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Abstract

In this paper, the discussion concerning the joint use of unit root and stationarity tests is extended to the case
of cointegration. Critical values for testing the joint confirmation hypothesis of no cointegration are computed
and a small Monte Carlo experiment evaluates the relative performance of this approach.
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1 . Introduction

The issues of unit roots and cointegration have generated a vast literature in the past few years.
More recently, it has been argued that confirmatory analysis (i.e. applying unit root tests in
conjunction with stationarity tests) may in some cases lead to a better description of the series,
improving upon the separate use of each type of test (see, for example, Amano and Van Norden
(1992) and the discussion in Maddala and Kim (1998)). If the two approaches give consistent results,
i.e. there is an acceptanceand a rejection of the nulls, one may conclude whether a given series is
stationary or not. On the other hand, if both tests either reject or accept their respective null
hypotheses, the results are inconclusive.

Some practical aspects concerning the joint use of unit root and stationarity tests have been
addressed by Charemza and Syczewska (1998) and Carrion et al. (2001). The first authors suggest
that, instead of conventional individual critical values for each type of test, one should use symmetric
critical power values. These correspond to the probability with which the two types of tests make a
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wrong decision when both cumulative marginal distributions are equal. Charemza and Syczewska
(1998), using Monte Carlo methods, tabulated the new critical values needed for the joint
confirmation hypothesis (JCH) of stationarity when the augmented Dickey–Fuller (ADF) and the
Kwiatkowski et al. (1992), KPSS henceforth) tests are to be used. However, this approach depends on
the parameterization of the autocorrelation in the errors. Hence, Carrion et al. (2001) recommend that
the JCH of a unit root should be tested instead, providing a new set of critical values.

In this paper, we study the application of this methodology to cointegration testing. Following
Charemza and Syczewska (1998) and Carrion et al. (2001), we show how the testing procedure may
be implemented and the related critical values obtained for tests with null hypothesis of no
cointegration, as well as null of cointegration. We address the cases where Engle–Granger’s ADF and
Phillips–Ouliaris Z and Z tests are used in conjunction with the KPSS-type test for the nulla t

hypothesis of cointegration developed by McCabe et al. (1997) (see Gabriel (2001) for a comparative
study of the properties of null of cointegration tests). Furthermore, the application of the joint
confirmation procedure is assessed by means of a set of Monte Carlo experiments, establishing some
comparisons with the separate use of each type of test. This is of great interest, since joint testing will
be an alternative approach only if it is able to produce better results than individual testing.

The paper proceeds as follows. The next section establishes the notation for the JCH in the context
of cointegration, while Section 3 presents the critical values for the JCH of no cointegration. The
Monte Carlo study is undertaken in Section 4 and Section 5 concludes.

2 . Joint confirmation hypothesis and cointegration

The first step in order to implement the joint use of null of no cointegration and null of
cointegration tests is to decide whether one wishes to test the JCH of cointegration or no
cointegration. A simple cointegrated model is generally formulated as

9y 5 x b 1 u , (1)t t t

wherey is a scalarI(1) process andx is a vectorI(1) process of dimensionk. The variablesy andxt t t t

are said to be cointegrated ifu is I(0), whereas ifu is I(1) there is no long run equilibriumt t

relationship betweeny and x .t t

A common parameterization for the error process is to assume thatu is an autoregressive processt

u 5ru 1v , v | n.i.d.(0, s ), with ur u, 1 in the case of cointegration andr 5 1 when there is not t21 t t v

cointegration. Another possibility is to consider that under the hypothesis of no cointegration the
disturbanceu may be decomposed into the sum of a random walk and stationary component,t

u 5g 1´ , (2)t t t

2where the random walk isg 5g 1h , with g 5 0 andh distributed asi.i.d.(0, s ), while thet t21 t 0 t h
2stationary part́ is distributed asi.i.d.(0, s ) and is assumed independent ofh . Cointegration stemst ´ t

