information therein to the CORE Data Manager,
together with the dialogue control information (steps 6 and
7). The Project plugin then creates the entities representing
the components in the CUI model, and which the Player
will afterwards interpret. The CORE Data Manager
centralizes all the information that can be shared by the
plugins. Thus, when a plugin needs information about the
current project it must request it from this manager.
Once the project is loaded into the CORE Data Manager,
the Player can generate a graphical user interface (step 9)
based on the information provided by the CORE Data
Manager (step 8).

AN ILLUSTRATIVE EXAMPLE
This section presents an example of a GUI generated using
the FlexiXML tool. The example is an application to
display and listen to music albums. Given the size of the
model, only a few excerpts are presented here. The full
model can be downloaded from the project’s webpage3.

Design
The user interface is generated inside a main box (ii) in the
application's main window (i). In the concrete case of the
"Music Player", the user interface consists of a window that
can be divided into two main areas (see Figure 8): a header
box (item iii in the figure) containing the application’s
controls; and an area (CurrentView) for displaying
information about the albums collection (item vi in the
figure).

Figure 8 - Decomposition of the application in areas.

3 http://FlexiXML.di.uminho.pt (visited 14/07/2011)

<cuiModel id="musicPlayer-cui"
 name=" musicPlayer-cuiModel">

 <window id="playerWindow" …> (i)

 <box id="mainBox" …> (ii)

 <box id="headerBox" …> (iii)
 <box id="playerBox" …/> (iv)
 <box id="currentMusicBox" …/> (v)
 <box id="viewsBox" …/> (vi)
 </box>

 <box id="currentView" …> (vii)
 […]

 </box>

 </box>

 </window>

</cuiModel>

Figure 9 – CUI model of the MusicPlayer application.

Figure 10 - Music player (coverView and gridView)

generated by FlexiXML.

The header box is itself subdivided into three areas:
• Player – the area where the buttons to control the

music are placed (item iv in the figure);
• CurrentMusic – the area that displays information

about the music currently playing (item v in the
figure);

• View – the area where the buttons to switch between
the different display formats of the albums list are
placed (item vi in the figure).

Figure 11 - Graphical transitions between views.

The View area contains three buttons for toggling between
the three available display formats:
• ListView (to see the albums and theirs songs in list

format);
• GridView (to see the albums in a grid);
• CoverView (to see the albums one at a time, by their

cover).
Users may, at any time, change the view being used.
Figure 9 shows the basic structure of the model. The
excerpt shown identifies the main structural components.
For readability, the details of each component are omitted.
The end result of the generation process is shown in Figure
10.

Behaviour
The above model describes the structure of the user
interface. It is now necessary to model its behaviour. This
will be illustrated with a concrete example.
As can be seen in Figure 10, it is possible to have different
views of the album collection. Switching between views is
achieved by pressing the corresponding buttons in the
interface. Figure 11 illustrates the effect of pressing the
"GridView" button: the “GridView” view should be
displayed, and the previous view hidden.
The model specifying the behaviour of the GridView
button is presented in Figure 12. When a depressed event
happens in the button, a sequence of three transitions is
fired: GridViewTr1, GridViewTr2, and GridView-
Tr3. In addition, the method updateGridView must be
invoked. This method is responsible for providing the
necessary data to this view (e.g., list of albums to view).
Figure 12 defines the sequence of transitions, but does not
describe what each transition actually is. That is done in
Figure 13. There, it can be seen that GridViewTr1 and
GridViewTr2 correspond to fade-outs of the grid and
over views, respectively, while GridViewTr3
corresponds to the fade-in of the list view.

<button id="gridButton”>
 <behavior id="gridView">

 <event id="gridViewEvt"
 eventType="depress"
 eventContext="gridButton"/>

 <action id="gridViewAct">
 <transition transitionIdRef
 ="GridViewTr1" />
 <transition transitionIdRef
 ="GridViewTr2" />
 <transition transitionIdRef
 ="GridViewTr3" />

 <methodCall methodName
 ="updateGridView"/>

 </action>

 </behavior>
</button>

Figure 12 - Specification of the behavior of the
"GridView" button.

<graphicalTransition id="GridViewTr1"
 transitionType="fadeOut">
 <source id="gridButton" />
 <target id="listView" />
</graphicalTransition>

<graphicalTransition id="GridViewTr2"
 transitionType="fadeOut">
 <source id="gridButton" />
 <target id="coverView" />
</graphicalTransition>

<graphicalTransition id="GridViewTr3"
 transitionType="fadeIn">
 <source id="gridButton" />
 <target id="gridView" />
</graphicalTransition>

Figure 13 - Specification of the graphical transitions
triggered by the "GridView" button.

