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Abstract. Cryptographic software development is a challenging field:
high performance must be achieved, while ensuring correctness and com-
pliance with low-level security policies. CAO is a domain specific language
designed to assist development of cryptographic software. An important
feature of this language is the design of a novel type system introducing
native types such as predefined sized vectors, matrices and bit strings,
residue classes modulo an integer, finite fields and finite field extensions,
allowing for extensive static validation of source code. We present the
formalisation, validation and implementation of this type system.

1 Introduction

The development of cryptographic software is clearly distinct from other areas of
software engineering. The design and implementation of cryptographic software
draws on skills from mathematics, computer science and electrical engineering.
Also, since security is difficult to sell as a feature in software products, cryp-
tography needs to be as close to invisible as possible in terms of computational
and communication load. As a result, cryptographic software must be optimised
aggressively, without altering the security semantics. Finally, cryptographic soft-
ware is implemented on a very wide range of devices, from embedded processors
with very limited computational power and memory, to high-end servers, which
demand high-performance and low-latency. Therefore, the implementation of
cryptographic kernels imposes a specific set of challenges that do not apply to
other system components. For example, direct implementation in assembly lan-
guage is common, not only to guarantee a more efficient implementation, but
also to ensure that low-level security policies are satisfied by the machine code.

The CAO Language. The CAO language aims to change this state of affairs,
allowing natural description of cryptographic software implementations, which
can be analysed by a compiler that performs security-aware analysis, transforma-
tion and optimisation. The driving principle behind the design of CAO is that the
language should support cryptographic concepts as first-class language features.
Unlike the languages used in mathematical software packages such as Magma or
Maple, which allow the description of high-level mathematical constructions in
their full generality, CAO is restricted to enabling the implementation of crypto-
graphic components such as block ciphers, hash functions and sequences of finite
field arithmetic for Elliptic Curve Cryptography (ECC).
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CAO preserves some higher-level features to be familiar to an imperative
programmer, whilst focusing on the implementation aspects that are most critical
for security and efficiency. The memory model of CAO is, by design, extremely
simple to prevent memory management errors (there is no dynamic memory
allocation and it has call-by-value semantics). Furthermore, the language does
not support any input/output constructions, as it is targeted at implementing
the core components in cryptographic libraries. In fact, a typical CAO program
comprises only the definition of a global state and a set of functions that permit
performing cryptographic operations over that state. Conversely, the native types
and operators in the language are highly expressive and tuned to the specific
domain of cryptography. In short, the design of CAO allowed trading off the
generality of a language such as C or Java, for a richer type system that permits
expressing cryptographic software implementations in a more natural way.

CAO introduces as first-class features pure incarnations of mathematical
types commonly used in cryptography (arbitrary precision integers, ring of resi-
due classes modulo an integer, finite field of residue classes modulo a prime, finite
field extensions and matrices of these mathematical types) and also bit strings
of known finite size. A more expressive type system would be expected from any
domain-specific language. However, in the case of CAO, the design of the type
system was taken a step further in order not only to allow an elegant formali-
sation of the type checking rules, but also to allow the efficient implementation
of a type checking system that performs extensive preliminary validation of the
code, and extracts a very rich body of information from it. This fact makes the
CAO type checker a critical building block in the implementation of compilation
and formal verification tools supporting the language.

Contributions. This paper presents the formalisation, validation and imple-
mentation of the CAO type system. Our main contribution is to show that the
trade-offs in language features that were introduced in the design of CAO –
specifically for cryptographic software implementation – enabled us to tame the
complexity of formalising and validating a surprisingly powerful type system.
We also show, resorting to practical examples, how this type system enforces
strong typing rules and how these rules detect several common run-time errors.
To support this claim, we outline our proof of soundness of the CAO type system.

More in detail, we describe a formalisation of the CAO type system and
the corresponding implementation of a type checker5 as a front-end of the CAO
tool chain. One of the main achievements of our system is the enforcement of
strong typing rules that are aware of type parameters in the data types of the
language. The type checking rules permit determining concrete values for these
parameters and, furthermore, resolving the consistency of these parameters in-
side CAO programs. Concretely, the CAO type system explicitly includes as type
parameters the sizes of containers such as vectors, matrices and bit strings. In
other words, CAO is dependently typed. Furthermore, typing of complex opera-

5 An implementation of a CAO interpreter (including the type system and semantics)
is available via http://www.cace-project.eu.

http://www.cace-project.eu
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tions over these containers, including concatenation and extensional assignment,
statically checks the compatibility of these parameters.

More interestingly, we are able to handle parameters in mathematical types
in a similar way. Our type system maintains information for the concrete val-
ues of integer moduli and polynomial moduli, so that it is possible to validate
the consistency of complex mathematical expressions, including group and finite
field operations, the conversion between a finite field element and its polynomial
representation, and other type conversions. Finally, the CAO type system also
deals with language usability issues that include implicit (automatic) type con-
versions between bit strings and the integer value that they represent, and also
between values within the same finite field extension hierarchy.