2from this formulation whens 5 0, so thatg 5 0 and no longer is a random walk. Note that in thish t

case thei.i.d. assumption of the errors (u 5´ ) is not very realistic, since in empirical applications wet t

should expect some degree of serial correlation. Thus, we may relax this assumption and assume that
2

´ 5p´ 1z , z being i.i.d.(0, s ).t t21 t t z

If one chooses to test the JCH of cointegration (meaningI(0) errors), the critical values would



 

always depend on the value of the autoregressive parameter of the error term, be itr if we specify the
2null hypothesis of cointegration asH : ur u, 1, orp if H : s 5 0, allowing for autocorrelation iń .0 0 h t

It would involve extensive tabulations for a few particular values ofr (or p), very likely to be
different from the actual, unknown value in the empirical situation the researcher is dealing with. Note
that this is a similar problem to that pointed out by Carrion et al. (2001) for the univariate case.
Therefore, a way to circumvent this obstacle is to specify the JCH of no cointegration (i.e. the
residuals have a unit root).

We closely follow the notation of Charemza and Syczewska (1998) and Carrion et al. (2001) by
defining the probability of joint confirmation (PJC) of no cointegration as

` `

D KE E f (z , z ;Q, T uH , H ) dz dz 5PJC. (3)D,K D K 0 1 D K

PJC PJC˜ ˜z zD K

Here,z ( j 5D, K) represents the test statistics (in which we maintain the original notation),D for thej

ADF t-statistic andK for the KPSS cointegration version of McCabe et al. (1997). The vector of DGP
PJC˜parameters is denoted asQ, T is the sample size,f is the joint density function, whilez are theD,K j

critical values from the joint distribution for a given PJC significance level. As discussed in the above
mentioned papers, for each PJC significance level the number of possible critical values is infinite.
However, if we impose the restriction that the marginal probabilities (MPr) should be equal, then there

PJC PJC˜ ˜is a unique pair (z , z ) satisfyingD K

` `

D KE f (z ; Q, T uH ) dz 5 E f (z ; Q, T uH ) dz 5MPr. (4)D D 0 D K K 1 K

PJC PJC˜ ˜z zD K

This restriction means that the probability of deciding wrongly when applying each statistic is equal,
that is, when the ADF statistic does not reject the null of no cointegration (type II error) and the

PJC PJC˜ ˜KPSS-type test rejects a true null of cointegration (type I error). Such pairs (z , z ) are dubbedD K

symmetric critical power values (SCPV). Therefore, we find cointegration at a PJC significance level
PJC PJC˜ ˜if the joint ADF–KPSS statistic is in the intervalh(2`, z ), (0, z )j, whereas the converseD K

situation leads to a non-rejection of the JCH of no cointegration. In principle, this strategy avoids
prioritizing either the cointegration or no cointegration hypotheses, although the practical implications
may turn out to be different, as the simulation results in Carrion et al. (2001) show. We will return to
this below.

Also note that we may also consider the JCH with other pairs of tests, changing the notation
conformably. In fact, we will also consider the joint application of the Phillips–OuliarisZ and Za t

tests, and KPSS-type test. In the next section, critical values for these cases are presented.

3 . Critical values for the JCH of no cointegration

As known, critical values for cointegration testing depend not only on the number of regressorsk,
but also on the deterministic components that may be present in the cointegration space. We will
restrict our attention to single equation models with a single cointegration vector. Generalizing (1) as



9y 5a 1dt 1 x b 1 u , (5)t t t

wheret denotes a time trend, we consider three cases: no constant (a 5d 5 0), constant with no trend
1(a ± 0, d 50) and the model with trend component (a ± 0, d ±0), up to three regressors. Since we

are considering the JCH of no cointegration, thenu 5 u 1v (r 5 1), v is assumed to ben.i.d.(0,t t21 t t

