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Calçada Fonte do Lameiro, 6201-001 Covilhã, Portugal
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Abstract

We study the problem of formation shape control under the constraints on the thrust di-
rection. Formations composed of small satellites are usually subject to serious limitations for
power consumption, mass and volume of the Attitude and Orbit Control System (AOCS). If
the purpose of the formation flying mission does not require precise tracking of a given rel-
ative trajectory, AOCS of satellites may be substantially simplified; however, the capacity of
AOCS to ensure a bounded or even periodic relative motion has to be studied first. We con-
sider a formation of two satellites; the deputy one is equipped with a passive attitude control
system that provides one-axis stabilization and a propulsion system that consists of one or two
thrusters oriented along the stabilized axis. The relative motion of the satellites is modeled by
the Schweighart-Sedwick linear equations taking into account the effect of J2 perturbations. We
prove that both in the case of passive magnetic attitude stabilization and spin stabilization for
all initial relative positions and velocities of satellites there exists a control guaranteeing their
periodic relative motion.

1 Introduction

Nowadays, design of formation flying missions is one of the main directions of modern space system
development. Many studies have been carried out, and a number of books on dynamics of such
distributed systems have been published (see, e.g., [1, 2]).
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One of the main problems to be solved in design of a formation flying mission is that of mainte-
nance of the required spatial configuration of satellites. The straightforward approach is to correct
orbits using one or several thrusters. Usually no constraints are imposed on the thrust direction.
However, for a nano- or picosatellite formation subject to severe restrictions on mass, volume, and
energy resources, the number of thrusters is limited and the available control systems rarely provide
three-axis orientation. Therefore, the thrust direction cannot be arbitrary changed.

Consider a two-satellite formation the aime of which is to perform measurements or observations,
at several points of the orbit. Suppose that the deputy satellite is equipped with a propulsion system
with its thrust axis fixed in the body of satellite. The thrust can be directed in both ways or in only
one, depending on the propulsion system employed. (As the simplest example of such a system,
one can suggest a cold gas thruster.) A number of simple and lightweight attitude control systems
are available that can stabilize motion of the thrust axis. Thus one can formulate the problem of
orbital control assuming the thrust axis orientation to be known at any moment in time. In control
theory, the above control is referred to as single-input control. The principal question is whether
the above AOCSs suffice to provide the required formation shape at least at some points of the
orbit.

The cases of successively implemented single-input control are known since the early days of
space exploration. One of them occurred by accident as a result of hull depressurization during one
of the first Veneras, Soviet Venus probe missions. The spacecraft was spinning in a sun-oriented
mode, and so the average jet force of the leaking air happened to be directed towards the Sun,
resulting unexpectedly in the proper orbital correction [3].

Development of modern miniature satellites, such as Cubesats, motivates research on single-
input control to simplify satellite control system. Applications of the single-input control concept to
the problem of formation maintenance has been considered for several missions. For example, the
microsatellite Magion-2 launched in 1989 was equipped with a passive one-axis magnetic attitude
control system and a propulsion system with a thrust vector along the oriented axis. The aim
was to keep it at 10 km distance from the chief satellite [4]; however, due to the thruster failure,
formation maintenance was not possible.

Much research is focused on compensation of the relative drift of satellites caused by the J2
harmonic of the Earth’s gravitational potential. In [5] this problem is studied assuming the deputy
satellite to be equipped with a passive magnetic attitude control system and two thrusters installed
along the axis of the magnet. The use of solar radiation pressure to solve this problem is studied
in [6] (see also [7]).

Another approach to the decoupling of the attitude and orbital control in formation is presented
in [8]. The authors interpret a formation as a quasi-rigid body. It is shown that control of such a
formation can be effectively separated into a control torque that maintains the attitude and control
forces that maintain the rigidity of a formation. The respective control strategy is based on the
Lyapunov controller synthesis [9].

