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Abstract

Token-passing nets were proposed by Sinot as a simple mechanism for encoding evaluation strategies for the
λ-calculus in interaction nets. This work extends token-passing nets to cover a typed functional language
equipped with structured types and unrestricted recursion. The resulting interaction system is derived
systematically from the chosen big-step operational semantics. Along the way, we actually characterize and
discuss several design decisions of token-passing nets and extend them in order to achieve simpler interaction
net systems with a higher degree of embedded parallelism.
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1 Introduction

Interaction nets [7] constitute a Turing-complete computational paradigm, where
computation is purely local, and thus (strong) confluence holds.

The linear λ-calculus can be very naturally encoded in interaction nets with
just two symbols. When one drops the linearity restriction however, things become
more subtle: since variable substitution is implemented within the formalism, and
not as an external meta-operation, copying and erasure of terms must be dealt with
explicitly. Many encodings have been studied (e.g. [9,10,8]), some of which allow
for a great degree of sharing of computations.

Token-passing nets [11] were proposed as a simple mechanism for encoding the
most common evaluation strategies for the λ-calculus in the interaction net frame-
work. One of the most attractive features is their simplicity, allowing computations
to be easily traced in the term syntax. This makes them particularly well-suited for
debugging or educational purposes.

The purpose of this paper is two-fold:

(i) To explicitly characterize token-passing nets as a class of interaction nets;
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(ii) to extend the token-passing encoding of the λ-calculus to a typed functional
language with structured types. In particular, we propose a novel way of
encoding arbitrary recursion with a fixpoint construct.

Sinot imposes a linearity restriction on the evaluation token, which forces evaluation
to proceed sequentially. A novelty of our approach to token-passing is that sequen-
tiality is not taken to be a defining attribute, since we believe that relaxing the
sequentiality constraint gives rise to more natural (and considerably simpler) en-
codings for the strategies considered. This allows us to encode parallel call-by-value
for our functional language.

For the sake of generality, we use the framework of Combinatory Reduction
Systems to specify the syntax of our terms with binding, and we give a generic
encoding of CRS terms into a class of syntactical nets. CRS syntax gives us a
generic way of combining first-order term rewriting with λ-style bindings, which is
very appropriate for our development in this paper.

The paper is structured as follows: Section 2 reviews basic notions of interac-
tion nets and encodings of the λ-calculus, including the token-passing encoding.
Section 3 introduces a notion of nets capable of representing the syntax of a large
class of term languages with binding. Section 4 is devoted to the characterization
of a general class of token-passing nets and systems, and to the description of the
token-passing system for the λ-calculus. We proceed to give in Section 5 an encod-
ing of a functional language with recursion. Section 6 concludes with some remarks,
extensions, and pointers to further work.

2 Interaction Nets and λ-Calculus Encodings

An interaction net system [7] is specified by giving a set Σ of symbols, and a set
R of interaction rules. Each symbol α ∈ Σ has an associated (fixed) arity. An
occurrence of a symbol α ∈ Σ will be called an agent. If the arity of α is n, then the
symbol has n+1 ports: a distinguished one called the principal port, and n auxiliary
ports labelled x1, . . . , xn. A net built on Σ is a graph (not necessarily connected)
where the nodes are agents. The edges between nodes of the graph are connected
to ports in the agents, such that there is at most one edge connected to every port
in the net. Edges may be connected to two ports of the same agent. Principal ports
of agents are depicted by an arrow. The ports where there is no edge connected are
called the free ports of the net. The set of free ports define the interface of the net.

There are two special instances of a net: a wiring (a net containing no agents,
only edges between free ports), and the empty net (containing no agents and no
edges). The dynamics of Interaction Nets are based on the notion of active pair :
any pair of agents (α, β) in a net, with an edge connecting together their principal
ports. An interaction rule ((α, β) → N) ∈ R replaces an occurrence of the active
pair (α, β) by the net N . Rules must satisfy two conditions: the interfaces of the
left-hand side and right-hand side are equal (this implies that the free ports are
preserved during reduction), and there is at most one rule for each pair of symbols,
so there is no ambiguity regarding which rule to apply.

If a net does not contain any active pairs then we say that it is in normal form.
We use the notation → for one-step reduction and →∗ for its transitive reflexive
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Fig. 1. Linear λ-calculus: Encoding and reduction rule

closure. Additionally, we write N →→ N ′ if there is a sequence of interaction steps
N →∗ N ′, such that N ′ is a net in normal form. The strong constraints on the
definition of interaction rules imply that reduction is strongly commutative (the one-
step diamond property holds), and thus confluence is easily obtained. Consequently,
any normalizing interaction net is strongly normalizing.

