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SUMMARY 

 

The paper presents the main results of experimental tests concerning the reduction of the 

seismic vulnerability of stone masonry buildings with flexible floors. Two mock-ups (original 

condition and repaired) were tested in a 3D shaking table. The results show that the adopted 

measures are efficient. A set of non-linear static analyses (pushover) were considered, 

together with time integration analysis. The non-linear dynamic analyses reproduced the 

seismic behavior observed in the seismic tests. However, the pushover analyses did not 

simulate correctly all the failure mode of the structure and should be used with caution. 

 

 

 

INTRODUCTION 

 

Natural disasters are an effect of natural hazards (e. g. tornado, volcanic eruption, landslide, 

tsunami or earthquakes) that has caused millions of deaths (1975-2007) and serious socio-

economic impacts, affecting the development of many countries.  

 

According Hough and Bilham (2006), earthquakes caused 6 million fatalities in 500 years 

(1500-2000). Recently, the magnitude 7 earthquake in Haiti Region (2010) alone triggered 

disastrous destruction and over 200,000 deaths.  But earthquakes hardly kill people, being the 

collapse of the buildings the main reason of the deaths. This means that efforts should be 

conducted to reduce the seismic vulnerability of buildings. 

     

Ancient masonry buildings are one of the most vulnerable elements and were built for many 

centuries according to the experience of the builder, taking into account simple rules of 

construction and without reference to any particular seismic code. Still, in seismic areas, 

unreinforced masonry structures represent an important part of the building stock. Thus, in the 

recent decades, the study of the vulnerability of ancient buildings is receiving much attention 

due to the increasing interest in the conservation of the built heritage and the awareness that 
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life and property must be preserved. The seismic assessment of ancient masonry buildings is 

particularly difficult and depends of several factors. Besides the quality of masonry materials 

and the distribution of structural walls in plan, also the connection between the walls and 

floors significantly influences the seismic resistance (Tomaževi  et al. 1996). 

 

In view of these aspects, an experimental program was carried out to assess the seismic 

vulnerability of a building typology that is believed to present the highest seismic 

vulnerability of the housing stock of Portugal (“gaioleiro” buildings). The program also aims 

at evaluating the efficiency of repairing solutions. Currently, a numerical study is still being 

carried out. Thereby, this paper presents the first results. 

 

The ‘‘gaioleiro’’ buildings typology was used between the mid 19
th

 century and beginning of 

the 20
th

 century,  mainly in the city of Lisbon, and many buildings remain of this type. This 

typology characterizes a transition period from the anti-seismic practices used in the 

‘‘pombalino’’ buildings originated after the earthquake of 1755, see e.g. (Ramos and 

Lourenço 2004), and the modern reinforced concrete frame buildings. These buildings are, 

usually, four to six stories high, with masonry walls (thicknesses ranging from 0.30 m to 

0.60 m) and timber floors and roof. The external walls are, usually, in rubble masonry with 

lime mortar (Pinho 2000). The partitions are mainly stud walls sheathed with thin wood 

boards and plaster, although there can be also some brick masonry walls. The floor is usually 

made of timber boards nailed to the joists and, in some cases, there are also rim joists 

connecting the floors to the walls (Candeias 2009). 

 

“Gaioleiro” buildings are usually semi-detached and belong to a block of buildings. Although 

it is not an objective of this article, pounding can be taken in account when the adjacent 

buildings present different heights or the separation distance is not large enough to 

accommodate the displacements (Gulkan et al. 2002). It is noted the ‘‘block’’ effect is usually 

beneficial and provides higher strength of the building, as shown in Ramos and 

Lourenço (2004). 

 

 

PROTOTYPE AND MOCK-UPS 

 

In order to study the seismic performance through experimental tests, a prototype of an 

isolated building representative of the “gaioleiro” buildings was defined. This is constituted 

by four stories with an interstory height of 3.60 m and 9.45 m x 12.45 m in plan, two opposite 

façades with a percentage of openings equal to 28.6% of the façade area, two opposite gable 

walls (with no openings), timber floors, and a gable roof. 

 

Mock-ups replicate the geometrical, physical and dynamical characteristics of buildings 

typologies (e.g. reinforced concrete framed structures, unreinforced masonry structures with 

flexible floors) or individual structures (e. g. monuments, bridges). However, mock-ups are 

usually simplified due to difficulties related to its reproduction in laboratory, namely the 

geometrical properties of the prototype or individual structures and the size of the facilities. 

Often reduced scale mock-ups are used even it is difficult to fulfill the similitude laws using 

very small scales, as e. g. the preparation of masonry units and reinforcement elements.  

