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Abstract—There are several supervised learning Data Mining
(DM) methods, such as Neural Networks (NN), Support Vector
Machines (SVM) and ensembles, that often attain high quality
predictions, although the obtained models are difficult to inter-
pret by humans. In this paper, we open these black box DM
models by using a novel visualization approach that is based on
a Sensitivity Analysis (SA) method. In particular, we propose
a Global SA (GSA), which extends the applicability of previous
SA methods (e.g. to classification tasks), and several visualization
techniques (e.g. variable effect characteristic curve), for assessing
input relevance and effects on the model’s responses. We show
the GSA capabilities by conducting several experiments, using a
NN ensemble and SVM model, in both synthetic and real-world
datasets.

I. INTRODUCTION

Due to the advances of Information Technology, business
and scientific databases are becoming commonplace. Data
Mining (DM) enables the extraction of knowledge from such
databases to the domain user or decision maker [1][2]. Under
the supervised learning paradigm, the intention is build a
data-driven model that learns an unknown underlying function
that maps several input variables into one or more output
targets. This includes two important DM goals: classification
and regression.

Several supervised learning techniques are available, each
one with its own purposes and advantages. Often, it is crucial
to achieve DM models with an high predictive knowledge,
i.e. capable of high quality estimates of the target. Another
issue is explanatory power, i.e. if it is possible to extract
human understandable knowledge from the data-driven model.
Such knowledge is important to check if the obtained model
makes sense to the domain experts and if it is interesting
(e.g. if it unveils potentially useful, interesting, or novel
information) [1][3]. Increasing model interpretability allows
a better acceptance of the DM results by the domain users
and this is particularly relevant in critical applications, such
as control or medicine.

There are supervised DM methods that often lead to data-
driven models with a high predictive accuracy, although the
obtained models are difficult to understand by humans. Hence,
such models are usually treated as “black boxes”. This includes
a wide range of methods, such as neural networks (NN) (e.g.
multilayer perceptrons and radial basis-functions) [4], Support

Vector Machines (SVM) and other kernel-based methods [5],
and even ensembles (where multiple models are combined to
achieve a better predictive performance) [6].

To increase interpretability from black box DM models,
there are two main approaches: extraction of rules and use
of visualization techniques. The extraction of rules is the
most popular solution [7][8][9]. However, such extraction is
often based on a process that simplifies the model complexity
and may lead to rules that do not accurately represent the
original model. For instance, a pedagogical technique can be
used to extract the direct relationships between the inputs and
outputs of a NN classifier by using a decision tree [10]. While
producing human understandable rules, this decision tree dis-
cretizes the classifier separating hyperplane, thus leading to
information loss. Turning to visualization techniques, several
graphical methods were proposed, such as: Hinton and Bond
diagrams for NN [11]; showing NN weights and classification
uncertainty [12]; and improving the interpretability of kernel-
based classification methods [13]. Yet, most of these graphical
techniques are specific to a given learning method or DM goal
(e.g. classification).

In this work, we propose a novel visualization approach
based on a Sensitivity Analysis (SA), which is a simple method
that measures the effects on the output of a given model when
the inputs are varied through their range of values [14]. While
initially proposed for NN, SA can be used with virtually any
supervised learning method, such as partial least squares [15]
and SVM [16]. This method allows a ranking of the inputs that
is based on the amount of output changes that are produced
due to disturbances in a given input. Hence, SA has been
mostly used as a variable/feature selection method (e.g. to
select the least relevant feature that is deleted in each iteration
of a backward selection) [14][15][13][16]. However, SA can
also be used to explain the model, as recognized in [17] but
more explored in [18] and [19], thus opening the black box.

In [17], a computationally efficient one-dimensional (1-
D) SA was proposed, where only one input is changed at
the time, being the remaining ones hold at their average
values. Later, in [18] a two-dimensional (2-D) SA variant
was presented as a diagnostic tool to explain the effects of
two features on the model. In both studies, only numerical
inputs and regression tasks were modeled. In this paper, we



propose a global framework for using SA to open black box
DM models. In Sections II-A and II-B, we extend the SA
method of [17][18] (e.g. to deal with: classification tasks,
discrete variables and up to the I-dimensional case, where I is
the number of inputs). Also, we present several visualization
techniques (Section II-C) that show input relevance and 1-D
and 2-D SA effects. In Sections II-D and II-E, we describe
the learning methods and datasets adopted. Then, we explore
the use of SA and visualization techniques in both synthetic
and real-world datasets (Section III). Finally, conclusions are
drawn (Section IV).