Paper Organisation. In Sect. 2 we expand on the relevant features of CAO.
We then build some intuition for the subsequent formal presentation of the type
system by introducing real-world examples of CAO code in Sect. 3. In Sect. 4
we present the CAO type system, including a detailed example of its operation.
In Sect. 5 we describe our implementation. We conclude with a discussion of
soundness and related work in Sect(s). 6 and 7.

2 A Closer Look at CAO

Real world examples of the most relevant CAO language features are presented
in Sect. 3. We now provide an intuitive description of the CAO type system.

Bit Strings. The bits type represents a string of n bits (labelled 0 . . . n − 1,
where the 0-th is the least-significant bit). This should not be seen as the “bit
vector” type, as the get operator a[i] actually returns type bits[1]. The distinction
between ubits and sbits concerns only the conversion convention to the integer
type, which can be unsigned or two’s complement respectively. The bits type is
equipped with a set of C-like bit-wise operators, including the usual Boolean,
shift and rotate operators, which are closed over the bit-length. The range se-
lection/assignment (or slicing) operator (..), combined with the concatenation
operator @ can be used to (de)construct bit strings of different sizes using a
very concise syntax. For example, the following is a valid CAO statement over
bit strings:

a[3..8] := b[0..2] @ c[2..4];

Integers and the mod Type. Operations modulo some prime or composite
integer are used extensively in cryptography [6]; for example, the ring6 Zn un-
derlies the pervasively used RSA function [4], and the finite field7 Fp is widely
used in ECC. Therefore, CAO includes not only arbitrary precision integers as
a native type (int), but also a mod[n] type. For example, the mod[7] type is an
instance of mod with modulus 7. In this case the modulus is prime, and hence

6 The ring of residue classes modulo an integer n can be seen as the set of numbers in
the range 0 to n-1 with addition and multiplication modulo n.

7 The ring of residue classes modulo an integer p is actually a field when p is prime:
all non-zero elements have a multiplicative inverse.
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inhabitants of this type are actually elements of a finite field. More generally,
the modulus can be prime or composite, provided it is fixed at compile-time.
Algebraic operations over the mod type are closed over the modulus parameter.

Internal Representation and Casts. The internal representation of math-
ematical types is deliberately undefined. The CAO semantics ensures that arith-
metic with such values is valid, but makes no guarantee about (and hence disal-
lows access to) their physical representation. Nevertheless, the CAO type system
includes the necessary functionality to access the conceptually natural represen-
tation of algebraic types, by supporting appropriate cast operators. For example,
to obtain the representation of a finite field element in mod[p] as an integer value
of the appropriate range, one simply casts it into the int type. To obtain the rep-
resentation of an arbitrary precision integer, one can cast it into a bit string
of a predetermined size, and so on. Hence, compared to C, a CAO cast is more
explicitly a conversion. Aside from this nuance, the syntax of casts is similar to
C: one specifies the target type in parenthesis, e.g. y := (int) x.

General Moduli. An alternative form of the mod type allows defining finite
field extensions, as shown below:

typedef a := mod[ 2 ];

typedef b := mod[ a<X> / X**8 + X**4 + X**3 + X + 1 ];

The type synonym a represents a mod type whose modulus is 2; this is simply the
field F2. This is used as the base type for a second type synonym b which repre-
sents the field F28 . In addition to the base type one also specifies an indeterminate
symbol (in this case X), and an irreducible polynomial in the ring of polynomials
with coefficients in the base type (in this case P (X) = X8+X4+X3+X+1). In-
tuitively, this declaration defines an implementation of the field based on the re-
ferred polynomial ring, with arithmetic defined via standard polynomial algebra
with reductions modulo P (X). To access the coefficients in this representation,
one can cast the value into a vector of elements in the base type.

Matrices. The matrix type represents a 2-dimensional algebraic matrix over
which one can perform addition and multiplication. For this reason, there are
some restrictions on what the base type can be. The matrix type also has an
undefined representation; its size must be fixed at compile-time, but the ordering
of elements in memory (e.g. row-major or column-major order) is a choice that
can be made by the compiler. The matrix type also supports get and range
selection/assignment operations that permit easily (de)constructing matrices of
different sizes.

Vectors. The vector type represents a 1-dimensional generic container of ele-
ments of homogeneous type, where each element is referred to by a single index
in the range 0 . . . n− 1, offering selection/assignment, concatenation and rotate
operations similar to the bits type.
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3 CAO Type System in Action

In this section we present some examples of CAO code taken from the implemen-
tation of the NaCl cryptographic library8 that illustrate the validation capacity
of the type checker over real world examples.