1) and u 50. We also seta 51 and d 5 1 for the relevant cases. After generatingn 5 50,0000

replications for sample sizesT 5 50, 100 and 250, pairs of ADF–KPSS,Z –KPSS andZ –KPSS testsa t

are computed. Using OLS, an appropriate lag length for the ADF test is obtained with at-test
downward selection procedure, by setting the maximum lag equal to 6 and then testing downward
until a significant last lag is found, at the 5% level. ConcerningZ and Z , the long run variance isa t

estimated by means of a prewhitened quadratic spectral kernel with an automatically selected
bandwidth estimator, using a first-order autoregression as a prewhitening filter, as recommended by
Andrews and Monahan (1992). As for the KPSS cointegration statistic, we use Saikkonen’s (1991)
dynamic least squares estimator and filter the residuals with an ARIMA(p, 1, 1) model, then using the
variance estimator suggested by Leybourne and McCabe (1999) (see McCabe et al. (1997) and
Gabriel (2001) for more details on the computation of the statistic).

Again, we follow the methodology of Charemza and Syczewska (1998) and Carrion et al. (2001) to
obtain the critical values. Thus, then pairs of observations are sorted according to the ADF (or
Z-type) test and then 250 fractiles are computed. For each of these ADF (Z-type) fractiles, another 250
fractiles were obtained for the KPSS statistic, which means that we get a 2503250 table of empirical
joint frequencies. After cumulating these frequencies and thus obtaining the joint distribution function,
we may tabulate critical values for the desired significance levels. These are shown in Table 1. The

2computer routine to obtain these critical values was written inGAUSS and is an adaptation of the
program used by Charemza and Syczewska (1998). Since the ADF andZ share the same (marginal)t

asymptotic distribution and given that the results obtained in the simulations for these two tests are
practically the same, we only show the critical values for the ADF test.

4 . Monte Carlo experiment

In order to assess the performance of the JCH of no cointegration in terms of classifying the model
as cointegrated or not, we devised a set of Monte Carlo simulations. The DGP is similar to the one in
Carrion et al. (2001) and is the same as that of the previous section, although the errors are allowed to
follow an ARMA(1, 1) process of the form

u 5ru 1v 1uv , (6)t t21 t t21

wherer takes the valuesh0.5, 0.9, 1j andu 5 h20.8, 0j. For simplicity, we only consider a model
with a single regressor and a constant term, setting the sample size asT 5 100 and 250, computing
2500 replications.

1Critical values fork 5 4 and 5 were also computed and are available upon request.
2Available upon request.



 

Table 1
Critical values

PJC No constant Constant Trend

ADF MLS Z ADF MLS Z ADF MLS Za a a

T 5 50 0.99 24.054 0.044 225.213 24.703 0.032 229.256 25.212 0.061 235.144
k 5 1 0.95 23.301 0.073 218.721 23.946 0.042 223.029 24.498 0.11 229.081

0.90 22.983 0.107 215.731 23.592 0.052 219.869 24.184 0.186 226.181
k 5 2 0.99 24.588 0.03 228.964 25.095 0.024 234.365 25.552 0.033 238.768

0.95 23.879 0.037 222.376 24.426 0.029 229.169 24.885 0.043 232.735
0.90 23.572 0.044 219.32 24.062 0.033 229.914 24.547 0.051 229.968

k 5 3 0.99 25.041 0.022 232.315 25.477 0.018 238.227 25.895 0.023 241.641
0.95 24.332 0.026 226.127 24.826 0.021 232.514 25.216 0.027 236.267
0.90 23.99 0.029 222.981 24.496 0.024 229.367 24.902 0.031 233.454

T 5 100 0.99 23.76 0.049 225.977 24.434 0.03 231.871 24.937 0.072 238.553
k 5 1 0.95 23.185 0.109 219.118 23.758 0.047 223.617 24.312 0.229 231.059

0.90 22.891 0.241 216.039 23.452 0.065 220.091 24.017 0.522 227.416
k 5 2 0.99 24.336 0.03 231.086 24.866 0.023 238.252 25.265 0.038 244.307