II. MATERIALS AND METHODS

A. Sensitivity Analysis Methods

A supervised DM model (M ) is adjusted to a dataset D, i.e.
training data, made up of N examples of I input variables and
one output target (y). Each input (xi : i ∈ {1, . . . , I}) or output
variable (y) can be categorical or continuous. Let ŷ denote
the value predicted by M and Nŷ the number of elements
returned by M for a single input example. A regression task
assumes one continuous output (ŷ ∈ < and Nŷ = 1). For
classification, there is a categorical output. Such output can
be modeled by M using one discrete output (Nŷ = 1 and
ŷ ∈ {G1, . . . , GNG

} groups). Another possibility for M is
to model class probabilities, where

∑
c∈{G1,...,GNG

} ŷ(c) =
1, Nŷ = NG and ŷ(c) is the output probability for class c.
Discrete data can be further classified into:
• ordered – with NG ≥2 ordered values (e.g. y ∈{yes,

no} or y ∈{low, medium, high});
• nominal – non-ordered with NG >2 classes (e.g.
y ∈{red, blue, yellow}).

The 1-D SA works by first holding all input variables at a
given baseline vector b (e.g. composed by the mean or median
attribute values). Then, each input xa varies through its range
according to a scanning function scan(xa, l) that returns a
sequence with l values taken from xa. Finally, the respective
model responses (ŷa) are used to compute a sensitivity metric.
The setup proposed in [17] for regression tasks and continuous
values was: l = 6, b composed of the mean attribute values
and:

scan(xa, l) = seq(min(xa),max(xa), l)
seq(A,B, l) = {A,A+ k,A+ 2k, . . . , B}
k = (A−B)/(l − 1)

(1)

where seq(A,B, l) produces a regular sequence from the
minimum to the maximum value. The 2-D SA was proposed
in [18], working similarly to the 1-D case, except that the
sensitivity is analyzed for a pair of inputs (xa1, xa2) that vary
simultaneously.

In this paper, we propose a Global SA (GSA) method
(Algorithm 1) that extends the previous methods to deal
with: discrete variables, distinct scanning functions and a
sensitivity that uses F features (ranging from #F =1-D,
up to the #F = I-D case). The SD jagged array is built
using Algorithm 2, while predict(M,X) is a function that
returns the responses of model M given the input matrix X

(of N × I size). The REP procedure is equivalent to the R
rep function [20] (e.g. REP((1,2),2,2)=(1,1,2,2,1,1,2,2)). The
computational complexity for GSA is O(mX×P ), where P is
the complexity when using M to predict one example. When
the number of scanned elements is l for all F attributes, then
mX = l#F . Depending on the SA purpose (e.g. ranking inputs
or visualization of the model’s behavior), the GSA responses
(ŷGSA = X[∗, ycol]) can be averaged, according to a given
input xa with l levels or pair of inputs (xa1,xa2) with l1 (for
xa1) and l2 levels:

ŷa = {X[xrow, ycol] : X[xrow, a] = xa,j , j ∈ {1, . . . , l}}
ŷ(a1,a2) = {X[xrow, ycol] : X[xrow, a1] = xa1,j∧
X[xrow, a2] = xa2,h, j ∈ {1, . . . , l1}, h ∈ {1, . . . , l2}}

(2)
where xa,j denotes the j-th scanned element from xa. When
modeling probabilities, ŷa (or ŷ(a1,a2)) is computed for each
individual class probability (e.g. ycol = I+1 for the first class,
G1).