The following program fragment was taken from the implementation of the
poly1305 one-time message authentication mechanism [2]. The function receives
two vectors ciu and ru of content type byte, which is an alias for type unsigned
bits[8], and an integer q. It returns a value of type mod1305, an alias for type
mod[2**130-5].

def polyStep(ciu:vector[17] of byte, ru:vector[16] of byte, q:int) : mod1305 {
def r : unsigned bits[16*8]; def ci : unsigned bits[17*8];

r := ru[0]@ru[1]@ru[2]@ru[3]@ru[4]@ru[5]@ru[6]@ru[7]@ru[8]@ru[9]@ru[10]@
ru[11]@ru[12]@ru[13]@ru[14]@ru[15];

ci:= ciu[0]@ciu[1]@ciu[2]@ciu[3]@ciu[4]@ciu[5]@ciu[6]@ciu[7]@ciu[8]@
ciu[9]@ciu[10]@ciu[11]@ciu[12]@ciu[13]@ciu[14]@ciu[15]@ciu[16];

return ((mod1305)ci * (mod1305)r**q); }

The type system must solve the following problems to type the function body.
Firstly, the concatenation of several bit strings must be typed to a single bit
string of the appropriate type and size (and fail if these do not match in assign-
ment). Secondly, the type checker must recognise that the cast to type mod1305
requires the expression on the right to be coerced to type int.

The next program fragment is from the NaCl implementation of hsalsa20 [3].

seq i := 0 to 3 {
x[i+1] := from_littleendian( k[i*4..i*4+3]);
x[i+6] := from_littleendian(in[i*4..i*4+3]);
x[i+11] := from_littleendian( k[i*4+16..i*4+19]); }

...
seq i := 0 to 3 {

out[i*4..i*4+3] := to_littleendian(x[5*i]);
out[i*4+16..i*4+19] := to_littleendian(x[i+6]); }

This is a good example of how CAO was fine tuned to provide assistance to
the programmer in what, at first sight, might seem like a surprisingly powerful
validation procedure. Range selection and assignment operators in bit strings,
vectors and matrices may depend on the value of integer expressions, which can
only be formed by literals, constants and basic arithmetic operations that can
be evaluated at compile-time. This might seem just like a pre-processing step
of compilation, were it not for the fact that we are also able to include in these
expressions locally defined constants. Our type system is able to validate that all
range selections (resp. assignments) result in vectors that are compatible with
calls to function from littleendian (resp. return type of function to littleendian).

Finally, the following code snippet is extracted from a CAO implementation
of AES. It shows how our type system is capable of dealing with the complex
mathematical types that arise in cryptographic implementations. In this case we
have a matrix multiplication operation mix * s[0..3,i], where the contents of the
matrices are elements of a finite field extension GF2N.
8 http://nacl.cr.yp.to

http://nacl.cr.yp.to
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n : Num Numerals pg : Progs Programs
x : IdV Variable Identifiers e : Exp Expressions
fp : IdFP Function and Procedure Identifiers c : Stm Statements
dv : DecV Variable declarations l : Lv LValues
dfp : DecFP Function and Procedure declarations pol : Poly Polynomials
ds : DecS Struct declarations t : Types Types

e ::= n | true | false | x | −e | e1 † e2 | e.x | e1[e2] | e1[e2..e3] |
e1[e2, e3] | e1[e2..e3, e4..e5] |∼ e | (t) e | fp(e1, ..., en) | ! e

l ::= x | l.x | l[e] | l[e1..e2] | l[e1, e2] | l[e1..e2, e3..e4]
c ::= dv | l1, ..., li := e1, ..., ej | c1; c2 | if (e) { c1 } | if (e) { c1 } else { c2 } |

while (e) { c } | seq x := e1 to e2 by e3 { c } | seq x := e1 to e2 { c } |
return e1, ..., en | fp(e1, ..., en)

dv ::= def x1, ..., xn : t1, ..., tn | def x1, ..., xn : t1, ..., tn:=e1, ..., en
ds ::= typedef x := t; | typedef x1 := struct [ def x2 : t1; ...; def xn : tn ];
dfp ::= def fp (x1 : t1, ..., xn : tn) : rt { c }
rt ::= void | t1, . . . , tn
t ::= x | int | bool | signed bits [e] | unsigned bits [e] | mod [e] | mod [ t x / pol ] |

vector [n] of t | matrix [n1, n2] of t
pg ::= dv ; | ds | dfp | pg1 pg2

Fig. 1. Formal syntax of CAO

typedef GF2 := mod[ 2 ];
typedef GF2N := mod[ GF2<X> / X**8 + X**4 + X**3 + X + 1 ];
typedef S := matrix[4,4] of GF2N;

def mix : matrix[4,4] of GF2N :=
{[X],[X+1],[1],[1],[1],[X],[X+1],[1],[1],[1],[X],[X+1],[X+1],[1],[1],[X]};

def MixColumns( s : S ) : S {
def r : S;
seq i := 0 to 3 { r[0..3,i] := mix * s[0..3,i]; }
return r; }

In addition to resolving the matrix size restrictions imposed by the matrix mul-
tiplication operation, our type system is able to individually type the finite field
literals in the matrix initialisation, and check that these types are compatible
with the type of the matrix contents. Note that this implies recognising that a
literal of type mod[2] is coercible to GF2N.