0.95 23.738 0.046 223.508 24.19 0.03 229.60 24.662 0.06 236.002
0.90 23.427 0.063 219.998 23.893 0.036 225.665 24.368 0.088 232.40

k 5 3 0.99 24.791 0.023 235.89 25.244 0.018 243.747 25.565 0.026 248.861
0.95 24.177 0.03 227.931 24.61 0.022 235.036 24.971 0.034 240.891
0.90 23.857 0.036 224.342 24.286 0.025 231.219 24.699 0.042 236.914

T 5 250 0.99 23.689 0.065 226.856 24.255 0.035 232.179 24.709 0.136 240.002
k 5 1 0.95 23.118 0.37 219.473 23.661 0.073 223.887 24.161 0.929 231.275

0.90 22.841 1.262 216.111 23.371 0.141 219.99 23.894 1.73 227.549
k 5 2 0.99 24.204 0.036 231.956 24.717 0.023 239.71 25.107 0.053 247.115

0.95 23.631 0.082 223.857 24.064 0.039 229.998 24.533 0.153 237.605
0.90 23.347 0.221 220.333 23.773 0.057 225.772 24.234 0.544 232.874

k 5 3 0.99 24.652 0.025 237.666 25.05 0.018 245.734 25.43 0.034 252.589
0.95 24.085 0.042 228.826 24.438 0.026 235.907 24.827 0.06 242.496
0.90 23.779 0.07 224.863 24.157 0.035 231.477 24.566 0.105 238.156

The results from this simulation exercise are shown in Tables 2 and 3 forT 5100 andT 5 250,
3respectively. We considered different testing approaches. Firstly, computing each test individually

and using the respective marginal distributions (i.e. the standard critical values), we gauge the
proportion of times that the tests classify a given DGP as being cointegrated (line C) or not
cointegrated (line NC), at the 5% level of significance. This corresponds to the usual power-size
analysis. Secondly, and still resorting to the 5% critical values from the marginal distributions, we
count the frequency a realization of the DGP is classified as cointegrated or not in the following way:
(i) if tests for the null of no cointegration (ADF,Z and Z ) reject their null and the KPSS null ofa t

cointegration test does not, the process is considered to be cointegrated (C); (ii) if tests for the null of

3This alternative was not considered in Carrion et al. (2001) for the univariate case.



Table 2
Monte Carlo results for ADF,Z and KPSS tests (T 5 100)a

(r, u ) ADF Z KPSS D–K Z–K JU(D–K) JU(Z–K) JS(D–K) JS(Z–K)a

(0.5, 0) C 0.963 1.00 0.793 0.199 0.207 0.04 0.041 0.986 0.994
NC 0.037 0.00 0.207 0.029 0.00 0.057 0.00 0.00 0.00
Inc. A 0.00 0.00 0.00 0.764 0.793 0.902 0.959 0.006 0.006
Inc. B 0.00 0.00 0.00 0.008 0.00 0.001 0.00 0.009 0.00

(0.5,20.8) C 1.00 1.00 0.97 0.03 0.03 0.001 0.001 1.00 1.00
NC 0.00 0.00 0.03 0.00 0.00 0.004 0.00 0.00 0.00
Inc. A 0.00 0.00 0.00 0.97 0.97 0.995 0.999 0.00 0.00
Inc. B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.9, 0) C 0.29 0.282 0.624 0.102 0.11 0.014 0.017 0.648 0.40
NC 0.71 0.718 0.376 0.514 0.53 0.832 0.797 0.054 0.096
Inc. A 0.00 0.00 0.00 0.188 0.172 0.126 0.16 0.082 0.04
Inc. B 0.00 0.00 0.00 0.196 0.188 0.029 0.026 0.216 0.464

(0.9,20.8) C 0.927 1.00 0.938 0.06 0.062 0.007 0.008 0.976 0.994
NC 0.073 0.00 0.062 0.07 0.00 0.106 0.00 0.00 0.00
Inc. A 0.00 0.00 0.00 0.868 0.938 0.886 0.992 0.006 0.006
Inc. B 0.00 0.00 0.00 0.002 0.00 0.001 0.00 0.018 0.00