Encoding the λ-calculus

The linear λ-calculus possesses a natural encoding in interaction systems. We con-
sider two symbols λ and @ with arity 2. Principal ports for these symbols are chosen
in such a way that a β-redex will correspond to an active pair in the interaction
system. Figure 1 presents the translation of terms into nets. In short, variables
become wires: a bound variable is connected to the corresponding binder (back-
pointer in the syntax tree), and free variables are left dangling as free ports of the
net. The reduction rule between these two symbols corresponds to β-reduction. It
is captured by a proper rewiring of the free ports of the rule (also shown in Figure
1).

The simplicity of the encoding is certainly attractive and intuitive. However,
when we leave the linearity assumption, things become considerably more subtle.
In fact, interaction nets force an explicit treatment of the copying and erasing
operations required by the non-linear use of variables. This is often accomplished
by using specific symbols (usually denoted δ and ε) that implement these operations
through sequences of local interactions. It is not however trivial to regulate this
process in order to prevent different copying processes from interfering with each
other in an unsound way.

The above mentioned difficulty motivated the proposal of complex encodings
of λ-calculi in interaction nets (e.g. [2,10]). These encodings typically provide a
setting where it is possible to delimit the scope of δs – the so called boxes (due to
their close relationship to exponential boxes from Linear Logic proof-nets [4]).

The Token-passing Encoding

Token passing nets were introduced by Sinot [11] as a simple mechanism to encode
the most common (rather than most efficient) strategies. The main insight is that
the above mentioned difficulties may be overcome as long as duplication is restricted
to nets that correspond to syntactical representations of terms: trees of agents, with
principal ports at the roots.

Reduction strategies are encoded through the use of an evaluation token that
traverses the syntactical representation of the term under consideration, in order
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to create active pairs and trigger computational (β) steps – at this point the nets
no longer correspond to syntactical representations, so this process must be kept
under control. The following figure illustrates the call-by-name evaluation of the
term (λx.x)(λx.x), using Sinot’s framework. The token first enters the leftmost
function, transforming the syntactic agent a into the computational @, and stops
at that since λx.x is a canonical form. The next step is a computational (β) step,
which reintroduces the token at the root of the term.
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In what follows, we provide a rigorous characterization of token-passing systems:
first, a description of the class of nets that act as syntactic entities, then of the ad-
missible interaction rules. Even though our presentation diverges in several aspects
from Sinot’s, we believe we remain faithful to the underlying intuitions.

3 Syntactical Nets

We start with a characterization of syntactical nets, used to represent the syntax
of a language of terms with binders. Syntactical nets are essentially syntax trees
with backpointers that associate bound variables with their corresponding binding
constructors. In the following, this class of nets will be defined as the image of a
translation function from terms to interaction nets.

For concreteness, we adopt a term syntax inspired by Combinatory Reduction
Systems (CRS) [6], which introduces an abstraction [x]t denoting the binding of
variable x in t. Taking the pure lambda-calculus as an example, we consider a binary
constructor @ that makes no binding in its arguments, and a unary constructor λ

that binds a variable in its argument. For instance, the lambda-term λx.xx is
represented as λ([x]@(x, x)). Note however that we fix not only the arity of term
constructors but also the number of binders in each of its arguments – a limitation
usually not adopted in CRS. We use the standard definitions of free and bound
variables, α-equivalence and substitution (FV (t) denotes the set of free variables of
t, t{t′/x} denotes the substitution of free occurrences of x in t by t′).

We start by defining the symbols used by the translation of terms to interaction
nets. To each term constructor s with arity n we associate a symbol s with arity
n +

∑n
i=1 bi, where bi is the number of variables bound in the i-th argument of s.

Given a term t, the translation constructs a syntatical net T (t) whose interface
consists of a set of ports corresponding to the free variables of t (at the bottom
of the net), one port corresponding to the root of the term (the rightmost port at
the top), and a set of ports corresponding to variables that are not bound at the
current constructor level, but have been abstracted by some constructor at an upper
level. Thus the net T ([x]@(x, x)) has one port on top for the bound variable x, and
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Fig. 2. Term translation
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Fig. 3. Rules for symbols ε, c and δ

another representing the root of the term. The net T (λ([x]@(x, x))) has a single
port, since the abstraction is now an argument of a constructor.

