

University of Minho Institute of Education

ISATT 2011 – Braga

Analyzing Curriculum Structure in Industrial and Management Engineering Courses: Implications for Teaching and Learning

Diana Mesquita | Research Centre in Education , UMinho |

M. Assunção Flores | Dep. of Curriculum Studies and Educational Technology, Institute of Education, UMinho | **Rui M. Lima |** Production and Systems Dep. School of Engineering, UMinho |

Outline

- Introduction
- Context of the Study
- Methodology
- Findings
- Conclusions

Introduction

Purpose of the study

- to analyze the structure and rationale of curricula in Industrial and Management Engineering (IME) courses
 - PhD. Project to analyze the curricula elements and employability competences in the Engineering Courses, in order to contribute to the improvement of the quality of the training program in engineering courses
 - Case Study Integrated Master Degree of Industrial and Management Engineering (MIEGI) at University of Minho

- BOLOGNA PROCESS
 - Main Goal: harmonization of higher education systems in European Higher Education Area (EHEA)
 - Demands: new structures and tools, quality assurance, social dimension, student mobility, lifelong learning and employability
 - Implications: strong impact on policies and practices in the universities and implies an educational reorganization

EDUCATIONAL REORGANIZATION

- More flexible curriculum
- A distinct organization of teachers and students
- The adoption of schemes of tutorial support
- New ways of teaching and assessment
- New calendars evaluation procedures
- Greater coordination between research and teaching
- Smaller classes

CHANGES IN CURRICULA

- Student centered curricula require changes in educational activities, assessment tasks and strategies, and a change in the organization of learning
- Importance of the development of technical and also transversal competencies, which allow students to communicate what they know and to use their knowledge in many different ways

ISATT 2011 | Diana Mesquita

the most significant changes, with a clear impact on teaching and learning methodologies, occurred at two levels:

Assessment methods

Adjustment of graduate study programs

Methodology

Research Questions:

- How is the curriculum is structured?
- What are the key areas that are promoted in each curriculum course?
- What kind of professional profile is defined?

Document Analysis:

- Industrial and Management Engineering programs (IME)
- through an online directory, a list of Higher Education institutions <u>http://europe.2graduate.com/</u>

IME programs:

127 programs from universities and polytechnics in Europe

(Germany, Spain, Russia, UK, Sweden, The Netherlands, Poland, Norway, Italy, Ireland, Greece, France, Denmark, Finland, Austria and Portugal)

- identify European trends
- only universities were chosen for this analysis **80 programs | 1st and 2nd cycles**

Findings

- Most of programs' designation is different in each university, However, all programs are related to IME area because this is the main criterion for the analysis
 - Engineering Design and Production | Industrial Engineering | Industrial Management | Manufacturing Engineering Management | Industrial Project Management
- The curriculum organization shows that all programs have Math and Physics in year 1 - Basic Sciences in Engineering
 - In some countries the first cycle of study for Engineering is common. Only in the second cycle students have a specialization of knowledge (e.g. Mechanical, Computer Science, Production, etc.).
- The programs selected are different in their length
 - A few programs are open and flexible, where student choose the courses that he/she want to do.

- What are the implications for teaching and learning in Higher Education?
 - European Network for Accreditation of Engineering Education
 - EUR-ACE[®]: the European quality label for engineering degree programmes at Bachelor and Master level
 - Is aligned with Bologna Process orientations
 - FQ EHEA: Framework of Qualifications for the European Higher Education Area (for all areas of knowledge)

 EUR-ACE - Framework Standards for the Accreditation of Engineering Programmes

Knowledge and Understanding	The underpinning knowledge and understanding of science, mathematics and engineering fundamentals are essential to satisfying the other programme outcomes.	\checkmark
	Graduates should demonstrate their knowledge and understanding of their engineering specialisation, and also of the wider context of engineering.	

Engineering Analysis	Graduates should be able to solve engineering problems consistent with their level of knowledge and	\checkmark
	understanding, and which may involve considerations from outside their field of specialisation.	depends on: what kind of learning methodologies are implemented?

Engineering Design	Graduates should be able to realise engineering designs consistent with their level of knowledge and understanding, working in	depends on: what kind of learning
	cooperation with engineers and non- engineers.	methodologies are implemented?

Investigations

Graduates should be able to use appropriate methods to pursue research or other detailed investigations of technical issues consistent with their level of **knowledge and understanding**.

depends on: what kind of **learning methodologies** are implemented?

Engineering
PracticeGraduates should be able to apply their
knowledge and understanding to
developing practical skills for solving
problems, conducting investigations,
and designing engineering devices and
processes.Image: Constant of the second second

Transferable Skills [transversal competencies]

The skills necessary for the practice of engineering, and which are applicable more widely, should be developed within the program.

depends on: what kind of **learning methodologies** are implemented?

IME programs reveals:

- (+) knowledge and understanding
- (-) transversal competencies

Depends on learning approach:

- methodologies related to active learning
- teachers' role facilitator, communicator and innovator
- formative assessment
- (...)

The formal curriculum just shows the organization of the contents, not the processes related with students' learning environment.

University of Minho Institute of Education

Discussion

Diana Mesquita | diana@dps.uminho.pt |

M. Assunção Flores | aflores@ie.uminho.pt | Rui M. Lima | <u>rml@dps.uminho.pt</u> |