4 Formalisation of the CAO Type System

In this section, we will overview our formalisation of the CAO type system.
Since CAO is a relatively large language, only the most interesting features will
be covered. A full description of the CAO formalisation can be found in [1].

CAO Syntax. The formal syntax of CAO is presented in Fig. 1. To simplify
presentation we use † to represent a set of traditional binary operators, namely

† ∈ {+,−, ∗, /,%, ∗∗,&, ˆ, |,�,�,@,==, ! =, <,>,<=, >=, ||,&&, ˆˆ}
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Most of the binary operators are the same as their C equivalents, although
they are overloaded for multiple types. Worth mentioning are the multiplicative
exponentiation operator for integers, residue class groups and fields (∗∗); the
bit-wise conjunction (AND), inclusive- (IOR) and exclusive-disjunction (XOR)
operators (&, | and ˆ respectively); the shift operators for bit strings and vectors
(� and �); the concatenation operator for bit strings and vectors @; and the
boolean logic exclusive-disjunction (XOR) operator (ˆˆ).

Most of the language syntactic entities, and the accompanying syntax rules,
are also similar to C. Additional domains have been added to this basic set: some
for the sake of a clearer presentation, and others because they are part of CAO’s
domain specific character for cryptography.

4.1 CAO Type System

Function Classification. The type checker is able to automatically classify
CAO functions with respect to their interaction with global variables. The type
checking rules classify functions as either of the following three types:

Pure functions Do not depend on global variables in any way and can only
call other pure functions. These functions are, not only side-effect free, but
also return the same result in every invocation with the same input. This
property is often called referential transparency.

Read-only functions Can read values from global variables, but they cannot
assign values to them. They can call pure functions and other read-only
functions, but not procedures. These functions are side-effect free.

Procedures Can read and assign values from/to global variables. They can call
pure functions, read-only functions and other procedures.

For the CAO type checker, the most important distinction is that between pro-
cedures and other functions. Procedures are only admitted in restricted con-
texts, such as simple assignment constructions. This distinction is completely
automated in the type-checking rules that associate the following total order of
classifiers to CAO constructions: Pure < ReadOnly < Procedure

Put simply, the type checking system enforces the following rules: 1) A con-
struction depending only on local variables is classified as Pure; 2) When read-
ing the value of a global variable, the classifier is set to Read-only; 3) When a
global variable is used in an assignment target, the classifier is set to Procedure;
4) Expressions and statements procedures are classified with respect to their
sub-elements using the maximum operator defined over the total order specified
above. Note that this classification system is conservative in the sense that, for
example, it will fail to correctly classify a function as pure when it reads a global
variable but does not use its value.

Environments, Type Judgements and Conventions. We use symbol τ
(possibly with subscripts) to represent an arbitrary (fixed) data type. We write
x :: τ to denote that x has type τ . We use two distinct environments in our
type rules: the type environment relation Γ , which collects all the declarations
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(e.g. variables, function, procedures) together with their associated types; and
the constant environment relation ∆, which records the values associated with
integer constants. The Γ environment is partitioned into two relations: ΓG for
global definitions and ΓL for local definitions. This distinction is important to
deal with symbol scoping and visibility when typing, for example function dec-
larations. Whenever this distinction is not important we will just write Γ to
abbreviate ΓG, ΓL. Notation Γ [x :: τ ] is used to extend the environment Γ with
a new variable x of type τ , providing that x is not in the original environment
(i.e., x 6∈ dom(Γ )). Similarly, ∆[x := n] is used to extend the environment ∆
with a new constant x with value n, also provided that x is not in the domain of
environment ∆. Notation Γ (x) and ∆(x) represent, respectively, the type and
the integer value associated with identifier x, assuming that x belongs to the
domain of the respective environment. Environments are built by order of decla-
ration in source code, implying that recursive declarations are not possible and
that function classifiers are already known when the functions are called.

We use symbol ` for type judgement of expressions of the form Γ,∆ ` e ::
(τ, c), retrieving type τ and functional classifier c associated to an expression.
Operator 
β denotes type judgements of statements that may modify the type
environment relation: it retrieves not only a typed statement, but also a new
type environment relation. Subscript β (seen as a place-holder) in operator 
β
represents the return type of the function in which the statement was defined.
This information is particularly useful, allowing the type checker to guarantee
that the several return statements that may appear in a function are always in
accordance with the return type of the corresponding function declaration.