In this paper, we analyze the general problem of compensation of J2 perturbations for the deputy
satellite in two-satellite formation. The chief satellite is assumed to move passively. We study
the Schweighart-Sedwick linear equations [10], i.e., the modification of the Hill-Clohessy-Wiltshire
equations of relative motion. This modification well describes the effect of J2 perturbations and
has been successfully used to study many problems of relative dynamics, such as formation keeping
and rendezvous (see, e.g., [11, 12, 13, 14]).
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We consider two different types of single-input control:

1. Bilateral control oriented along a vector fixed in the inertial space (the case of spin stabiliza-
tion);

2. Bilateral and unilateral control oriented along the vector of local geomagnetic field (the case
of passive magnetic stabilization).

We prove that for any initial conditions there exists a control that provides a periodic relative
motion of chief and deputy satellites with a period T between 1 and 2 orbital periods. This means
that the maximum distance between satellites does not become very large. Though the shape of
relative trajectory is not controlled, the existence of bounded short-period relative motion suffices
to perform the required measurements in many nano- ans picosatellite formation missions.

Throughout this paper, the set of real numbers is denoted by R and the N -dimensional space
of vectors with components in R by RN . We denote by 〈a, b〉 the usual scalar product in RN and
by ‖ · ‖ the Euclidean norm. The transposition of a matrix A is denoted by AT .

2 Existence and stabilization of closed trajectories for a single-
input control system

Consider a linear single-input control system

η̇(t) = Aη(t) + a(t) + w(t)b(t), η(t) ∈ Rn, w(t) ∈ R, (1)

where A is a (N ×N)-matrix, a : R → RN , and b : R → RN are given continuous functions, and
w(t) is a control. The control w(t) may be subjected to the constraint

w(t) ≥ 0. (2)

The set of admissible controls w(·) is denoted by W and consists of locally integrable functions.
The general solution to (1) is given by the Cauchy formula

η(t) = etAη0 +

∫ t

0
e(t−s)A(a(s) + w(s)b(s))ds.

We say that system (1) has a T -closed trajectory η(·) satisfying η(0) = η0, if and only if there exists
an admissible control wη0(·) such that

η0 = eTAη0 +

∫ T

0
e(T−t)A(a(t) + wη0(t)b(t))dt. (3)

Put

KT =

{∫ T

0
e(T−t)Aw(t)b(t)dt | w(·) ∈ W

}
.

If w(t) ∈ R, then KT is a subspace. In the case w(t) ≥ 0, the set KT is a convex cone. If KT = RN ,
then for any η(0) = η0 there exists an admissible control wη0(·) satisfying (3). Moreover, for any
initial point η1 and any terminal point η2 there exists an admissible control wη1,η2 such that

η2 = eTAη1 +

∫ T

0
e(T−t)A(a(t) + wη1,η2(t)b(t))dt. (4)
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that is, the system is controllable.
The established controllability allows one to correct closed trajectories, i.e., if there is a deviation

in the initial condition of the closed trajectory, it can be compensated for by an appropriate choice
of control.

To verify the controllability condition KT = RN in the case of unconstrained control, we use
the following direct consequence of the Pontryagin Maximum Principle.

Theorem 1 Assume that there is no non-trivial solution of the equation

ṗ(t) = −AT p(t) (5)

satisfying
〈p(t), b(t)〉 = 0, t ∈ [0, T ], (6)

then the equality KT = RN holds.

In the case of controls subject to constraint (2), the situation is more involved. Later on we
consider only the τ -periodic functions b(·). This assumption is satisfied in all applications considered
here and significantly simplifies the study.

The following two propositions are well-known to the specialists in the control theory. However,
to make the presentation self-contained, we include their short proofs in the Appendix.

First of all, note that the periodicity condition b(t + τ) = b(t) implies that the cones KMτ ,
M = 1, 2, . . ., form a monotonously increasing sequence.

Lemma 1 Assume that b(t) is τ -periodic. Let M be a positive integer. Then the inclusion KMτ ⊂
K(M+1)τ holds.

The next theorem is also a consequence of the Pontryagin Maximum Principle and contains
sufficient conditions of controllability for system (1) when the control satisfies condition (2).