 

In the case study, due to size and payload capacity of the shaking table the mock-up had to be 

geometrically reduced. Thus, a 1:3 reduced scale mock-up taking into account only Cauchy’s 

law of similitude was adopted. In this law of similitude the Cauchy value (ratio between the 
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inertia forces and the elastic restoring forces) is the same in the prototype and in the mock-up. 

For the realistic modeling of non-linear dynamic behavior of the structures Froude’s law of 

similitude (ratio between inertia forces and gravity forces) must be also respected (Carvalho 

1998). However, this procedure involves a mock-up with total mass 3 times higher than that 

according to the Cauchy’s law, and which exceeds the payload capacity of the shaking table. 

Table 1 presents the factors of the Cauchy and both laws of similitude.  

 

 

Table 1. Scale factors of the Cauchy similitude (Carvalho 1998) 

 

Parameter Symbol Chauchy Cauchy + Froude 

Length L Lp/Lm=!=3 LP/LM = =3 

Young’s Modulus E Ep/Em=1 EP/EM =1 

Specific mass " "p/"m=1 !P/!M = 
-1

=1/3 

Area A Ap/Am=!
2
=9 Ap/Am=!

2
=9 

Volume V Vp/Vm=!
3
=27 Vp/Vm=!

3
=27 

Mass m mp/mm=!
3
=27 mp/mm=!

2
=9 

Displacement d dp/dm=!=3 dp/dm=!=3 

Velocity v vp/vm=!=1 vp/vm= 1/2
=3

1/2
 

Acceleration a ap/am=!
-1

=1/3 ap/am =1 

Weight W Wp/Wm=!
3
=27 Wp/Wm= 2

=9 

Force F Fp/Fm=!
2
=9 Fp/Fm=!

2
=9 

Moment M Mp/Mm=!
3
=27 Mp/Mm=!

3
=27 

Stress # #p/#m=!=1 #p/#m=!=1 

Strain $ $p/$m=!=1 $p/$m=!=1 

Time t tp/tm=!=3 tp/tm= 1/2
=3

1/2
 

Frequency f fp/fm=!
-1

=1/3 fp/fm= -1/2
=3

-1/2
 

(p and m designate prototype and mock-up, respectively) 

 

The geometric properties of the non-strengthened mock-up (NSM) are obtained directly from 

the application of the scale factor to the prototype, resulting in a model 3.15 m wide and 

4.8 m deep, with 0.17 m of wall thickness (see Figure 1a). The interstory height is equal to 

1.2 m. The mock-up only has the top ceiling, due to difficulties in reproducing the gable roof 

at reduced scale. The external walls have a single leaf of stone masonry (limestone and lime 

mortar) and were built by specialized workmanship. 

 

In the construction of the timber floors, medium-density fiberboard (MDF) panels connected 

to a set of timber joists oriented in the direction of the shortest span were used. The panels 

were cut in rectangles and stapled to the joists, keeping a joint of about 1 mm. The purpose 

was to simulate flexible floors with very limited diaphragmatic action (see Figure 1a). 

 

After the tests, the piers and the lintels were repaired, aiming at re-establishing the initial 

conditions of the mock-up. Afterwards, the mock-up was strengthened and tested again. 

 

In the strengthened mock-up (SM) steel angle bars (internal surface) and plates (external 

surface) at the floor levels were used (see Figure 1b). These strengthening elements are 

connected among themselves by bolts, with exception of the gable walls, in which the steel 

angle bars are connected to the masonry. It is noted that, usually, in real application it is not 

possible to apply strengthening elements to the external surface of the gable walls, due to the 
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presence of adjacent buildings. Additionally, timber elements to constrain the rotation of the 

timber joists were used. In the two top floors, crossed steel ties were also installed. Each floor 

has two pairs of steel cables connecting the middle of the façades to the corners of the 

opposite façades, leading the inertial forces in the out-of-plane direction of the façades to the 

plane of the gable walls. The main goals of the strengthening techniques adopted are to 

improve the connection between the floors and the masonry walls, mainly to the gable walls, 

and to prevent the global out-of-plane collapse of the façades. 

 

 

 

(a) (b) 

 

Figure 1. Non-strengthened (a) and strengthened (b) mock-up 

 

 

TEST PLANNING 

 

The assessment of the seismic performance of the “gaioleiros” buildings was based on 

previous experience from the National Laboratory for Civil Engineering (LNEC). The 

methodology includes seismic tests on shaking table with increasing input excitations and 

characterization tests of the dynamic properties of the mock-ups before the first seismic test 

and after each of the seismic tests (Candeias 2009). The dynamic properties give inherent 

information of the mock-up and its evolution is related to the damage induced by a given 

seismic input. 