Context (Language)
As already stated, FlexiXML supports localization of the
interface via the definition of language contexts. To
illustrate this use of context, the steps needed to make the
interface available in two languages are now put forward.
Two models must be created to build the application in
different languages: the ContextModel (to create the
languages) and the ResourceModel (to specify the contents
of the objects in each language). Figure 14 defines two
languages for the “Music Player” application: English and
French. Then Figure 15 shows the specification of the
application title in the two languages. Figure 16 shows the
application window with the titles in both languages.
FlexiXML also allows changing the style of the generated
interface at runtime. The list of styles that can be applied is
defined in a configuration file. In this file, the name of the

style, and the location of the style file (CSS or SWF
format) are indicated.
Each style is defined in CSS (Cascading Style Sheet)
format. This enables a style to contain images (skins),
fonts, class selectors, among others. FlexiXML interprets
this style from an external SWF (Shockwave Flash) file.
The SWF files arise from the conversion of CSS files.
Figure 17 shows the “Music Player” in two different styles.
In this case, the background colors of the header and song
list where changed.

<contextModel id="playerContextModel"
 name="playerContextModel">

 <context id="playerContext_En_US"
 name="playerContext_En_US">

 <userStereotype
 id="playerContextUser_US"
 language="en_US"
 stereotypeName="playerContextUser_US"/>

 </context>

 <context id="playerContext_FR"
 name="playerContext_FR">

 <userStereotype
 id="playerContextUser_FR"
 language="FR"

stereotypeName="playerContextUser_FR"/>
 </context>

</contextModel>

Figure 14 - Specification of the languages.

<resourceModel id="playerResourceModel"
 name="playerResourceModel">

 <cioRef cioId="playerWindow">

 <resource content="Music Player"

contextId="playerContext_En_US"/>

 <resource content="Lecteur de Musique"
 contextId="playerContext_FR"/>

 </cioRef>

</resourceModel>

Figure 15 - Specification of the application title in
different languages.

Figure 16 - "Music Player" in English and French

Styles.

Figure 17 - “Music Player” with different styles.

CONCLUSIONS AND FUTURE WORK
The acceptance of an application depends largely on the
quality of its graphical interface. Model-based user
interface development helps ensure the quality of the
solution can be assessed at an early stage [4], allowing for
the problems identified to be analyzed as soon as possible.
This is achieved through the creation of models at different
levels of abstraction, from the domain model to the final
user interface. To maximize model-based development,
tools support is necessary both to enable analysis of the
models, and to enable moving between levels of
abstraction.
The aim of this project was the creation of a tool to support
automatic generation of user interfaces from models
expressed in the UsiXML language. The current version of
the tool supports the UsiXML language, but is designed to
allow the inclusion of other XML-based declarative
languages.
In this version of the project, only a sub-set of the potential
of the UsiXML language is used. For example, the
possibility of defining characteristics of the computing
platform in the context model was not considered. In
alternative, a technology was used that enables the
generated interfaces to be run in a variety of platforms.
That is, the adaptation is not directly handled by
FlexiXML, but by the runtime environment in which
FlexiXML is executing.
The generated interfaces are created in FLEX and
ActionScript 3. The tool, however, is structured so that the
user can specify in which language (s)he wants the
interface to be generated. These two characteristics are
intended to make the tool as flexible as possible, not
limiting users to particular languages (or language
versions) for interface specification and generation, thus
extending the number of users that can benefit from it.
The fact that the FlexiXML tool relies on the AIR runtime
environment for execution makes it independent of any
specific computing platform. Indeed, due to the use of the
runtime environment, FlexiXML is available in two

formats: Desktop and Web. Where the desktop version can
be used in any operating system that features an Air
runtime environment (i.e. all major operating systems).
Looking back at the objectives initially set forth, the
following features of the FlexiXML tool can be
highlighted:
• Implementation in a recent technology (AIR, Flex and

ActionScript3) enabling portability of the user
interface (in the sense that it can be deployed in
different platforms);

• An explicit, and configurable, mapping between the
modeling language and the implementation technology
(both regarding the structural elements of the interface,
and regarding behaviour – supported events, graphical
transitions);

• Support for runtime adaptation of the user interface via
localization, and the use of styles to change the look of
the interface;

• An architecture designed to support the integration of
new plugins and new graphical interfaces modeling
and/or programming languages.