Theorem 2 Assume that there is no non-trivial solution to the differential equation

ṗ(t) = −AT p(t) (7)

satisfying
〈p(t), b(t)〉 ≥ 0, t ≥ 0. (8)

Then the equality K∞ =
⋃
M KMτ = RN holds.

Since the sequence of convex cones KMτ is monotonous, the equality
⋃
M>0KMτ = RN implies

the existence of a positive integer M such that

KMτ = RN . (9)

Indeed, let points ξk, k = 1, . . . , N + 1, be the vertices of a simplex Ξ containing the origin as an
interior point. Then any point ξ ∈ RN can be represented as ξ =

∑
k λkξk with λk ≥ 0. For any

k = 1, . . . , N + 1, there exist a positive integer Mk and an admissible control uk(·) satisfying

ξk =

∫ Mkτ

0
e(Mτ−t)Ab(t)uk(t)dt.
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So from Lemma 1 we see that any vertex ξk can be represented in the form

ξk =

∫ Mτ

0
e(Mτ−t)Ab(t)wk(t)dt,

where M = max{Mk | k = 1, . . . , N + 1} and wk(·) is an admissible control. This implies the
equality

ξ =

∫ Mτ

0
e(Mτ−t)Ab(t)

∑
k

λkwk(t)dt,

arriving at (9).

Let η0 ∈ RN . Condition (9) leads to the existence of a control w0(·) such that

η0 − eMτAη0 −
∫ Mτ

0
e(Mτ−t)Aa(t)dt =

∫ Mτ

0
e(Mτ−t)Ab(t)w0(t)dt.

Therefore, the control w0(·) corresponds to a closed trajectory of (1) satisfying η(0) = η0.

The above results permit one also to compensate for the errors caused by the model or measure-
ments not requiring considerable computational efforts. Under condition (9) it is easy to develop
an algorithm that reaches the point η0 even if the initial point η′0 is different from η0. Note that
this algorithm does not require solving the integral equation (4).

Consider a simplex Σ containing η0 in its interior. Let {η1, . . . , ηN+1} be the vertices of Σ.
Condition (9) implies the existence of admissible controls wk(·), k = 1, . . . , N + 1, satisfying the
equalities

η0 − eMτAηk −
∫ Mτ

0
e(Mτ−t)Aa(t)dt =

∫ Mτ

0
e(Mτ−t)Ab(t)wk(t)dt, k = 1, . . . , N + 1.

If η′0 ∈ Σ, there exist non-negative numbers λk, k = 1, . . . , N + 1, such that

η′0 =
N+1∑
k=1

λkηk and
N+1∑
k=1

λk = 1, (10)

and so the control

w(t) =

N+1∑
k=1

λkwk(t)

drives system (1) to the point η0. Thus, if the controls wk(·), k = 1, . . . , N + 1, are known, it
suffices to find non-negative numbers λk, k = 1, . . . , N + 1, satisfying (10) in order to reach the
point η0 from η′0.

3 Equations of relative motion with single-input control

To take into account the influence of the J2-harmonic on relative motion of two satellites with close
near-circular orbits, the following modification of the Hill-Clohessy-Wiltshire equations has been
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introduced by Schweighart and Sedwick [10]:

ẍ+ 2ncż = w(t)ex(t),

ÿ + q2y = 2lq cos(qt+ φ) + w(t)ey(t),

z̈ − 2ncẋ− (5c2 − 2)n2z = w(t)ez(t).

The linearization is done with respect to the circular reference orbit with the mean motion n. Here
x, y, and z are coordinates in the respective orbital reference frame Oxyz. The axes are chosen in
the following way: Oz indicates the radial direction outwards from the Earth, Ox is directed along
the velocity of the point O, and y is normal to the orbital plane. The coefficients c, q, l, and φ are
properly defined constants (see the Appendix, Proof of Lemma 2).

The direction of the control acceleration w(t) is defined by the vector-function

e(t) = (ex(t), ey(t), ez(t))
T .