The translation is defined in Figure 2. Agents corresponding to occurrences of
s are depicted as triangles, with their principal port on top. For the sake of clarity,
bindings are represented explicitly by black bars that group together the auxiliary
ports corresponding to each argument of s. As an example, the first net in figure 4
corresponds to T ((λx.x) ((λx.x) (λx.x))).

Note that, to account for the non-linearity in terms, two new symbols are con-
sidered: ε (with arity 0), for discarding unused bound variables; and c (with arity 2)
for sharing free variables between arguments of term constructors (glued together
with spines of c agents). All principal ports are connected to auxiliary ports (except
the root port of the net, which is free), which means that the constructed nets are
in normal form.

Definition 3.1 A syntactical net is a net N such that N = T (t) for some term t.

The dynamics of symbols ε and c is given in Figure 3, corresponding to man-
agement operations on syntactical nets: ε is used for erasing and c for copying. δ is
a variant of c used for copying inside binders. The following properties justify the
claim that syntactical nets are amenable to being manipulated by ε, δ and c.
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Lemma 3.2 For every open term t, the following reduction sequences exists:

T (t)

δ
T (t) T (t)*δ δ

.......

....

.... ....

.......

T (t)

ε

*ε ε
.......

....

Proof. By induction on the structure of t. 2

Proposition 3.3 For every closed term t, the following reduction sequences exists:

T (t)

c

T (t) T (t)
*

ε

T (t)

*

Proof. By induction on the structure of t and the previous result. 2

The justification of the “substitution as rewiring” slogan may now be established.

Corollary 3.4 For every term t and closed term u we have the following.

T (t)

T (u)

.... ....
* T(t{u/x})

........

Proof. Direct from the definition of substitution and the previous result. 2

Note that the previous proposition does not hold if u is an open term, due to a
mismatch between δ and c agents that occurs when open abstractions are copied.

4 Token-passing Nets

Having established a systematic way of representing terms with binding as interac-
tion nets, we now turn our attention to the implementation of reduction strategies
in the net framework. In what follows we outline how a call-by-value semantics can
be implemented using the token-passing style, and exemplify this for the case of the
λ-calculus. We then give a rigorous characterization of token-passing nets.

The redexes that can be simulated in the net framework in a straightforward way
are quite restricted: redexes in the term language must correspond to active pairs
between two term constructor agents at the level of nets. Let s be a syntactic symbol
corresponding to the outermost term constructor in some redex. Active pairs can
be created by introducing a new symbol ŝ for each such s, and then replacing in a
controlled way occurrences of s by ŝ, with their principal ports facing downwards.

6



Bacelar Almeida, Sousa Pinto and Vilaça

Symbols ŝ will be called computation symbols; their occurrences will be represented
graphically as circles.

Let us take the pure λ-calculus again as an example. In CRS syntax, the β-
reduction rule is written as:

@(λ([x]Z(x)), u) → Z(u)

We must now introduce the computation symbol â (denoted @). The appropriate
interaction rule is of course very similar to the rule in Figure 1, involving the symbols
(syntactic) λ and (computation) @.

λ

@

Observe that computation agents are ephemeral since they are not re-introduced in
the right-hand side of computation rules between constructor agents.

We now turn our attention to the evaluation process. To specify an evaluation
order at the term level, the so-called big-step style of operational semantics (or nat-
ural semantics [5]) is particularly well-suited, since it is essentially syntax-directed.
The following rules specify the call-by-value reduction strategy for the λ-calculus
(the symbol ⇒ denotes the evaluates-to relation).

λx.t ⇒ λx.t

u ⇒ λx.t v ⇒ v′ t{v′/x} ⇒ z

u v ⇒ z

The first rule tells us that abstractions are canonical forms. It is instructive to make
the contraction of the β-redex (u′ v′) explicit in the second rule:

u ⇒ u′ v ⇒ v′ u′ v′
β→ t t ⇒ z

u v ⇒ z

It becomes clear that the rule actually performs two different actions: recursive calls
to the evaluation relation, and a β-reduction step. We’ve seen that β-reduction is
treated at the net level by a separate computation rule, so now only the recursion
pattern of the rule must be dealt with.