Algorithm 1 Global Sensitivity Analysis
1: procedure GSA(M , SD, F , b, Nŷ)
2: mX ← 1
3: for a ∈ F do . compute mX length
4: mX ← mX × length(SD[a, ∗])
5: end for
6: X ← matrix mX × (I + Ycol) . rows × columns
7: for a ∈ {1, . . . , I}/F do
8: X[∗, a]← b[a] . set /F columns to baseline
9: end for

10: e← 1
11: for a ∈ F do . set SA inputs
12: x′a ← SD[a, ∗]
13: t← mX/(e · length(x′a))
14: X[∗, a]← REP(x′a, e, t) . replicate x′a
15: e← e · length(x′a)
16: end for
17: ycol ← {I + 1, . . . , I +Nŷ}] . output columns
18: X[∗, ycol]← predict(M,X[∗, {1, . . . , I}])
19: Output: X . matrix with SA inputs and responses
20: end procedure
21: procedure REP(x, each, times) . auxiliary function
22: xr = ∅ . empty vector
23: for j ∈ {1, . . . , times} do
24: xe = ∅ . empty vector
25: for i ∈ x do
26: x′e ← vector with each× length(x) elements
27: x′e[∗]← i . all x′e elements are set to i
28: xe ← c(xe, x

′
e) . concatenate operator

29: end for
30: xr ← c(xr, xe) . concatenate operator
31: end for
32: Output: xr . vector with replicates from x
33: end procedure



Algorithm 2 Scanning data method
1: procedure SCAN DATA(D, F , l)
2: for a ∈ F do
3: SD[a, ∗]← scan(D[∗, a], l)
4: end for
5: Output: SD . jagged array with scanned inputs
6: end procedure

For continuous values, scan(xa) can be set to the regular
sequence (Equation 1). The quantile scan can be used as an
alternative, where the intention is to sample values from xa

that are more closer to the variable distribution in the dataset:

scan(xa, l) = unique({Q(p) : p ∈ seq(0, 1, l)}) (3)

where Q(p) is the quantile function for a given probability
p ∈ [0, 1] of xa and unique is a function that deletes repeated
elements from a set. Ordered attributes can be encoded into the
numeric ordered scale: {1, 2, . . . , NG}. Then, NG or l discrete
values ∈ {G1, . . . , GNG

} (the xa classes) can be scanned
using the regular or quantile sequences over the ordered scale.
For nominal attributes, we suggest the use of all discrete values
or a random sampling of l distinct values from xa.

To simplify the computation, which is particularly useful
within a feature selection procedure, b can be set to the
mean or median attribute values of D [17][18]. In case of
ordered attributes, the mean or median index of the ordered
scale (middle) can be used to select the middle xa value
(b[a] = Nmiddle). For nominal attributes, we propose the
use of the mode, i.e. most common xa value. Nevertheless,
we should stress that any baseline vector (b) can be used in
Algorithm 1, including the input values of a given example
from D or average values for a particular cluster (e.g. patients
younger than eighteen).

B. Sensitivity Measures

Three sensitivity measures were proposed in [17] for con-
tinuous outputs (i.e. regression), namely range (r), gradient
(g) and variance (v):

ra = max(ŷa)−min(ŷa)
ga =

∑L
j=2 |ŷa,j − ŷa,j−1|/(L− 1)

va =
∑L

j=2 (ŷa,j − ŷa)2/(L− 1)
(4)

For all metrics, the higher the value, the more relevant is the
input. Thus, its relative importance (Ra) can be given by [16]:

Ra = sa/

I∑
i=1

si × 100 (%). (5)

where ŷa,j is the sensitivity response for xa,j and s is the
sensitivity measure (i.e. r, g or v). For demonstration purposes,
Fig.1 shows sensitivity measures for four distinct response
curves. The graph shows different rankings, according to the
measure considered (e.g. the g curve ranking is: <B and D,
A, C>).