(1, 0) C 0.072 0.061 0.062 0.008 0.007 0.00 0.00 0.138 0.054
NC 0.928 0.939 0.938 0.874 0.883 0.971 0.97 0.405 0.534
Inc. A 0.00 0.00 0.00 0.063 0.054 0.027 0.028 0.187 0.058
Inc. B 0.00 0.00 0.00 0.054 0.056 0.002 0.002 0.27 0.354

(1, 20.8) C 0.595 0.977 0.061 0.041 0.06 0.004 0.006 0.588 0.76
NC 0.405 0.023 0.939 0.385 0.022 0.475 0.024 0.053 0.003
Inc. A 0.00 0.00 0.00 0.554 0.917 0.519 0.969 0.18 0.23
Inc. B 0.00 0.00 0.00 0.02 0.00 0.002 0.00 0.179 0.007

no cointegration do not reject their null and the null of cointegration test does, the process is
considered not to be cointegrated (NC); (iii) if both types of tests reject their nulls (inconclusive type
A) or do not reject the respective nulls (inconclusive type B), no conclusion is achieved. These joint
tests are labeled asD–K for ADF and KPSS tests andZ–K for Z and KPSS tests. Finally, a similara

exercise is carried out, this time using the 5% critical values from the joint distribution as displayed in
Table 1, with the tests denoted asJU(D–K) and JU(Z–K).

From the analysis of Tables 2 and 3, we observe that testing the JCH of no cointegration with
JU(D–K) and JU(Z–K) leads to a very small number of correct decisions when the errors are
stationary. This is also the case for joint testing with standard critical values. Indeed, most of the times
an inconclusive response is obtained, namely rejections by both tests (type A inconclusive answers).
Moreover, the results do not seem to improve for larger sample sizes, when we compare Tables 2 and
3. On the other hand, when the DGP is truly non-cointegrated, the JCH approach withJU(D–K) is
generally the most accurate in delivering the correct answer, except when a negative MA component
is present. In this situation,JU(D–K) still performs better thanD–K, although theJU(Z–K) version
is greatly affected by this error structure. Overall, these results are in accordance with the simulations
for univariate testing in Carrion et al. (2001), although with a much poorer performance.



Table 3
Monte Carlo results for ADF,Z and KPSS tests (T 5 250)a

(r, u ) ADF Z KPSS D–K Z–K JU(D–K) JU(Z–K) JS(D–K) JS(Z–K)a

(0.5, 0) C 1.00 1.00 0.951 0.049 0.049 0.011 0.011 0.806 0.808
NC 0.00 0.00 0.049 0.00 0.00 0.00 0.00 0.00 0.00
Inc. A 0.00 0.00 0.00 0.951 0.951 0.989 0.989 0.192 0.192
Inc. B 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.002 0.00

(0.5,20.8) C 1.00 1.00 0.998 0.002 0.002 0.00 0.00 0.264 0.264
NC 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.00 0.00
Inc. A 0.00 0.00 0.00 0.998 0.998 1.00 1.00 0.736 0.736
Inc. B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

(0.9, 0) C 0.858 0.92 0.702 0.336 0.36 0.121 0.139 0.369 0.061
NC 0.142 0.08 0.298 0.102 0.064 0.262 0.171 0.194 0.264
Inc. A 0.00 0.00 0.00 0.522 0.56 0.581 0.672 0.073 0.004
Inc.B 0.00 0.00 0.00 0.04 0.016 0.036 0.018 0.364 0.671

(0.9,20.8) C 0.997 1.00 0.991 0.009 0.009 0.00 0.00 0.381 0.389
NC 0.003 0.00 0.009 0.003 0.00 0.01 0.00 0.019 0.00
Inc. A 0.00 0.00 0.00 0.988 0.991 0.99 1.00 0.592 0.611
Inc. B 0.00 0.00 0.00 0.002 0.00 0.001 0.00 0.008 0.00