 

The seismic tests were performed at the LNEC 3D shaking table by imposing accelerograms 

compatible with the design response spectrum defined by the Eurocode 8 (EN 1998-1 2004) 

and Portuguese National Annex for Lisbon, with a damping ratio equal to 5% and a type A 

soil (rock). The accelerograms were imposed with increasing amplitude in two uncorrelated 

orthogonal directions that should present approximately the same PGA. 

 

The dynamic properties of the mock-ups were identified through forced vibration tests at the 

shaking table (Mendes and Lourenço 2010) and its evolution is identified through 

experimental transfer functions (Frequency Response Function) obtained along the tests. 

 

The shaking table tests of the non-strengthened mock-up involved four seismic tests with 

amplitudes of the seismic action equal to 25%, 50%, 75% and 100% of the code amplitude 

and five dynamic identification tests. Additionally, in the strengthened mock-up two extra 

seismic tests, with amplitudes of the seismic action equal to 125% and 150% of the code 

amplitude, were done. Due to serious damage of the mock-up, it was not possible to carry out 

the dynamic identification after the final seismic test. 
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The reduction of the natural frequencies is related to the stiffness variation and, consequently, 

to the evolution of the damage. Equation (1) presents a simplified damage indicator dk,i based 

on the variation of the natural frequencies fk,i (fk,0 is the natural frequency of the mode shape k 

before the application of the first seismic test). This damage indicator assumes that the global 

mass of the mode shape k does not change meaningfully in the different tests, and it presents 

different values after each seismic test. 

 
2

k,i

k,i

k,0

f
d 1

f

" #
$ % & '& '

( )                                  

                           (1) 

 

EXPERIMENTAL RESULTS 

 

In the preliminary study of the seismic vulnerability of the mock-ups only the 1
st
 mode shape 

(translation in the transversal direction) and the crack pattern were considered. It is noted that 

results are presented to1:3 reduced scale, according to Cauchy’s law of similitude (Table 1). 

 

Figure 2 presents the vulnerability curves, in which the damage indicator d (equation 1) is 

related to the amplitude of the seismic action. In the last test of the non-strengthened mock-up 

the damage indicator is equal to 0.80 and remains equal to value of the previous test. 

Probably, after the third seismic test, the 1
st
 transversal mode is, mainly, related with the 

stiffness of the gable walls connected by floors. The last crack pattern of the non-strengthened 

mock-up (1.0×code) shows that only the lintels and the piers of the façades present serious 

damage (see Figure 3). The concentration of damage at the piers of the top floor is 

highlighted, where the horizontal cracks are related to its out-of-plane bending. The gable 

walls did not present any damage.  

 

After the last test, the non-strengthened mock-up was repaired, strengthened and tested again. 

The vulnerability curves of the strengthened mock-up (see Figure 2) show that the 

strengthening was efficient and reduced the seismic vulnerability of the mock-up. In the 4
th

 

seismic test (1.0×code) the strengthened mock-up presented a reduction of the damage 

indicator (0.52) of 35%, with respect to the original building.  
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Figure 2. Seismic vulnerability curves. 
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                                         North                   South                      East                             West 

 
 

Figure 3. Crack pattern of the non-strengthened mock-up after final testing (1.0×code) 

 
                                         North                   South                      East                             West

 
(a) 

                                         North                   South                      East                             West

 
(b) 

 

Figure 4. Crack pattern of the strengthened mock-up after: (a) 1.0×code; (b) 1.5×code 

 

The crack patterns also presented different characteristics. Contrarily to the observation in the 

non-strengthened mock-up (see Figure 3), in which all lintels presented damage, the crack 

pattern of the strengthened mock-up (see Figure 4a) shows that the cracking of the lintels 

concentrates at the top floors. Furthermore, the gable walls (4
th

 floor) present diagonal cracks, 

indicating that part of the out-of-plane inertial forces of the façades were transferred to the 

gable walls. In the last seismic test of the strengthened mock-up (see Figure 4b), in-plane 

rocking and out-of-plane bending of the piers of the top floor were observed. The crack 

pattern shows that damage concentrates at the top floor (façades and gable walls) and the 

lintels of the 1
st
 and 2

nd
 floors of the façades do not present serious cracking. Furthermore, the 

collapse of the piers at the top floor of the North façade is highlighted. 