Using the notations
η = (x, y, z, ẋ, ẏ, ż)T ,

a(t) = (0, 0, 0, 0, 2lq cos(qt+ φ), 0)T ,

b(t) = (0, 0, 0, ex(t), ey(t), ez(t))
T ,

and

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 −2nc
0 −q2 0 0 0 0
0 0 (5c2 − 2)n2 2nc 0 0

 ,

we obtain a system of type (1). System (5) that describes the evolution of the vector p =
(p1, p2, p3, p4, p5, p6)

T takes the form

ṗ1 = 0,

ṗ2 = q2p5,

ṗ3 = −(5c2 − 2)n2p6,

ṗ4 = −p1 − 2ncp6,

ṗ5 = −p2,
ṗ6 = −p3 + 2ncp4.
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Its general solution is given by

p1(t) = p01,

p2(t) = A2 cos(qt+ φ2),

p3(t) = p03 −A6
(5c2 − 2)n√

2− c2
sin(

√
2− c2nt+ φ6) + 2nc

5c2 − 2

2− c2
p01t,

p4(t) =
p03

2nc
−A6

2c√
2− c2

sin(
√

2− c2nt+ φ6) +
5c2 − 2

2− c2
p01t,

p5(t) = −A2

q
sin(qt+ φ2),

p6(t) = A6 cos(
√

2− c2nt+ φ6)−
2cp01

(2− c2)n
,

where p01, p
0
3, A2, A6, φ2, and φ6 are constants. Conditions (6) and (7) are equivalent to the

conditions
p4(t)ex(t) + p5(t)ey(t) + p6(t)ez(t) = 0, t ∈ [0, T ], (11)

and
p4(t)ex(t) + p5(t)ey(t) + p6(t)ez(t) ≥ 0, t ∈ [0, T ], (12)

respectively. According to Theorem 2, to prove the controllability of the Schweighart-Sedwick sys-
tem with single-input control it suffices to show that there are no non-trivial functions (p1(t), . . . , p6(t))
satisfying (11) or (12).

Denote the radius and the inclination of the reference circular orbit by rref and iref, respectively.
Assume that the chief satellite moves passively in an orbit with inclination i1. The orbit inclination
of the deputy satellite is denoted by i2. Set

ω0 = nc, ω1 = q, ω2 = (
√

2− c2 − c)n, ω3 = (
√

2− c2 + c)n.

The following lemma proved in the Appendix is crucial for the analysis of the Schweighart-Sedwick
system controllability.

Lemma 2 If 2iref 6= arccos(−1/3), then ωj 6= 0, j = 0, 1, 2, 3, and ω2 < ω0 < ω1 < ω3.

Below we assume that the main condition of this lemma is satisfied and consider two systems with
single-input control relevant for practical applications.

4 Bilateral control oriented along the geomagnetic field

Consider first a formation with the deputy satellite equipped with a passive magnetic attitude
control system (PMACS) and has two thrusters installed along its axis of orientation (i.e., axis
of permanent magnet included in PMACS) in opposite directions. We also assume that at any
moment in time this axis coincides with the direction of geomagnetic field described by the direct
dipole model:

ex(t) =
cos θ(t) sin i2√

1 + 3 sin2 θ(t) sin2 i2
,
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ey(t) =
cos i2√

1 + 3 sin2 θ(t) sin2 i2
,

ez(t) =
−2 sin θ(t) sin i2√

1 + 3 sin2 θ(t) sin2 i2
.

The argument of latitude is given by θ(t) = nct.
Under some non-restrictive conditions the system is controllable in any time interval [0, T ], e.g.,

one can take T = 2π/(nc).

Theorem 3 Let T > 0. If sin 2i2 6= 0, then there exists a T -closed trajectory of system (1).
Moreover, an error in the initial conditions can be compensated for.

The proof of this theorem can be found in the Appendix.

5 Bilateral control oriented along a fixed vector in the inertial
space

Spin-stabilized satellites represent another interesting possibility for orbit correction by single-input
control. Once rapidly rotated about an axis, the spacecraft keeps spinning around this direction in
the inertial space in the absence of perturbing torques.