The evaluation semantics can alternatively be expressed as term rewriting rules
by introducing in our syntax a new unary constructor ⇓(·) for evaluation, and binary
constructor a(·, ·) for application (in its syntactic form). In CRS syntax we have

⇓(λ([x]Z(x))) → λ([x]Z(x))
⇓(a(u, v)) → ⇓(@(⇓(u),⇓(v)))

At the net level, evaluation can be controlled by occurrences of a special symbol
called a token, denoted as ⇓, with arity 1. Evaluation of a closed term t will then
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be triggered by connecting the principal port of a token agent ⇓ to the root of the
translation of t into a syntactical net, denoted by ⇓(T (t)).

The above rules translate directly into the following interaction rules which we
call evaluation rules (note that the token has its principal port oriented downwards).

λ
λ

a
@

These rules involving the token ⇓ and the set of syntactic symbols determine how
evaluation is performed through the syntax. They may activate a syntactic agent
in order to make computational steps possible, and send a new ⇓ token along the
principal port of the activated agent. This guarantees that a computational active
pair (i.e. an active pair which constitutes the left-hand side of some computational
rule) will eventually be created.

As an example of token-passing evaluation, Figure 4 shows two possible reduction
sequences for the λ-term (λx.x) ((λx.x) (λx.x)) in this system. The one shown on
top simulates precisely a sequential call-by-value evaluation of the term. The bottom
one shows a sequence where the computational rule associated to the outermost
redex is applied prior to the evaluation of the argument.

We will now formally define the notions of token-passing rule, system and net.

Definition 4.1 A computation rule is an interaction rule between a syntactic sym-
bol and a computation symbol. The right-hand side net of a computation rule
cannot contain occurrences of computation symbols.

An evaluation rule is an interaction rule between the token symbol ⇓ and some
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Fig. 4. Reduction sequence for (λx.x) ((λx.x) (λx.x))
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syntactic symbol s. Let ŝ be the computation symbol corresponding to the syntactic
symbol s. An evaluation rule is either a canonical or an activation rule:

• In a canonical rule the net in the right-hand side contains an occurrence of s, and
possibly occurrences of the token symbol.

• In an activation rule the net in the right-hand side still contains an occurrence of
the token connected to the root, with its principal port connected to an occurrence
of ŝ. Furthermore, a second occurrence of the token is connected to the principal
port of ŝ. The net may additionally contain further occurrences of the token
connected to (other auxiliary ports of) ŝ.

Canonical rules correspond to the evaluation of terms that are already canonical
forms, or whose evaluation to canonical form requires mere recursive evaluation of
subterms, in which case new token agents will be connected to auxiliary ports of
the s agent. For terms whose evaluation requires more sophisticated rewriting, an
activation rule is needed to enable the application of a subsequent computation rule.

We remark that if a weak notion of reduction is assumed (as was the case with
call-by-value for the λ-calculus), activation rules do not introduce ⇓ agents under
binding constructors, corresponding to canonical forms. In this case, whenever an
activation rule is applied during the evaluation of a closed term, only syntactic nets
corresponding to closed terms are connected to the activated agent – Proposition 3.3
can thus be applied. In the rest of the paper we will consider only weak strategies.

Definition 4.2 A token-passing system is an interaction system 〈Σ,R〉 with Σ =
{⇓, c, δ, ε} ∪ S ∪C where S is a set of syntactic symbols as introduced in Section 3,
and C is a set of computation symbols such that each ŝ ∈ C is associated to a
unique and distinct syntactic symbol s ∈ S, with the same arity.

The set of interaction rules R = C ∪ EC ∪ EA ∪ M consists of computation
rules (C), canonical rules (EC), activation rules (EA), and management rules (M),
such that EA ∪ EC contains an evaluation rule for each term constructor. For each
syntatical symbol and for each management symbol, M contains a rule according
to the templates of Figure 3. This guarantees that normal forms do not contain
tokens and are thus syntactical nets.

Definition 4.3 A token-passing net is a net N ′ constructed in a token-passing
system, such that ⇓(N) →∗ N ′ for some syntactical net N .

We end the section with a note on the encoding of recursion. There is scope in
the definition of token-passing nets for recursive constructs. These may be handled
either by computation rules that re-introduce an occurrence of the syntactic symbol
in the right-hand side, or by canonical rules. The former approach can be used for
recursion patterns such as iterators or recursors, which perform pattern-matching
on their argument [1]. The latter approach is explored in the next section to encode
a general binding recursion operator.