Fig. 1. Example the sensitivity measures for different continuous responses

TABLE I
SENSITIVITY MEASURES FOR A THREE-CLASS CLASSIFICATION EXAMPLE

nominal (ii) ordered (i)
ŷa r g v r g v

AAAA 0.00 0.00 0.00 0.00 0.00 0.00
AAAB 0.67 0.22 0.17 1.00 0.33 0.25
AABB 0.67 0.22 0.22 1.00 0.33 0.33
ABAB 0.67 0.67 0.22 1.00 1.00 0.33
AABC 1.00 0.44 0.28 2.00 0.67 0.92
ABAC 1.00 0.67 0.28 2.00 1.33 0.92

For classification, there are three output domain possibili-
ties: i) ordered output, ii) nominal output and iii) output prob-
abilities. We propose the following classification measures.
In case i, first encode the discrete values into an ordered
scale (e.g. {1, 2, . . . , NG}) and then use Equation 4. For ii,
first apply the popular One-of-NG transformation, where one
binary variable is assigned to each class (e.g. red→(1,0,0);
blue→(0,1,0); yellow→(0,0,1)). Then use:

sa = sa(c) : c ∈ {G1, . . . , GNG
} (6)

where sa(c) is the sensitivity measure for attribute a and output
class c. Under iii, use Equation 6 directly.

As an example, we select a three-class classification (y ∈
{A,B,C}). Table I shows the proposed sensitivity measures for
an hypothetical ŷa that is obtained when varying xa with l = 4.
As shown by the table, for nominal and ordered scenarios,
higher changes in ŷa tend to result in an increase of the
sensitivity measure, although such increase depends on the
type of measure used. The probability modeling case, iii, we
adopt an hypothetical ŷa for l = 3 and when analyzing three
inputs (x1, x2 and x3), as shown in Table II. For each ŷa,i,
i ∈ {1, 2, 3}, we present the class probabilities (e.g for ŷ1,1,
ŷ(A) = 1.0) and expected class (in brackets, corresponding to
the class with the highest probability). Again, higher response
changes lead to an increase for all measures.



TABLE II
SENSITIVITY MEASURES FOR A THREE-CLASS PROBABILITY EXAMPLE

ŷ1 (class) ŷ2 (class) ŷ3 (class)
ŷa,1 1.0,0.0,0.0 (A) 1.0,0.0,0.0 (A) 0.7,0.1,0.2 (A)
ŷa,2 0.8,0.2,0.0 (A) 0.8,0.2,0.0 (A) 0.2,0.7,0.1 (B)
ŷa,3 0.6,0.4,0.0 (A) 0.4,0.6,0.0 (B) 0.1,0.2,0.7 (C)

r 0.27 0.40 0.60
g 0.13 0.20 0.40
v 0.03 0.06 0.10

C. Visualization Techniques

We assume that M is a given supervised learning model
that was designed to include the lowest set of I input variables
(e.g. use of feature selection) in order to achieve a satisfactory
prediction accuracy. After applying the GSA algorithm, several
visualization methods can be used to open the black box
(examples are shown in Section III):

1) Input Importances: To show the input importances, we
propose a bar plot with the Ra importances (Equation 5),
sorted from the highest to the lowest values. When using
multiple runs, the bar plot Ra values can be averaged and
whiskers can be added to show confidence intervals.

2) Variable Effect Characteristic Curve: To present the
average impact of a given input xa in the model, we suggest
the use of the Variable Effect Characteristic (VEC) curve
[19], which plots the the xa,j values (x-axis) versus the
(average, if Equation is 2 used) ŷa,j responses (y-axis).
Between two consecutive xa,j values, the VEC plot uses a line
(interpolation) for continuous values and a horizontal segment
for categorical data. To enhance the visualization analysis,
nominal xa values can be sorted according to the average
ŷa,j response. Also, several VEC curves can be plotted in
the same graph. In such case, the x-axis should be scaled
(e.g. within [0,1]) for all xa values. Also, as shown in [19],
the VEC curves can be combined with xa histograms, to
increase the interpretation of the results (i.e. showing both
the frequency and sensitivity response values). Similarly to
Receiver Operating Characteristic (ROC) analysis, a VEC
plot can be built for each target class, when modeling class
probabilities (case iii of Section II-B). When using multiple
runs, the distinct VEC curves can be averaged vertically, over
all runs.

3) Variable Effect Characteristic Surface and Contour Plot:
Finally, to show the impact of a pair of inputs (xa1,xa2), we
propose the use of a VEC surface [18] and contour plot,
as shown in Section III. The VEC surface provides more
detail when compared with the contour plot, yet, a good
interpretability is dependent on a correct adjustment of the
3D axis/angle representation.