(1, 0) C 0.068 0.06 0.018 0.002 0.002 0.00 0.00 0.002 0.00
NC 0.932 0.94 0.982 0.916 0.924 0.969 0.967 0.90 0.91
Inc. A 0.00 0.00 0.00 0.066 0.058 0.03 0.032 0.01 0.00
Inc. B 0.00 0.00 0.00 0.016 0.016 0.002 0.001 0.088 0.09

(1, 20.8) C 0.40 0.98 0.004 0.002 0.004 0.001 0.001 0.053 0.157
NC 0.60 0.02 0.996 0.598 0.02 0.679 0.03 0.65 0.126
Inc. A 0.00 0.00 0.00 0.399 0.976 0.32 0.969 0.181 0.705
Inc. B 0.00 0.00 0.00 0.001 0.00 0.00 0.00 0.116 0.012

Comparing this performance with that of individual tests, we see that the latter have a much more
reliable behaviour in terms of providing the correct decision, both when there is cointegration and
when there is not. The performance of the KPSS cointegration test should be highlighted, given its
relative robustness to serial correlation and most especially to the introduction of negative MA
components in the errors. In fact, the performance of ADF andZ tests, as well as that of joint tests,a

seems to suffer a great deal with a negative MA error structure, which confirms previous results in the
4literature. On the other hand, if we stick to a particular (individual) test, we will not get inconclusive

answers, as it happens with the JCH methodology.
Given these results, it would also be interesting to investigate what the outcome would be if one

tested the JCH of cointegration. As explained earlier, there is the problem with the critical values
depending on the degree of correlation of the errors. However, the researcher could choose an
intermediate, though non-optimal, approximation by fixingr at an empirically plausible value and use
the corresponding critical values. Such a value could ber 5 0.75, which is also recommended and
tabulated by Charemza and Syczewska (1998). Of course, if the truer is larger than 0.75, the critical

4This could eventually be overcome by using the procedure of Ng and Perron (1998), for example.



values would be too conservative, while the converse would lead to overrejecting the JCH of
cointegration. Nevertheless, despite the arbitrariness of such a choice, this seems a fairly realistic way
to proceed.

Therefore, adapting the methodology discussed in Sections 2 and 3 to the JCH of cointegration, we
5computed the 5% critical values for the DGP in this section and evaluated its performance using the

same set of simulation experiences. The results are also displayed in Tables 2 and 3, under the
columnsJS(D–K) and JS(Z–K). We observe that this strategy clearly improves upon that of JCH of
no cointegration, since a lot more correct decisions are achieved when the DGP is cointegrated.
However, this behaviour is not sustained asymptotically, as the results forT 5 250 are in general
worse. On the other hand, the ability to detect non-cointegrated models improves with the sample size
and attains very reasonable levels. Still, this approach does not seem to beat the conventional one,
with individual testing.

5 . Concluding remarks

In this paper, we extended the joint confirmation hypothesis approach to the context of
cointegration. Following Charemza and Syczewska (1998) and Carrion et al. (2001), we tabulated
critical values for the JCH of no cointegration. However, our subsequent Monte Carlo simulations,
despite its limitations, question the usefulness of such a methodology, as they lead us to conclude that
it seems preferable to use the standard individual testing approach, which consistently gave better (or
at least as good) results. Indeed, the joint application of different types of tests may obscure, rather
than clarify, the process of deciding whether a given model is cointegrated or not. In particular, testing
the JCH of no cointegration with the critical values derived here is to be avoided, as it mainly leads to
inconclusive answers when the DGP is truly cointegrated. By reversing the JCH to be tested (that is,
cointegration), slightly better results are achieved. Further research is required, however, as there are
issues that should be addressed. For example, it would be interesting to characterize and compare the
behaviour of both types of tests (for the null of cointegration and no cointegration) under different
types of DGPs. This line of research is already under study.
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