5 Encoding of a Functional Language

We now present the encoding of a typed functional language. For the sake of sim-
plicity, we choose to keep the language rather small – it includes types for booleans

9



Bacelar Almeida, Sousa Pinto and Vilaça

Γ, x : τ ` x : τ

Γ, x : σ ` t : τ

Γ ` λx.t : σ → τ

Γ ` t : σ → τ Γ ` u : σ

Γ ` t u : τ

Γ ` true : B Γ ` false : B

Γ ` b : B Γ ` e1 : τ Γ ` e2 : τ

Γ ` if b then e1 else e2 : τ

Γ ` [] : [τ ]

Γ ` e1 : τ Γ ` e2 : [τ ]

Γ ` (e1::e2) : [τ ]

Γ ` t : [τ ] Γ ` e1 : σ Γ, x : τ, y : [τ ] ` e2 : σ

Γ ` (Case t of [] → e1 ; (x::y) → e2) : σ

Γ, y : τ ` t : τ

Γ ` (Rec y.t) : τ

V ⇒ V
V ∈ {true, false, [], λx.t}

e1 ⇒ w e2 ⇒ z

e1::e2 ⇒ w::z

t ⇒ true e1 ⇒ z

if t then e1 else e2 ⇒ z

t ⇒ false e2 ⇒ z

if t then e1 else e2 ⇒ z

l ⇒ [] e1 ⇒ z

Case l of [] → e1 ; (h::t) → e2 ⇒ z

l ⇒ w::y e2{w/h, y/t} ⇒ z

Case l of [] → e1 ; (h::t) → e2 ⇒ z

u ⇒ λx.t v ⇒ w t{w/x} ⇒ z

u v ⇒ z

f{Rec y.f/y} ⇒ z

Rec y.f ⇒ z

Fig. 5. Typing and Evaluation rules for BLR

and lists, pattern-matching and general recursion (hence its name BLR). However, it
should be fairly evident that the proposed encoding extends smoothly to additional
types or type constructors.

Terms and types for the language are given by the following grammar:

T = V | λV.T | T T |
true | false | if T then T else T |
[] | T ::T | Case T of [] → T ; (V::V) → T |
Rec V.T

Tp = B | [Tp] | Tp → Tp

where V denotes a set of variables. Type assignment and evaluation rules for the
language are given in Figure 5. The evaluation strategy shown is call-by-value, as
visible in the application or the list-cons rule. Note however that pattern matching
(if-then-else and list-case expressions) has as usual a call-by-name flavour to allow
for an effective use of recursion (see, e.g. [14]).

We will now design a token-passing system for this language by addressing each
of the points identified in the previous sections. To encode the syntax, we shall
consider an symbol for each term constructor of the language. Observe that the
language includes additional binding constructors besides λ. In fact, the typing
rules clearly state that the third argument of the list-case constructor binds two
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variables, and the single argument of the rec constructor binds one variable. Taking
this into account, we are led to the following choice of syntactical symbols (we use
nil for [], cons for :: and lc for pattern-matching over lists).

niltruea cons lcλ rec false if

Turning now to the dynamics of the system, we start by writing a set of term-
rewriting rules corresponding to the evaluation semantics given. The evaluation
rules for lists are written in CRS syntax as

⇓(nil) → nil

⇓(cons(x, y)) → cons(⇓(x),⇓(y))
⇓(lc(l, e1, e2)) → ⇓(LC(⇓(l), e1, e2))

LC(nil, x, [a, b]Z(a, b)) → x

LC(cons(x, y), z, [a, b]Z(a, b)) → Z(x, y)

Two more computation symbols are now introduced in the system: l̂c (denoted
LC) and îf (denoted IF). Note that LC is an example of a computation symbol with
binding. The full set of (activated) computation symbols is thus:

@ LCIF

The recursion rule translates directly to a rewriting rule as

⇓(rec([y]Z(y))) → ⇓(Z(rec([y]Z(y))))

The rules of the token-passing system for BLR are given in Figure 6, where the
first two rows contain computation rules, and the next two rows contain respectively
canonical and activation rules. Observe that non-linear uses of variables or meta-
variables in the rules are explicitly handled by the use of the agents ε, c and δ. More
precisely, erasing and copying of variables are handled by ε and c agents respectively
(Proposition 3.3), and of meta-variables by ε and δ agents (Lemma 3.2).

The correctness of the encoding is stated in the following proposition.