D. Supervised Learning Methods

While virtually any supervised learning method could be
used, we adopt two models: NN and SVM, as implemented
in the rminer library of the R tool [21].

The NN is based on an ensemble that computes the average
of the predictions of Nr multilayer perceptrons, all with

a hidden layer of H neurons with logistic functions. For
regression, the output neuron uses a linear function. For a
binary classification, there is one output neuron with a logistic
function. Under multi-class tasks (NG > 2), there are NG

linear output neurons and the softmax function is used to
transform these outputs into class probabilities. The predicted
class is given by the highest probability. The training (BFGS
algorithm) of each network is stopped when the error slope
approaches zero or after a maximum of Me epochs.

The SVM uses the popular gaussian kernel, which contains
the parameter γ. The SVM is fit using the sequential mini-
mal optimization (SMO) learning algorithm. When modeling
regression datasets, the ε-insensitive cost function adopted.
For classification, the model can be set to estimate classes
or class probabilities. For multi-class tasks, the one-against-
one approach is used. To reduce the search space, the rminer
uses heuristics to set the C and ε parameters.

Before feeding the NN and SVM models, the nominal inputs
are encoded using a One-of-NG transformation, while the
real inputs are standardized to a zero mean and one standard
devision. Turning to the NN and SVM hyperparameters (i.e.
H and γ), these are set using a simple grid search. For a given
hyperparameter set of values, a cross-validation is applied over
the training data and the value with the lowest estimation error
is selected.

E. Data

In this work, we designed two synthetic functions to cre-
ate classification and regression synthetic datasets. Also, we
selected two real-world problems from the UCI repository
[22]: wine quality (classification or regression) and servo
(regression). The intention is to use the controlled synthetic
functions to assess the sensitivity measure performances, while
the real-world data are used to show the SA visualization
techniques’ capabilities.

For the synthetic data, we set three inputs (x1, x2 and
x3), where each input contains N = 1000 points under a
normal distribution sampling with a mean of N/2 and standard
deviation of N/8. Then, we set (Fig. 2):

y = 0.7 sin (π · x1
2N ) + 0.3 sinπ · x2

2N ) (sin1)
y = sin (π · x1

2N ) · (0.15 sinπ x2
0.25N + 1) (sin2) (7)

In both functions, the most important input is x1 (with
an impact around 70%), followed by x2, while x3 has a
null effect. The former function uses an additive effect to
combine x1 and x2, while the latter uses a nonlinear mul-
tiplicative combination. The two sin datasets are available at:
http://www3.dsi.uminho.pt/pcortez/gsa. For classification, we
discretized the outputs into 3 classes, according to: G1 =A
(y ∈ [0, 0.65[), G2 =B ([0.65,0.75]) and G3 =C ([0.75,1]).

The white wine quality (wwq) includes 4898 samples from
the northwest region of Portugal [16][19]. The regression goal
is to predict human expert taste preferences (y ∈ {3, . . . , 9})
based on 11 analytical inputs (continuous values). For classi-
fication, we set a binary task, where the goal is to detect very
good wine (y > 6). The servo is a nonlinear dataset related



Fig. 2. The synthetic functions (sin1 and sin2)

to rise time of a servomechanism and includes 167 examples
with 4 inputs (2 nominal and 2 continuous).

III. EXPERIMENTS AND RESULTS

A. Predictive Power

All experiments reported here were conducted using the
rminer library and R tool [21], under a linux server. For
NN, we set Nr = 7 and Me =100. The grid search
ranges for NN and SVM were H ∈ {1, 2, . . . , 10} and
γ ∈ {2−15, 2−13, . . . , 23}, in a total of 10 searches for each
method. We adopted an internal 3-fold cross-validation (using
only training data) to get the estimation error. To assess the
predictive capabilities of each method (i.e. test error), we
applied 10 runs of 10-fold cross-validation to all datasets
except the wine data, where a 3-fold validation was used (since
the number of examples is quite large when compared with
the remaining datasets). For multi-class classification (case ii
of Section II-B), the error metric is the overall classification
accuracy (ACC) [23]. When modeling class probabilities (case
iii), we adopt the global Area Under the Curve (AUC), which
weights the area of each ROC class according to its prevalence