 

 

PREPARATION AND CALIBRATION OF THE NUMERICAL MODEL 

 

The numerical model of the non-strengthened mock-up was prepared using the Finite Element 

software DIANA (TNO 2010), by using shell elements for the simulation of the walls and 

three-dimensional beam elements for the timber joists, all based on the theory of Mindlin-

Reissner. In the modeling of the floors, shell elements were also used with the purpose of 

simulating the in plane deformability. In the supports, only the translation degrees of freedom 

at the base were restrained. 

 

The first stage of calibration of the numerical model was based on the comparison between 

experimental and numerical frequencies and MACs (Modal Assurance Criteria) of the first six 
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modes shapes. In this stage five numerical models, taking into account different calibration 

variables, were used. The sensitivity analysis leads to the conclusion that the Young´s 

modulus of the timber joists has no significant influence on the frequencies variation and can 

be considered constant (12 GPa). The models present different alternatives to simulate the 

connections between floors and masonry walls, and between orthogonal walls. The process 

presented difficulties in the calibration of the higher mode shapes and only the first four 

experimental modes were calibrated. 

 

After calibration in the 2
nd

 stage, the 5
th

 numerical model is the one that best fits the 

experimental data, in which the average of the errors of the frequencies is equal to 2.6% and 

the average of the MACs is equal to 0.89. In this model four variables were considered, 

namely the Young´s modulus of the façades, gable wall, MDF panels and corners of 

orthogonal walls. The Young’s modulus of the gables walls (3.17 GPa) approaches the value 

obtained from uniaxial compression tests on wall-specimens (3.37 GPa). The low value of the 

Young´s Modulus of the façades (0.58 GPa) can be related to the highest percentage of 

mortar, with respect to the gable walls and wall-specimens, and to the connection between 

façades and floors. The Young´s modulus of the corner is equal to 1.59 GPa. 

 

 

NON-LINEAR DYNAMIC ANALYSES WITH TIME INTEGRATION 

 

After calibration of the frequencies and modes shapes, non-linear dynamic analyses with time 

integration were performed, aiming at validating the dynamic response of the non-

strengthened numerical model (1:3 reduced scale). The physical nonlinear behavior of the 

masonry walls was simulated using the Total Strain Crack Model detailed in DIANA (TNO 

2010). This includes a parabolic stress-strain relation for compression, where the compressive 

strength, fc, is equal to 6 N/mm
2
 and the respectively fracture energy, Gc, is equal to 

9.6 N/mm. In tension, an exponential tension-softening diagram was adopted, where the 

tensile strength, ft, is equal to 0.1 N/mm
2
 and the fracture energy, Gf, is equal to 0.12 N/mm. 

The crack bandwidth was determined as a function of the finite element area. In terms of 

shear behavior, a constant shear retention factor equal to 0.1 was adopted. Regarding the 

behavior of the MDF panels and timber beams, it was assumed to be linear elastic. The 

damping C was simulated according Rayleigh viscous damping (C= *M + +K), in which a 

5% damping ratio for the 1
st
 and 3

rd
 transversal mode shapes was assumed. 

 

In the first non-linear dynamic analysis, with seismic action equal to 0.25 of the code 

amplitude, the peak values and the Root Mean Squares (RMS) of the acceleration, velocities 

and displacements were used. The response of the numerical model approaches that of 

experimental one. Figures 5a and 5b show the comparison of RMS of displacements 

(equation 2) between experimental and numerical results in the middle of the North façade 

and East gable wall, respectively. As observed in the experimental test, the numerical model 

did not present serious damage and its behavior is, mainly, linear dynamic. The maximum 

displacements at the top of the North façade and East gable wall are equal to 3.8 mm and 

7.1 mm (numerical model), respectively. 

 

dt 2

disp
0

d

1
RMS d(t) dt

t
$ ,

                                 

                  (2) 

 

in which d(t) is the displacement time series and td is the duration of the series. 
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Figure 5. Numerical results: RMS of displacement in the (a) North façade and (b) East gable 

wall for earthquake with amplitude equal to 0.25×code; (c) tensile principal strains of the 

North façade for earthquake with amplitude equal to 1.0×code 

 

A nonlinear dynamic analysis with seismic action equal to 1.0 of the code amplitude was 

carried out. A qualitative comparison between numerical and experimental was also done. 