Evaluation of Integer Expressions. We define a partial function φ∆ to deal
with type parameters such as vector sizes that must be determined at compile
time. This function is used in typing rules to compute the integer value of a
given expression e in context ∆. If this value cannot be determined, then typing
will fail. This function is defined as follows

φ∆(n) = n φ∆(x) = ∆(x), x ∈ dom ∆

φ∆(−e) = −φ∆(e) φ∆(e1 † e2) = φ∆(e1) † φ∆(e2)

φ∆(e1 ∗∗ e2) = (φ∆(e1))(φ∆(e2)) φ∆(e1 % e2) = φ∆(e1) mod φ∆(e2)

for † ∈ {+,−, ∗, /}. When evaluating integer expressions in typing rules, we write

. . . φ∆(e) = n . . .

Γ,∆ ` . . . to mean
. . . Γ,∆ ` e :: (Int,Pure) φ∆(e) = n . . .

Γ,∆ ` . . .

which implicitly implies that expression e is of integer type.

Data Types. In Sect. 2, types were informally described using CAO syntax for
type declarations. Here we will distinguish between a type declaration and the
type it refers to in our formalisation. We use upper case to indicate the CAO
data types shown in Table 1. An important difference is that the CAO grammar
allows any expression as a parameter of a type declaration, while CAO types
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Table 1. CAO data types

Bool Booleans
Int Arbitrary precision integers
UBits [i] Unsigned bit strings of length i
SBits [i] Signed bit strings of length i
Mod [n] Rings or fields defined by integer n
Mod [τ/pol ] Extension field defined by τ/pol
Vector [i] of τ Vectors of i elements of type τ
Matrix [i, j] of α Matrices of i× j elements of type α ∈ A

A = {Int,Mod [m],Matrix [i, j] of α | α ∈ A}

must have parameters of the correct type and with a fully determined value,
e.g., sizes must be integer values. In Table 1, A denotes the set of algebraic
types, which are the only ones that can be used to construct matrices. These are
types for which addition, multiplication and symmetric operators are closed. In
order to emphasise occurrences where the type must be algebraic, we will use α
(possibly with subscripts) instead of τ .

Type Translation. To deal with the type parameters informally described in
Sect. 1, we introduce a new judgement that makes the translation between type
declaration in the CAO syntax and types used in the type checking process. This
judgement, of the form ∆ `t t τ , depends only on the environment ∆, which
can in turn be used to determine the values of expressions that only depend on
constants. This accounts for the fact that, during type checking, types must have
their parameters fully determined, while type declarations in CAO can depend
on arithmetic expressions using constants stored in the environment ∆. Hence
the translation judgement uses evaluation function φ∆ to compute parameter
expressions in the declaration of bit string, vector and matrix sizes, ensuring
that no negative or zero sizes are used. The evaluation function is also used in
modular types with integer modulus to determine its value and ensure that it is
meaningful (i.e., greater than 1). We present only part of this definition below.

φ∆(e) = n

∆ `t unsigned bits [e] UBits[n]
n ≥ 1

φ∆(e) = n

∆ `t mod [e] Mod[n]
n ≥ 2

φ∆(e) = n ∆ `t t τ

Γ,∆ `t vector [e] of t Vector [n] of τ
n ≥ 1

φ∆(e1) = n φ∆(e2) = m ∆ `t t α

∆ `t matrix [e1, e2] of t Matrix [n,m] of α
α ∈ A, n ≥ 1,m ≥ 1

Type Coercions. Type coercions are essentially implicit (typically data pre-
serving) type conversions, whereby the programmer is allowed to use terms of
some type whenever another type is expected. In CAO, this mechanism is re-
markably useful, for example when dealing with field extensions (cf. the third
rule in Table 2), since a field can be seen as a subtype of all its field extensions.
In general, when a CAO type τ1 is coercible to another type τ2, then the set of
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Table 2. Type coercion relation, `≤ t1 ≤ t2

t1 t2 Condition

UBits[n] Int
SBits[n] Int
τ Mod[τ ′/pol ] `≤ τ ≤ τ ′
Vector[n] of τ1 Vector[n] of τ2 `≤ τ1 ≤ τ2
Matrix [i, j] of α1 Matrix [i, j] of α2 `≤ α1 ≤ α2 and α1, α2 ∈ A

Table 3. A few cases for the cast relation, `c t1 ⇒ t2.

t1 t2 Condition

Int Bits [i]
Int Mod [n]
Vector [i] of τ1 Mod [τ2/pol ] `c τ1 ⇒ τ2 and i = degree(pol)
Mod [τ1/pol ] Vector [i] of τ2 `c τ1 ⇒ τ2 and i = degree(pol)
Matrix [1, j] of α Vector [j] of τ `c α⇒ τ and α ∈ A
Vector [i] of τ Matrix [i, 1] of α `c τ ⇒ α and α ∈ A
Vector [i] of τ1 Vector [i] of τ2 `c τ1 ⇒ τ2
Matrix [i, j] of α1 Matrix [i, j] of α2 `c α1 ⇒ α2 and α1, α2 ∈ A

values in τ1 can be seen as a subset of the values in τ2. For example, all bit-
strings of a given size can be coerced to the integer type. We define a coercion
relation ≤, associated with a new kind of judgement `≤. Coercions are naturally
reflexive, and Table 2 summarises the other possible coercions.