TABLE III
THE BEST MODEL AND TEST ERROR RESULTS

dataset Model Metric Test Error
sin1-ii NN (H̃ = 4) ACC 98.9±0.2%
sin1-iii NN (H̃ = 4) AUC 99.9±0.0%
sin1-reg NN (H̃ = 10) MAE 0.00±0.00
sin2-ii NN (H̃ = 2) ACC 98.3±0.2%
sin2-iii NN (H̃ = 2) AUC 99.9±0.0%
sin2-reg NN (H̃ = 5) MAE 0.00±0.00
wwq-iii SVM (γ̃ = 21) AUC 86.5±0.0%
wwq-reg SVM (γ̃ = 2−1) MAE 0.46±0.00
servo NN (H̃ = 7) MAE 0.22±0.01

in the data [24]. For regression (reg), the Mean Absolute error
(MAE) was used [23].

Table III shows the best model, according to the average
test error (last column, shown in terms of the mean value
and respective 95% t-student confidence intervals). For each
model, the median hyperparameter is also shown in brackets
(e.g. first row, H̃ = 4). High quality predictive results were
achieved. NN is the best method, except for the wine data
(wwq), where SVM presents the best performance.

B. Explanatory Power

After assessing the predictive capability of the best models,
we show here how to open the black box. To simplify the
explanation and analyze just one model for each dataset, the
best models of Table III were retrained using all data and
the median hyperparameter value (e.g. H = 4 for the sin1-ii
dataset). Unless stated otherwise, in the next experiments we
use the regular scan with l = 6 and baseline (b) set to the
mean of the attributes.

First, we analyze the synthetic relative input importances
(Ra values, Table IV). In the table, each cell shows Rx1 ,
Rx2 , Rx3 and the cells where Rx1 > Rx2 and Rx3 = 0 are
shown in bold. The first 1-D setup (as used in [17], which is
equivalent to the GSA when #F = 1 for all inputs) shows
good input ranking results only for the regression tasks, while
the proposed GSA (using #F = 3 and then Equation 2)
achieves the pretended ranking for all except 4 cases (i.e.
sin1-ii and v; and all sin2-ii input relevances). Regarding the
sensitivity measures, both r and g produce relative importances
that are closer to x1 and x2 influences in y, while v tends to
give a higher impact to the most important input (x1). In the
remaining experiments, we adopt the gradient metric.

To demonstrate the visualization of input importances, we
selected the wwq-reg dataset, which includes 11 inputs. In
this case, the full GSA (#F ) is computationally expensive,
as it requires the prediction of 611 examples. Thus, we first
applied the 1-D (#F = 1) for all 11 inputs. The respective
bar plot (left of Fig.3), shows the sulphates as the most
relevant attribute. Then, we applied a 2-D (#F = 2) within
all (xa1=sulphates,xa2) pairs and then used Equation 2 to
compute the Ra2 values (right of Fig.3). The second bar plot
shows a higher ranking for the alcohol and pH levels, i.e.,
when predicting wine quality, these two inputs have a higher
interaction with the sulphate attribute.



TABLE IV
RELATIVE INPUT IMPORTANCES FOR THE SYNTHETIC DATASETS

setup 1-D SA (#F = 1), l = 6
r g v

sin1-ii 0.4,0.6,0.0 0.3,0.7,0.0 0.4,0.6,0.0
sin2-ii 0.4,0.6,0.0 0.2,0.8,0.0 0.4,0.6,0.0
sin1-iii 0.4,0.6,0.0 0.3,0.7,0.0 0.4,0.6,0.0
sin2-iii 0.4,0.6,0.0 0.2,0.8,0.0 0.5,0.5,0.0
sin1-reg 0.7,0.3,0.0 0.7,0.3,0.0 0.9,0.1,0.0
sin2-reg 0.8,0.2,0.0 0.6,0.4,0.0 0.9,0.1,0.0
setup GSA (#F = 3), l = 12

r g v
sin1-ii 0.6,0.4,0.0 0.7,0.3,0.0 0.5,0.5,0.0
sin2-ii 0.3,0.3,0.3 0.2,0.6,0.2 0.4,0.4,0.2
sin1-iii 0.7,0.3,0.0 0.6,0.4,0.0 0.9,0.1,0.0
sin2-iii 0.8,0.2,0.0 0.7,0.3,0.0 0.9,0.1,0.0
sin1-reg 0.7,0.3,0.0 0.7,0.3,0.0 0.9,0.1,0.0
sin2-reg 0.8,0.2,0.0 0.6,0.4,0.0 0.9,0.1,0.0