Proposition 5.1 For every closed term t such that t ⇒ z (with derivation tree τ),
there exists a reduction sequence ⇓(T (t)) →→ T (z). Moreover, the computational
steps in this sequence correspond precisely to the reductions found in τ .

Proof. We construct the reduction sequence by induction on the derivation of
t ⇒ z (τ):

• If t ∈ {λx.t′, true, false, []}, then t ⇒ t. On the other hand, ⇓(T (t)) = T (t) (by
the corresponding interaction rules).

• If t = h :: u then t ⇒ w :: v where h ⇒ w and u ⇒ v. On the other
hand, ⇓ (T (h :: u)) → cons(⇓ (T (h)),⇓ (T (u))) by (⇓, cons)-rule which reduces
to cons(T (w), T (v)) = T (w :: v) by induction hypothesis.
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λ

@

true

IF ε

α
α

::

::

λ
λ

a
@

lc

LC

rec

rec

δ δ

if

IF

nil

LC ε ε

ε

LC

ε
cons

false

IF ε

α= true, false, nil

Fig. 6. Reduction rules for BLR

• If t = (u v) then t ⇒ z where u ⇒ λx.t′, v ⇒ v′ and t′{v′/x} ⇒ z. By (⇓, a)-rule,
we have that ⇓(T (t)) → ⇓(@(⇓(T (u)),⇓(T (v)))) which, by induction hypothe-
sis, reduces to ⇓(@(T (λx.t′), T (v′))). Applying (@, λ)-rule and Corollary 3.4, it
reduces to ⇓(T (t′{v′/x})) that reduces to T (z) (again by induction hypothesis).

• If t is a pattern-matching construct: we illustrate for the case where t =
Case l of [] → e1 ; (x::y) → e2 and l ⇒ u::v (other cases are similar). We
have t ⇒ z where e2{u/x, v/y} ⇒ z. Applying (⇓, lc)-rule and induction hypoth-
esis we get ⇓(T (t)) → ⇓(LC(⇓(T (l)), T (e1), [x, y]T (e2))) →∗

⇓(LC(cons(T (u), T (v)), T (e1), [x, y]T (e2))). By (LC, cons)-rule, Proposition 3.3
and Corollary 3.4 it reduces to ⇓(T (e2{u/x, v/y})) which, by induction hypoth-
esis reduces to T (z).

• If t = Rec y.f then t ⇒ z where f{Rec y.f/y} ⇒ z. Applying (⇓, rec)-rule,
Lemma 3.2 and Corollary 3.4 it reduces to ⇓(T (f{Rec y.f/y}) which, by induction
hypothesis, reduces to T (z).

The argument that the computational steps correspond to reductions in τ follows
from the construction of the sequence (in each inductive step, a reduction is simu-
lated through the appropriate application of a computational rule). 2

Note that the reduction sequence constructed in the proof simulates the sequential
call-by-value strategy. However, the system allows for a considerable degree of
freedom in the order of interactions, not only in the administrative tasks but also
in the evaluation itself (Figure 4 illustrates the potential for parallelism). By strong
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confluence these sequences are all permutations of the standard one.

Proposition 5.2 For every closed term t, if ⇓(T (t)) →→ Z, then Z = T (z) and
t ⇒ z.

Proof. The confluence of the system may be explored to rearrange the given reduc-
tion sequence. In particular, we postpone the application of rules involving agents
@, IF and LC (computational rules) to when these agents have their arguments in
normal form. Also, when dealing with a reduction sequence that acts on two disjoint
subnets, we split it in two halves containing the interactions of each subnet.

As a notational convenience, we denote nets by their corresponding CRS terms
(e.g. @(N1, N2) denotes the net obtained by connecting the @ agent to N1 to its
principal port and N2 to its first auxiliary port). The proof proceeds by induction
on the length of the reduction sequence and case analysis:

• If t ∈ {λx.t′, true, false, []} then ⇓(T (t)) →→ T (t). On the other hand t ⇒ t.
• If t = h :: u then ⇓(T (t)) → cons(⇓(T (h)),⇓(T (u))). Since the nets T (h) and
T (u) are disjoint, we split the remainder sequence in ⇓(T (h)) →→ W , ⇓(T (u)) →→
V where Z = cons(W,V ). By induction hypothesis and applying the appropriate
evaluation rule we get t ⇒ z = w::v where W = T (w) and V = T (v).