However, the main objective was to obtain a crack pattern similar to the one observed in the 

experimental test. It is noted that in the experimental testing the time series were imposed 

with increasing amplitude in the same mock-up. This means that the numerical model and the 

mock-up did not present, with exception of the first seismic action, the same initial 

conditions. In the Figure 5c the tensile principal strains of the North façade are presented, in 

which the damage concentrates at the lintels and at the piers of the 4
th

 floor, and it is in 

agreement with the crack pattern observed in the last experimental test (see Figure 3). 

 

 

MODERN NUMERICAL THECNIQUES: PUSHOVER ANALYSIS 

 

The non-linear dynamic analysis is a complex and time consuming tool hardly available for 

practitioners. An alternative option seems to be non-linear static methods, as recommended in 

most codes for earthquake safety assessment. However, its application to masonry structures 

with flexible floors is still a challenge. 

 

Candeias (2009) carried out a set of shaking table tests with the purpose of evaluating the 

seismic performance of the ‘‘gaioleiro’’ buildings, before and after strengthening. The mock-

up is similar to that presented previously. However, the stone masonry walls were replaced by 

a self compacting bentonite-lime concrete, studied to reproduce the mechanical characteristics 

of the original masonry walls. The seismic tests were performed by imposing accelerograms 

with increasing amplitude in two uncorrelated orthogonal directions and compatible with the 

Portuguese code. Mendes and Lourenço (2010) performed an extensive numerical modeling 

based on these experimental tests. Besides non-linear dynamic analyses, several types of 

pushover analyses were carried out. 

 

The damage obtained through the non-linear dynamic analysis is in agreement with crack 

pattern of the last experimental test (see Figures 6a and 6b). Furthermore, three non-linear 

dynamic analyses with seismic action compatible with the new European codes (Eurocode 8) 

were carried out. Figure 7 presents the envelopes of the non-linear dynamic analyses in terms 

of seismic coefficient (ratio between the sum of the horizontal loads and self-weight) and 

displacement at the top of the structure (capacity curves). 
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(c) 

 

Figure 6. Damage: (a) experimental; (b) non-linear dynamic analysis; (c) pushover analysis 

proportional to the 1
st
 mode shape in the transversal direction 
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Figure 7. Capacity curves of the pushover analyses in the (a) transversal and (b) longitudinal 

direction (the silver pattern represents the envelope of the three non-linear dynamic analyses) 

 

In the pushover analyses, the capacity curves were considered by increasing a set of lateral 

loads applied to the structure in two independent directions. Two vertical distributions of 

lateral loads were used: (a) proportional to mass regardless of elevation; (b) proportional to 

forces consistent with the 1
st
 mode shape in the applied direction. The capacity curves of the 

pushover analyses proportional to the 1
st
 mode shape show that the maximum seismic 

coefficients approach the dynamic analysis (see Figure 7) and, as expected, the crack patterns 

only provide in plane damage (see Figure 6c). This type of analyses did not reproduce the out-

of-plane mechanism of the piers in the 4
th

 floor (see Figures 6a and 6b).  In an attempt to 

explore the pushover analyses proportional to the 1
st
 mode shape, an additional adaptive 

pushover analysis was also carried out, in which the lateral load is updated as a function of the 

existing damage. However, this pushover analysis did not provide any improvement in terms 

of load-displacement diagrams or failure mechanisms. 

 

 

CONCLUSIONS 

 

This paper presents an experimental method to assess the seismic vulnerability of masonry 

buildings with flexible floors. Furthermore, a strengthening solution was also proposed. In the 

case study, the “gaioleiro” building typology (Portugal) was adopted. The study involved tests 

in the LNEC 3D shaking table by imposing artificial accelerograms in two horizontal 

uncorrelated orthogonal directions, inducing in-plane and out-of-plane response of two tested 

mock-ups. The results showed that the façades of the non-strengthened mock-up present 

serious damage. The strengthened solution improved the seismic performance of the mock-up 

and a reduction of 35% of the damage indicator was obtained. 

1st Mode proportional

Mass proportional

Adaptive

Dynamic 
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The non-linear dynamic analysis with time integration reproduced the seismic behavior 

observed in the seismic tests. However, it is not an available option for practitioners. Thus, 

the application of modern techniques of structural analysis to the masonry structures with 

flexible floors should be studied, namely, the pushover analyses, the limit analysis and the 

hybrid frequency time domain analysis. 

 

Through a previous numerical study, it was concluded that the pushover analyses 

(proportional to the mass, 1
st
 mode shape and adaptive), did not simulate correctly all failure 

mode of the structure, namely the out-of-plane mechanism, and should be used with caution. 

Thus, more research about application of these methods to the masonry buildings with 

flexible floors should be provide, namely the application of the new modal pushover analyses. 
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