Assume that the deputy satellite possesses a spherically symmetrical mass distribution, is spin-
stabilized and has two thrusters oriented in opposite directions along its spin axis fixed in the
inertial space. Suppose that λ is the angle between this axis and the vector pointing to the vernal
equinox direction, and ε is the inclination of the plane containing these vectors with respect to the
Earth’s equator. Then in the Earth-centered inertial reference frame the spin axis direction has the
components (cosλ, sinλ cos ε, sinλ sin ε)T . In the Oxyz reference frame the expressions are

ex(t) = σz sin θ(t)− σx cos θ(t),

ey = −σy,

ez(t) = −σx sin θ(t)− σz cos θ(t).

Here the vector σ = (σx, σy, σz)
T defines the direction of spin axis in the ascending node of the

orbit via the inclination i2 and the right ascension Ω2:

σx = cos Ω2 cos i2 sinλ cos ε− sin Ω2 cos i2 cosλ+ sin i2 sinλ sin ε,

σy = − cos Ω2 sin i2 sinλ cos ε+ sin Ω2 sin i2 cosλ+ cos i2 sinλ sin ε,

σz = cos Ω2 cosλ+ sin Ω2 sinλ cos ε.

We set θ(t) = nct. As in the case of the satellite oriented along the local geomagnetic field,
under some non-restrictive conditions the system is controllable in any time interval [0, T ], e.g., for
T = 2π/(nc).

Theorem 4 Let T > 0. If σ2x+σ2z 6= 0 and σy 6= 0, then there exist a T -closed trajectory of system
(1). Moreover, an error in the initial conditions can be compensated for.

(See the Appendix for the proof.)
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6 Unilateral control oriented along the geomagnetic field

Now assume that the control w(t) has to satisfy the non-negativity condition (2). Set τ = 2π/(nc).
In this case we have the following result.

Theorem 5 If sin 2i2 6= 0, there is a positive integer M > 0 and a Mτ -closed trajectory of system
(1). Moreover, an error in the initial conditions can be compensated for.

The theorem is proved in the Appendix.

Note that a similar result can be proved for the case of the satellite oriented along a fixed vector
in the inertial space. However, this result is of quite limited practical importance. Indeed, while
in the case of magnetic orientation M = 2 (see the numerical example in the next section), in the
case of the satellite oriented along a fixed vector in the inertial space, the value of M is very large,
and so is the distance between the chief and deputy satellites. In this case the linearized equations
cease to describe adequately the system dynamics and so the generated periodic trajectories are of
merely academic interest.

7 Numerical results

The aim of the following numerical simulations is to verify the analytical results listed above and
to compare the trajectories of initial and linearized systems in the presence of the control. On
solving the integral equation (3) numerically, we substitute the obtained control into the Gauss
variational equations for the deputy satellite and propagate them in time. For the passively flying
chief satellite the propagation can be done directly. Then, subtracting one motion from another,
we convert the result to the Oxyz reference frame. Only the J2 perturbing effect is taken into
account. Indeed, for time intervals of several orbital periods the influence of atmospheric drag and
solar radiation pressure on relative motion of identical satellites in close orbits is negligible (3 to 4
orders smaller than J2 perturbations).

Integral equation (3) has many solutions; we use the minimal one in the sense of L2-norm. This
criterion can be interpreted as that of minimal energy consumption for low-thrust constant-power
engines (see, e.g., [15]).

Below, we compare the trajectories of the linearized Schweighart-Sedwick system (LT) and the
trajectories obtained by integration of the nonlinear equations of motion (NT). Figure 1 shows a
T -closed LT with the numerically obtained bilateral single-input control oriented along the geo-
magnetic field. This trajectory has a length T = τ = 2π(nc)−1 and corresponds to the following
initial conditions: x0 = 70.71 m; y0 = 70.71 m; z0 = 35.36 m; ẋ0 = 76.25 mm/s; ẏ0 = 76.32 mm/s;
ż0 = −38.07 mm/s. The radius of the circular reference orbit is rref = 7000 km; the inclination
of the chief satellite i1 is the same as the reference inclination iref = 35 deg. The projections of
LT on xy and xz planes are demonstrated in Figs. 2 and 3. As we see, the shape of trajectories is
rather complex. Modelling errors of LT and the corresponding control are shown in Figs. 4 and 5
respectively.