Often the arguments of an operation have different types but are coercible to
a common type, or one is coercible to the other. In order to capture this situation,
we define the ↑ operator on types, which returns the least upper bound of the
types to which its arguments are coercible:

τ1 ↑ τ2 = min{τ | `≤ τ1 ≤ τ and `≤ τ2 ≤ τ}

This requires that the coercion relation ≤ is regarded as a partial order on types,
thus requiring the reflexivity, transitivity and anti-symmetry properties to hold.
As we have seen before, the coercion relation is reflexive; the transitivity and
anti-symmetry requirements are also easy to add and well suited to our intuitive
notion of coercion. With these properties in place, and for the particular set of
coercions allowed in CAO, we have that τ1 ↑ τ2 is always uniquely defined. In
typing rules, we therefore abbreviate the following pattern

. . . Γ,∆ ` e :: τ1 `≤ τ1 ≤ τ2 . . .

Γ,∆ ` . . . by
. . . Γ,∆ ` e ≤ τ2 . . .

Γ,∆ ` . . . .

Casts. The CAO language includes a cast mechanism that allows for explicitly
converting values from one type to another. However, not all casts are possible:
the set of admissible type cast operations has been carefully designed to account
for those conversions that are conceptually meaningful in the mathematical sense
and/or are important for the implementation of cryptographic software in a nat-
ural way. We define a type cast relation⇒, which is associated with a new kind of
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judgment `c. Table 3 shows the part of the definition of the cast relation. Using
the cast relation, we only have to provide one typing rule for cast expressions.

`≤ τ1 ≤ τ2
`c τ1 ⇒ τ2

∆ `t t τ Γ,∆ ` e :: (τ ′, c) `c τ ′ ⇒ τ

Γ,∆ ` (t) e :: (τ, c)

The additional rule on the left is needed so that coercions can be made explicit,
which also implies that a certain type can be cast to itself.

Sizes of Bit Strings, Vectors and Matrices. Since type declarations are
mandatory and container types have explicit sizes, we can verify if operations
deal consistently with these sizes. Furthermore, the type system can feed this
information to subsequent components in the CAO tool chain.

For instance, the operation that concatenates two vectors should return a
new vector whose size is the sum of the sizes of the individual vectors, and
whose type is the least upper bound of the types of the two vectors, with respect
to the coercion ordering ≤:

Γ,∆ ` e1 :: (Vector[i] of τ1, c1) Γ,∆ ` e2 :: (Vector[j] of τ2, c2) τ1 ↑ τ2 = τ

Γ,∆ ` e1 @ e2 :: (Vector[i+ j] of τ,max(c1, c2))

The concatenation of bit strings is similar. Moreover, in the case of matrix al-
gebraic operations, e.g. multiplication, the dimension of the matrices can be
checked for correctness.

When range selection is used over bit strings, vectors or matrices, we require
that the integer expressions must be evaluated at compile-time so that the size
of the expression, and therefore its type can be determined. In this case, the
limits of the range are compared against the bounds of the associated type. For
instance, for a range access to a vector we have:

Γ,∆ ` e :: (Vector[k] of τ, c) φ∆(e1) = i φ∆(e2) = j

Γ,∆ ` e[e1..e2] :: (Vector[j − i+ 1] of τ, c)
k > j, j ≥ i ≥ 0

This is also a limited form of dependent typing since the type associated with
the expression depends on the expression itself.

Rings, Finite Fields and Extensions. One of the most unusual features of
the CAO language is the support for ring and finite field types and their possible
extensions. Our type checking rules allow us to ensure that operations over values
of these types are well-defined and that values from different (instances of these)
types are not being erroneously mixed due to programming errors. For instance,
the typing rule for division is:

Γ,∆ ` e1 :: (Mod [m1], c1)
Γ,∆ ` e2 :: (Mod [m2], c2) Mod [m1] ↑ Mod [m2] = Mod [m]

Γ,∆ ` e1 / e2 :: (Mod [m],max(c1, c2))

The use of the least upper bound captures the fact that the types may be equal,
or one may be an extension of the other.

Variables and Function Calls. The classification of expressions depends
on the environment accessed when retrieving the value of a variable. If a local
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variable is accessed, the code is considered pure; if a global variable is read, the
code is classified as read-only.