Fig. 3. Bar plots with the 1-D input importances (left) and 2-D interactions
with the sulphates input (right) for the wwq-reg dataset

Fig. 4 is an example of how to compare the average impact
of a given attribute. Here, we applied GSA with #F=4 and then
averaged the ŷa responses (y-axis). From the figure, it is clear
that pgain has the highest impact, with a nonlinear decreasing
effect in the servo rise time. Another VEC curve example is
given in Fig. 5, where a 1-D SA, with l = 24 and b=median
of the attributes, was used for the wwq-iii model. The graph
shows a nonlinear influence of the pH input (the most relevant
attribute: RpH = 19%), where values in the range [3.4; 3.5]
produce a higher increase in the probability of being a high
quality wine. Finally, Fig. 6 presents a vertically averaged
VEC curve (GSA with #F = 3, average of all Nr =7
individual responses of the NN ensemble), and respective t-test
99% confidence interval whiskers for x1 and sin1-reg.

To visualize interactions of a pair of inputs (2-D GSA,
with F = {xa1, xa2}), several VEC surfaces and contours
are shown. In all VEC surfaces, the axis arrow goes in the
direction from minimum to maximum value, while the scale
of the ŷxa1,xa2 values is shown at the right (from white to
black). Fig. 7 shows two VEC surfaces, for sin2-ii (with
l = 12; in the right axis the scale A=1, B=2 and C=3 is

Fig. 4. VEC curves for the four inputs of the servo dataset

Fig. 5. VEC curve and histogram for the pH input (x-axis) and the respective
high quality wine probability (left of y-axis) and frequency (right of y-axis)

Fig. 6. VEC curve showing x1 (x−axis) impact over sin1-reg



Fig. 7. VEC surfaces for the sin2-ii (top, l = 12) and sin2-reg (bottom)

used) and sin2-reg. Both curves confirm the highest impact
of input x1. Also, the VEC surface is quite similar to the
sin2 function (bottom of Fig. 2). Fig. 8 shows the impact
of the categorical motor and screw inputs in the servo data.
To ease the visualization, in both surface and contour plots,
the screw values were sorted by their average impact in the
model. Finally, we selected the most relevant pair for the
wwq-reg task (xa1=sulfates, xa2=alcohol) and applied a 2-
D SA with a quantile scan (Fig. 9). The wine VEC surface
uses the same levels that appear in the contour x/y-axis.
It is interesting to notice that the VEC contour shows two
high quality wine regions, (0.39,11.7) and (0.57,9.4), and we
believe such knowledge is useful for wine taste experts.

IV. CONCLUSIONS

Complex supervised learning Data Mining (DM) methods,
such as Neural Networks (NN), Support Vector Machines
(SVM) and ensembles, are capable of high quality prediction
results and thus are useful to support decision making. How-
ever, the obtained models are often treated as black-boxes,
since they are difficult to understand by humans. Improving
model interpretability increases the acceptance of the DM

Fig. 8. VEC surface (top) and contour (bottom) for servo (l = 5)

results by the domain users and this is an important issue
in critical applications, such as control or medicine.

In this work, we have shown how virtually any supervised
DM model can be “opened” by using the proposed Global
Sensitivity Analysis (GSA) algorithm in combination with
several visualization techniques, such as the Variable Effect
Characteristic (VEC) curve. The effectiveness of this approach
was assessed in several synthetic and real-world datasets,
using both NN and SVM models. In the future, we intend to
explore different learning methods (e.g. partial least squares),
more efficient sampling methods to generate the sensitivity
analysis responses (e.g. Monte Carlo methods) and enlarge the
experiments to include more real-world datasets (e.g. financial
data) with a higher number of inputs.
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