Figure 4 shows that the difference between the LT and NT obtained with the same control is
not significant. The difference appears because the in-plane drift is not completely eliminated. It
is caused by the errors of linearization in the Schweighart-Sedwick model. In the case of free flight,
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these errors can be compensated for by a proper choice of initial conditions, which should be done
numerically (see [10]). We obtain a similar situation with the controlled flight, but now the control
has to be corrected, e.g., it can be used as the first approximation in an iteration procedure (such as
Newton’s method) applied to the Gauss system. A Newton-type method suitable to solve control
problems with non-negativity constraints can be found in [16]. The control problem for nonlinear
system is to be described in a future paper.

Now proceed with the case of unilateral single-input control oriented along the geomagnetic
field. The construction described in Section 2 is fulfilled numerically. We show that it is possible
to construct a 2τ -closed trajectory for all vertices of a simplex containing the origin in its interior.
Therefore a 2τ -closed trajectory exists for any initial point. The results of the “simplex” experiment
are summarized in Table 1. The last two rows of this table contain the values of L1-norm

‖w‖1 =

∫ 2τ

0
|w(t)|dt,

and of squared L2-norm

‖w‖22 =

∫ 2τ

0
|w(t)|2dt,

of the controls w(t) providing closed trajectories for the simplex vertices 1, . . . , 7. 2τ -closed LT along
with their projections on xy and xz planes, the coordinate-wise errors, and the corresponding non-
negative LT-control are shown in Figs. 6-10. Since the time interval becomes twice as long, the
error of linearization results in larger modelling errors due to considerable along-track drift.

For the bilateral control oriented along a fixed vector in the inertial space, the results are
qualitatively similar to the case of bilateral magnetic control (see Figs. 11-13). We use the same
initial conditions, and the fixed vector is defined by the following angles: λ = 45 deg, ε = 23.45
deg. This choice of ε may correspond to stabilization of the spacecraft axis in the Sun direction.

Conclusions

We consider the problem of formation maintenance under constraints on the thrust vector directions.
The formation consists of two satellites; the deputy satellite is equipped with one or two thrusters
oriented along a given axis. We assume that the orientation of this axis is kept by an available
passive ACS and is known at any instant of time. A possibility to obtain a periodic relative
motion of the chief and deputy satellites is demonstrated for several types of single-input control.
In each case sufficient controllability conditions are deduced. In general, these conditions can be
formulated as follows: the vector of control direction should have non-zero components both in
the orbital plane and along the normal to the orbit. For the unilateral control oriented along
the geomagnetic field, the existence of a closed trajectory of relative motion with double period
is established for arbitrary initial conditions. A single-input control numerically obtained for the
system of Schweighart-Sedwick equations suffices to guarantee almost closed trajectories. We also
prove that the inaccuracy caused by the errors of the Schweighart-Sedwick model can be corrected.
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A Appendix

Proof of Lemma 1. Let z ∈ KMτ . Then an admissible control u(·) exists such that

z =

∫ Mτ

0
e(Mτ−t)Ab(t)u(t)dt.

Set

w(s) =

{
0, s ∈ [0, τ),
u(s− τ), s ∈ [τ, (M + 1)τ ].

Then we have

z =

∫ Mτ

−τ
e(Mτ−t)Ab(t)w(τ + t)dt

=

∫ Mτ+τ

0
e(Mτ+τ−s)Ab(s− τ)w(s)ds

=

∫ (M+1)τ

0
e((M+1)τ−s)Ab(s)w(s)ds.