• If t = (u v) then ⇓(T (t)) →⇓(@(⇓(T (u)),⇓(T (v)))). By assumption, we postpone
the application of the rule involving the introduced @ agent as much as possible.
Let us consider the first fragment of the remainder sequence that goes till the
application of that particular rule. Since T (u) and T (v) are disjoint, we split
it in ⇓(T (u)) →→ U ′ and ⇓(T (v)) →→ V ′. Therefore, by induction hypothesis,
u ⇒ u′ and v ⇒ v′ where U ′ = T (u′) and V ′ = T (v′). We turn now the
attention to what rests in the original sequence. After the application of (@, λ)-
rule (well-typedness of t force u′ = λx.t′), we postpone the interaction with the
topmost ⇓ agent — that would guaranty that Corollary 3.4 applies and we get
@(T (λx.t′), T (v′)) →→ T (t′{v′/x}). Finally, again by induction hypothesis, we
use what rests in the sequence to get t′{v′/x} ⇒ z. Summing up, and applying
corresponding evaluation rule, we get t ⇒ z with Z = T (z).

• If t is a pattern-matching construct: we illustrate for the case where t =
Case l of [] → e1 ; (x::y) → e2 (the other cases are similar). We have that
⇓(lc(T (l), T (e1), [x, y]T (e2))) → ⇓(LC(⇓(T (l)), T (e1), [x, y]T (e2))). By assump-
tion we postpone the application of the LC rule and, therefore the first part of
the sequence is ⇓(T (l)) →→ L′. By induction hypothesis l ⇒ l′ and L′ = T (l′). By
well-typdness, l′ should be either [] or u::v – we consider the second alternative
(the first one is similar). After the application of (LC-cons)-rule, we postpone the
reduction involving the topmost ⇓ agent. Then by Lemma 3.3 and Corollary 3.4
we get LC(cons(T (u), T (v)), T (e1), [x, y]T (e2)) →→ T (e2{u/x, v/y}). By induc-
tion hypothesis on the remainder of the sequence and applying the corresponding
evaluation rule finally give t ⇒ z with Z = T (z).

• If t = Rec y.f , we assume that after the application of (⇓, rec) the reduction
involving the topmost ⇓ is postponed. By Lemma 3.2 and Corollary 3.4 we get
T (t) → T (f{Rec y.f/y}). Then, by induction hypothesis on the remainder of
the sequence and the appropriate evaluation rule we get t ⇒ z with Z = T (z).
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2

6 Discussion

We have studied a new system for token-passing by extending the encoding of the
λ−calculus in this paradigm to a richer language, much more suited for real world
programming. Although only a small fragment is presented in this paper, other
extensions have already been coded and proved to be simple to implement.

We remark that we have not tried in this paper to solve problems related with
the limitations of interaction nets to encode CRS term-rewriting in general; we are
certainly unable to cover rules involving more than two constructors, or sets of
rules in which the same external constructor is involved in rewriting with different
arguments in different rules (necessary to encode parallel or). Several extensions of
interaction nets have been studied with these goals in mind, which could perhaps
be adapted to our setting.

Our approach to token-passing nets differs in several aspects from their original
presentation. In particular, from the methodological point of view, we avoid the
“small step semantics” used in [11,13] as an intermediate step in the conversion
from big-step rules to token-passing nets, since it did not allow us to reason about
management (copying and erasing) operations. A second difference is that in [12],
the author deliberately avoids a characterization of token-passing nets, which we
have precisely attempted to give here.

Sequentiality

We have also relaxed the sequential impositions of the original presentation, cor-
responding to a linearity constraint on the evaluation token. Sequentiality forces
the existence of symbols that are small variations on other symbols. Removing this
constraint we are led to considerably smaller and more intuitive interaction systems,
without the extra symbols and bureaucracy.

We will now illustrate how sequentiality might be recovered. Consider again the
evaluation rule for application. We have seen that the corresponding interaction rule
introduces three evaluation agents ⇓. In order to satisfy the linearity restriction,
one should decompose the rule into 3, each introducing a ⇓ in turn.

a

 a1  a1

α

 a2

 a2

.......

α
.......

@

α
.......

α
.......

In these rules, α denotes an arbitrary agent. Note the need for additional agents
(a1 and a2) that are analogous to a but with a different choice of principal port.
These agents are responsible for scheduling the application of the several steps.
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Call-by-need

In our presentation we have adopted the call-by-value strategy. All the development
could however be reproduced for call-by-name, which would in fact be slightly easier.