ΓG(x) = τ

ΓG, ΓL,∆ ` x :: (τ,ReadOnly)
x ∈ dom(ΓG)

ΓL(x) = τ

ΓG, ΓL,∆ ` x :: (τ,Pure)
x ∈ dom(ΓL)

Since in expression, we can only use functions that do not cause side-effects, the
typing rule for function application has a side condition to ensure that the body
of the function is not a procedure (i.e., it does not modify a global variable):

ΓG(f) = ((τ1, . . . , τn)→ τ, c)
ΓG, ΓL, ∆ ` e1 ≤ (τ1, c1) . . . ΓG, ΓL, ∆ ` en ≤ (τn, cn)

ΓG, ΓL, ∆ ` f(e1, . . . , en) :: (τ,max(c, c1, . . . , cn))

max(c, c1, . . . , cn) < Procedure and f ∈ dom(ΓG)

Functions, Procedures and Statements. We introduce symbol • as a pos-
sible (empty) return type to detect misuses of the return statement. We distin-
guish the cases when a block has explicitly executed a return statement from
the cases where no return statement has been executed. In the former case we
take the type of the parameter passed to the return statement or • if no such
parameter exists. In the latter case we also use the • symbol. Thus, a return
statement is typed with the same type as its argument, which must coincide
with the expected return type for the block.

Γ,∆ ` e1 ≤ (τ1, cc1) . . . Γ,∆ ` en ≤ (τn, ccn)

Γ,∆ 
(τ1,...,τn) return e1, . . . , en :: ((τ1, . . . , τn),max(cc1, . . . , ccn), Γ )

Since CAO has a call-by-value semantics, returning multiple values is allowed in
order to make references or additional structures unnecessary.

The typing rule for a function definition therefore verifies if the type of its
body is not • to ensure that a return statement was used to exit the function.
Moreover, the returned type has to be equal (or coercible) to the declared type
(recall the use of judgement 
τ ).

The seq statement permits iterating over an integer variable varying between
two statically determined bounds. The index starts with the value of the lower
(resp. upper) bound and at each step is incremented (resp. decremented) by
the amount of the step value until it reaches the upper (resp. lower) bound.
The interesting feature of this mechanism is that the iterator is regarded as a
constant at each iteration step. In the typing rules, this allows us to add the
index and its respective value to the environment ∆ at each iteration:

φ∆(e1) = i φ∆(e2) = j ∀n∈{i...j}ΓG, ΓL[x :: Int],∆[x := n] 
τ c :: (ρ, cc, Γ ′G, Γ
′
L)

ΓG, ΓL,∆ 
τ seq x := e1 to e2 { c } :: (•, cc, ΓG, ΓL)

ρ ∈ {τ, •}, x 6∈ dom ΓL, i ≤ j

Therefore, declarations and access expressions inside the body of the sequence
statement may depend on the index but may still be statically typeable. As high-
lighted in Sect. 3, the combination of range selection and assignment operators
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for bit strings, vectors and matrices with this simplified loop construction is a
good example of how the CAO language design allowed us to fine tune the type
checker to provide extra assistance to the programmer. Note, however, that se-
quential statements can make the type checking process slow, as sequences must
be explicitly unfolded and typed for each possible value of the iterator.

A Detailed Example. We now present a detailed example of the how our type
system handles the hsalsa20 fragment introduced in Sect. 3. The syntactic form
of the program is

seq i := 0 to 3 {
x[i+1] := from_littleendian( k[i*4..i*4+3]);
x[i+6] := from_littleendian(in[i*4..i*4+3]);
x[i+11] := from_littleendian( k[i*4+16..i*4+19]); }

where we desire type annotations for each node in the parse tree. The inference
process traverses the tree matching rules against syntax. This traversal highlights
aspects of the inference at three levels in the tree. Before reaching this fragment
the declarations have already been produced and thus the initial environment is

ΓL = {k :: Vec[32] of UBits[8], in :: Vec[16] of UBits[8], x :: Vec[8] of UBits[32]}
ΓG = {to littleendian :: UBits[32]→ Vec[4] of UBits[8],

from littleendian :: Vec[4] of UBits[8]→ UBits[32]}
∆ = {}

The first step matches the entire fragment against seq i := 0 to 3 {s1; s2; s3}

∀n∈{0...3}ΓG, ΓL[i :: Int], ∆[i := n] 
τ c :: (ρ, cc, Γ ′G, Γ
′
L)

ΓG, ΓL, ∆ 
τ seq i := 0 to 3 {s1; s2; s3} :: (•, cc, ΓG, ΓL)

This entails, for each of the n ∈ {0, 1, 2, 3} cases, that for assignments (li:=ri) =
si in each of the s1, s2, s3 preconditions, each statement is matched by

Γn,∆n ` li :: (τ, cl) Γn,∆n ` ri ≤ (τ, c)

Γn,∆n 
τ li := ri :: (•,max(cl, c), Γ )