At this stage, a number of future lines of work is open.
Some of the possible improvements, and areas for future
work include:
• Creating new plugins – for example, a model editor;
• Extending the widget library and the layout managers,

in order to provide a wider set of user interface
representations – thus supporting the creation of more
realistic user interfaces;

• Supporting the generation of prototypes for different
devices and platforms – while the tool can be run on a
number of platform due to the AIR runtime, no attempt
is made at this stage to adapt the generated interface to
the device being used;

• Implementing parsers for new UIDLs, and generating
the user interfaces using different programming
languages and technologies.

ACKNOWLEDGMENTS
The authors would like to thank Jean Vanderdonckt and
Michael D. Harrison for their helpful comments on
previous versions of this paper. Sandrine Mendes would
also like to thank her employer, Alert Life Sciences
Computing, for sponsoring this work.

REFERENCES
1. Puerta, A., and Eisenstein, J. XIML: A common

representation for interaction data. In Proc. of the 7th
Intl. Conf. on Intelligent User Interfaces, ACM, 69-76.

2. Abrams, M., Phanouriou, C., Batongbacal, A.L.,
Williams, S., and Shuster, J. UIML: An Appliance-
Independent XML User Interface Language. Proc. of
8th Inter. World-Wide Web Conference, Elsevier, 1999.

3. Argollo, M. Jr., and Olguin, C. Graphical user interface
portability. CrossTalk: The Journal of Defense Software
Engineering, 10(2):14–17, 1997.

4. Bäumer, D., Bischofberger, W.R., Lichter, H., and
Züllighoven, H. User interface prototyping - concepts,
tools, and experience. ICSE '96: Proceedings of the 18th
international conference on Software Engineering, IEEE
Computer Society, 532-541.

5. Coyette, A. A Methodological Framework for Multi-
Fidelity Sketching of User Interfaces, Ph.D. thesis,
Université Catholique de Louvain, Belgium, 2007.

6. Denis, V. Un pas vers le poste de travail unique :
QTKiXML, un interpréteur d'interface utilisateur à
partir de sa description, M.Sc. thesis, Université
catholique de Louvain, Belgium, September 2005.

7. Kaklanis, N. 3D HapticWebBrowser.
http://kaklanis.googlepages.com/nickkaklanis-
3dhapticwebbrowser. Last accesses on June 26, 2009.

8. Michotte, B., and Vanderdonckt, J. GrafiXML, A Multi-
Target User Interface Builder based on UsiXML. Proc.
of 4th Intl. Conference on Autonomic and Autonomous
Systems ICAS’2008, IEEE Computer Society Press.

9. Mozilla foundation. XUL Tutorial,
https://developer.mozilla.org/en/XUL_Tutorial.
Last accessed on November 22, 2010.

10. Paternó. F and Santoro. C. One model, many interfaces.
In Proceedings of the 4th Intl. Conf. on Computer-
Aided Design of User Interfaces CADUI’2002. Kluwer
Academics Publishers, 143-154.

11. Silva, E. Sistemas interactivos. Departamento de
Computação, Universidade Federal de Ouro Preto.
2006.

12. Garcia, J.G., Gonzalez-Calleros, J.M., Vanderdonckt, J.,
Munoz-Arteaga, J. A Theoretical Survey of User
Interface Description Languages: Preliminary Results,
Proc. of Joint LA-Web/CLIHC'2009, pp. 52-59, 2009.

13. The Cameleon Project – plasticity of user interfaces.
http://giove.cnuce.cnr.it/cameleon.html. Last accessed,
June 26, 2009.

14. Université catholique de Louvain. UsiXML – USer
Interface eXtensible Markup Language.
http://www.usixml.org/. Last accessed on November 22,
2010.

15. Goffette, Y., Louvigny, H.-N. Development of
multimodal user interfaces by interpretation and by
compiled components : a comparative analysis between
InterpiXml and OpenInterface, M.Sc. thesis, UCL,
Louvain-la-Neuve, 28 August 2007

16. Vanderdonckt, J., Guerrero-Garcia, J., González-
Calleros, J.M., A Model-Based Approach for
Developing Vectorial User Interfaces, Proc. of Joint
LA-Web/CLIHC'2009, pp. 52-59, 2009.