More refined evaluation strategies such as call-by-need require additional efforts.
The problem lies in the fact that the corresponding big-step rules are no longer
purely syntactic – they incorporate evaluation contexts or side conditions. In order
to capture these extended rules, we could either extend the language syntax to
internalise these features, or adapt the “internals” of the interaction system to
capture the intended semantics.

We will now follow the second approach and describe how Sinot’s treatment
of call-by-need might be considered in our setting. This treatment [13] can be
summarized as follows: starting from the call-by-name token passing system, one
modifies the translation of terms to replace the symbol c by a new symbol s, used
to signal sharing. This symbol s is not a pure interaction-net symbol – it possesses
two principal ports and only one auxiliary port. Its reduction rules are

S

C C

S

Once again, this system is considerably simpler than the one presented in [13], due
to the absence of a linearity restriction on the evaluation token.

We omit a detailed proof of the correctness of this encoding (and some tech-
nicalities involving the interaction of s with δ). As noted in [13], the departure
from the interaction net formalism does have an associated cost – confluence is no
longer immediate from the locality/independence of interaction. In fact, the system
actually fails to be confluent, which is harmless since non-confluence is limited to
non-normalizing terms interacting with ε.

Lazy Copying

In the proof of Proposition 5.2, in order to reason about the reduction sequence,
an interleaving where the administrative tasks (copy and erasure) are performed
eagerly is considered. But it is interesting to consider the opposite scenario, where
these tasks are postponed until they are really needed. This can be enforced by the
system as long as we are willing to accept a generalization of the interaction net
formalism allowing symbols with multiple principal ports.

The overall approach is quite simple: the principal and secondary ports of sym-
bols δ and c are swapped. In this way, these symbols would have two principal
ports that could monitor if any agent is wiling to interact with what is meant to
be copied. Only when such an agent is detected, one copy step is performed (by
variants of the mentioned symbols: δ′ and c′). The relevant rules would be
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Ψ

α

....

α=C,δ
Ψ

α'

....

α'

δ
δ

Ci

....... ....
α

Ci Ci

.... ....

....

.......
.......

.......

α=C,δΨ

α

....

α=C,δ
Ψ

α'

....

where Ψ denotes an arbitrary agent.
We conjecture that this system is confluent, when restricted to valid nets. Thus

this extension does not compromise the meta-properties of the system, as long as
we restrict attention to token passing nets. In fact, the only consequence would
be to allow normal forms that possess some kind of sharing (syntactical nets with
unperformed duplications). It also allows us to accommodate an optimization in
some reduction sequences by specializing the interaction with ε:

ε

α

....

α=C,δ ε

α

....

α=C,δ

This second extension still doesn’t disturb confluence but the system is no longer
strongly confluent. The relevance of this extension is further strengthened when it is
noted that such an explicit representation of sharing allow us to easily accommodate
a call-by-need reduction strategy. In fact, starting with call-by-name evaluation
rules, a further specialization for the interaction with ⇓ and c would allow to perform
a single evaluation on shared sub-terms. Namely:

C

C C

C

But now, and since evaluation might not terminate, we no longer have confluence
when considering the ε optimization mentioned above. Note that this is essentially
Sinot’s call-by-need token passing system – in fact, it is arguably closer to the
standard evaluation system as it captures sharing of results.

Extensions and Future Work

The present work suggests alternatives to the handling of sharing that do not imply
leaving the interaction net formalism. One might replace the sharing symbol s by a
proper syntax constructor dup that duplicates a free occurrence of a variable x by
two fresh ones y, z. The following figure shows an example of use of this agent and
the corresponding evaluation rule.
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dup

λ

@

dup

C

Of course, evaluation is triggered by duplication, and we do not have any guar-
antees that the result will actually be required by the computation. But even if
the resulting strategy is “more eager” than call-by-need, the more structured na-
ture of syntactical nets might lead to greater flexibility in the encoding of complex
strategies. It would be interesting to explore the applicability of this idea to encode
closed reduction as defined by Fernández et al. [3].

Additional language features and/or different evaluation strategies may be in-
corporated in a fairly structured manner, as exemplified for the case of sequential
evaluation or the call-by-need strategy.

We are currently working on using the proposed system in parallel implemen-
tations, exploring the fact that token-based evaluation promotes a fairly controlled
propagation of interaction through the net. Moreover, the token agents themselves
always act as single points of contact between distinct sub-nets and are thus natural
candidates for synchronization points between different reduction threads.
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