Thus we get KMτ ⊂ K(M+1)τ . 2

Proof of Theorem 2. Suppose that K∞ 6= RN . From Lemma 1 we see that K∞ is a convex
cone. So there exists a vector p∞ 6= 0 satisfying 〈x, p∞〉 ≥ 0, for all x ∈ K∞. Therefore, we have
〈x, p∞〉 ≥ 0, for all x ∈ KMτ and any positive integer M . Consider the functions

pM (t) =
exp(AT (Mτ − t))p∞
‖ exp(ATMτ)p∞‖

, M = 1, 2, . . . .

From the Pontryagin maximum principle we have 〈pM (t), b(t)〉 = 0, t ∈ [0,Mτ ], if w(t) ∈ R, and
〈pM (t), b(t)〉 ≥ 0, t ∈ [0,Mτ ], if w(t) ≥ 0. Consider the sequence pM (0). Without loss of generality
it converges to a vector p0 satisfying ‖p0‖ = 1. Thus we have

lim
M→∞

pM (t) = p0(t) = exp(−AT t)p0, t ∈ [0,Mτ ].
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Obviously the solution p0(·) to (5) is non-trivial and satisfies (6) if w(t) ∈ R, and (7) if w(t) ≥ 0,
a contradiction. 2

Proof of Lemma 2. By definition,

q = nc+
3nJ2R

2
⊕

2r2ref

(
cos2 i2 −

(cos i1 − cos i2)(cot i1 sin i2 cos ∆Ω0 − cos i2)

sin2 ∆Ω0 + (cot i1 sin i2 − cos i2 cos ∆Ω0)2

)
,

∆Ω0 =
y0

rref sin iref
, y0 = y(0), c =

√
1 + s, s =

3J2R
2
⊕

8r2ref
(1 + 3 cos 2iref),

where R⊕ is the Earth’s radius, J2 ≈ 10−3 is the second zonal harmonic. Since the orbits of
satellites are close, the difference i2 − i1 is small. Taking into account sin 2i1 6= 0 and sin 2i2 6= 0,
we have

q ≈ nc+
3nJ2R

2
⊕

2r2ref
cos2 i2.

Since 2iref 6= arccos(−1/3), one can see that c 6= 1. At the same time |c − 1| � 1. Thus, all the
frequencies ωj , j = 0, 1, 2, 3, are nonzero and pairwise different: ω2 < ω0 < ω1 < ω3. 2

Proof of Theorem 3. Indeed, in this case condition (11) reads

κ(t) = g̃t cosω0t+
3∑

k=0

(gk cosωkt+ hk sinωkt) ≡ 0.

From Lemma 2 we see that all the frequencies are pairwise different and therefore the coefficients
of the quasi-polynomial κ(t) equal zero. Since

g̃ =
5c2 − 2

2− c2
p01 sin i2,

g0 =
p03

2nc
sin i2,

h0 =
4cp01

(2− c2)n
sin i2,

g1 = −A2

q
cosφ2 cos i2,

h1 = −A2

q
sinφ2 cos i2,

g2 = A6

(
1− c√

2− c2

)
sin i2 sinφ6,

h2 = A6

(
1− c√

2− c2

)
sin i2 cosφ6,

g3 = −A6

(
1 +

c√
2− c2

)
sin i2 sinφ6,

h3 = −A6

(
1 +

c√
2− c2

)
sin i2 cosφ6.
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from the condition sin 2i2 6= 0, we obtain p(t) ≡ 0. Hence we have KT = RN , T > 0. This implies
the existence of a T -closed trajectory for any initial point. 2

Proof of Theorem 4. The proof is almost identical to that of the previous theorem. Indeed,
condition (11) of Theorem 1 takes the form

κ(t) = g̃t cosω0t+ h̃t sinω0t+
3∑

k=0

(gk cosωkt+ hk sinωkt) ≡ 0.

As in the previous proof, one can apply Lemma 2 and see that all the frequencies are pairwise
different. Consequently the coefficients of the quasi-polynomial κ(t) equal zero. Since

g̃ = −5c2 − 2

2− c2
p01σx,

h̃ =
5c2 − 2

2− c2
p01σz,

g0 = − p03
2nc

σx +
2cp01

(2− c2)n
σz,

h0 =
p03

2nc
σz +

2cp01
(2− c2)n

σx,

g1 =
A2

q
σy sinφ2,

h1 =
A2

q
σy cosφ2,

g2 = −A6

(
1

2
+

c√
2− c2

)
(σz cosφ6 − σx sinφ6),

h2 = A6

(
1

2
+

c√
2− c2

)
(σx cosφ6 + σz sinφ6),

g3 = −A6

(
1

2
− c√

2− c2

)
(σz cosφ6 + σx sinφ6),

h3 = A6

(
1

2
− c√

2− c2

)
(σz sinφ6 − σx cosφ6),

from the conditions σ2x + σ2z 6= 0, σy 6= 0, we obtain p(t) ≡ 0. Thus we have KT = RN , T > 0. This
implies the existence of a T -closed trajectory for any initial point. 2

Proof of Theorem 5. Assume that
⋃
M KMτ 6= RN . Then, by Theorem 2, there exists a non-

trivial solution to (5) satisfying

p4(t)ex(t) + p5(t)ey(t) + p6(t)ez(t) ≥ 0, t ∈ [0,∞). (13)

Condition (13) takes the form

κ(t) = g̃t cosω0t+
3∑

k=0

(gk cosωkt+ hk sinωkt) ≥ 0, t ∈ [0,∞),
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where the coefficients are those defined in the proof of Theorem 3. Now we show that the coefficients
of the quasi-polynomial κ(t) are equal to zero. Indeed, we have

0 ≤ κ(t)

t
= g̃ cosω0t+O

(
1

t

)
, t→∞.

So g̃ = 0 and we obtain

κ(t) =
3∑

k=0

(gk cosωkt+ hk sinωkt) ≥ 0.

From Lemma 2 we have ω2 < ω0 < ω1 < ω3 and ωj 6= 0, j = 0, . . . , 3. Multiplying κ(t) by
1± cosωjt, j = 0, 1, 2, 3, we get

0 ≤ lim
τ→∞

1

T

∫ T

0
κ(t)(1± cosωjt)dt = ±gj

2
.

Multiplying κ(t) by 1± sinωjt, j = 0, 1, 2, 3, we obtain

0 ≤ lim
τ→∞

1

T

∫ T

0
κ(t)(1± sinωjt)dt = ±hj

2
.

Therefore all of the coefficients of κ(t) are equal to zero. As in the proof of Theorem 3, we have
p(t) ≡ 0, a contradiction. 2

Table 1: Results of simplex experiment

Number of vertex 1 2 3 4 5 6 7

x0, m 70.71 -141.42 70.71 70.71 70.71 70.71 70.71

y0, m 70.71 70.71 -141.42 70.71 70.71 70.71 70.71

z0, m 35.36 35.36 35.36 -70.71 35.36 35.36 35.36

ẋ0, mm/s 76.25 76.25 76.25 76.25 -152.51 76.25 76.25

ẏ0, mm/s 76.32 76.32 76.32 76.32 76.32 -152.64 76.32

ż0, mm/s -38.07 -38.07 -38.07 -38.07 -38.07 -38.07 76.15

T/τ 2 2 2 2 2 2 2

‖w‖1, 10−3 m/s 2.2 2.2 4.6 1.3 1.3 2.1 2.2

‖w‖22, 10−7 m2/s3 6.6 6.6 33.6 2.0 2.0 7.1 6.6
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Fig.1 Closed trajectory of linearized system
(LT): bilateral control with magnetic ACS

Fig.2 Projection on xy plane Fig.3 Projection on xz plane
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Fig.4 Coordinate-wise modeling error

Fig.5 Control
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Fig.6 Closed LT: unilateral control with
magnetic ACS

Fig.7 Projection on xy plane Fig.8 Projection on xz plane
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Fig.9 Coordinate-wise modeling error

Fig.10 Control
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Fig.11 Closed LT: bilateral control along axis
fixed in absolute space

Fig.12 Control

Fig.13 Coordinate-wise modelling error
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