Here Γn = ΓG, ΓL[i :: Int] and ∆n = ∆[i := n]. Now, for each of the li we obtain
something of the form x[i + 1] where ΓL(x) = Vec[8] of UBits[32] and an index
expression i + 1 :: (Int,Pure), thus we can match

Γn,∆n ` x :: (Vec[8] of UBits[32],Pure) Γn,∆n ` i + 1 ≤ (Int,Pure)

Γn,∆n ` x[i + 1] :: (UBits[32],max(Pure,Pure))

Finally, for each of the ri the function parameter ei is either ΓG[k] or ΓG[in] ::
Vec[16] of UBits[8], Furthermore, the index expression is defined only over i,
whose value is known, and integer literals. Thus each expression of the form
k[i ∗ 4..i ∗ 4 + 3] becomes a slice over determined indices after application of φ∆
and k[i ∗ 4..i ∗ 4 + 3] :: (Vec[4] of UBits[8],Pure). Hence

ΓG(from littleendian) = (Vec[4] of UBits[8]→ UBits[32],Pure)
ΓG, ΓL,∆1 ` k[i ∗ 4..i ∗ 4 + 3] ≤ (Vec[4] of UBits[8],Pure)

ΓG, ΓL[i :: Int],∆1 ` from littleendian(k[i ∗ 4..i ∗ 4 + 3]) :: (UBits[32],max(Pure,Pure))
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5 Implementation

The CAO type-checker was fully implemented in the Haskell functional language,
which provides a plethora of libraries and built-in features. Among these, we
found some to be particularly useful, such as classes, specific syntax for handling
monadic data types and the monad Error data type. These Haskell assets, not
only simplified the implementation process, but also helped improving substan-
tially the readability of the code and its comparison with the formal specification
of the type checking rules described in the previous section.

To generally illustrate Haskell’s ability to deal with the formal type checking
rules, consider the following code snippet, which implements the rule for type
checking while statements.
tcStatement s@(WhileStatement info cond wstms) h rt =

do (cond’, condt, cb) <- tcExp cond h
checkMatchType info condt Boolean
(wstms’, wst, cc, h’) <- tcStatements wstms h rt
return (mkWhileStatement (buildTcNodeInfo info Bullet)

cond’ wstms’, Bullet, max cb cc ,h)

The interpretation of the above code is quite immediate. Function tcStatement
is our formal statement type checking function 
, rt represents the expected
return type, which in the formal definition subscripts 
 and h corresponds to
the type environments Γ and ∆. Note that, even though we have made clear the
distinction between Γ and ∆ in the formal rules, this was mainly justified by
presentation reasons. Still on the arguments side, one finds (WhileStatement info
cond wstms), trivially matching while b {c}, except for the info identifier, which
is an add-on of the implementation for storing the exact place where the CAO
code being analysed appears in the input file.

Regarding the function body, in accordance to the formal rule, which relies
on premises referring to ` and 
, so does the implementation, referring to func-
tions tcExp and tcStatements respectively. Here, however, one resorts to Haskell’s
monadic operator <- over the monad Error data type. In this way we combine
calls to different type checking functions that may return type checking errors,
ensuring that if an error occurs in one of the calls, the error is propagated down
to the end of the type checker execution, without interfering with any other type
checking rule in between.

Function checkMatchType corresponds to our order comparison operator ≤
over data types, while Bullet is our functional representation of symbol •. Func-
tion max ensures that type classifiers, which allow the type system to recognise
various types of functions, are properly propagated. Instead of returning the
type of the expression being evaluated, the implementation returns the expres-
sion received annotated with its type, to be used by subsequent compilation
steps. Nevertheless, the above rule implementation illustrates how we have kept
the implementation reasonably close to the formal definition, therefore favoring
a direct validation by inspection of the implementation.

6 Soundness of the Type System
As usual, the CAO type system aims to ensure that “well-typed programs do
not go wrong” [7]. This is formalised as a soundness theorem relating static
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(typing) and dynamic semantics. For the moment, our result only ensures that
the evaluation of well-typed program does not fall into a certain class of errors:
formally, we are proving a weak soundness theorem. Concretely, we have shown
that only a well-defined set of run-time errors (trapped errors, denoted by ε in the
semantic domain V) can occur when evaluating a correctly typed program. These
are explicitly captured in the semantics of the language, and they are limited to
divisions by zero and out of bounds accesses to containers. In this section, we first
shortly present some aspects of our formalization of the CAO semantics necessary
to provide support to the subsequent discussion of our soundness theorem and
proof sketch. The complete description of both can be found in [1].

CAO Semantics Evaluation of a CAO program is defined by an evaluation
relation that relates an initial configuration (a CAO program together with a
description of the initial state) with a final configuration (a semantic value and
a final state). The domain of semantic values is defined as a solution of the
domain equation V = Z + V? + E , where Z denotes the domain of integers, V?

denotes sequences of values of type V of the form [v0, . . . , vn−1] and E is the type
of the trapped error value ε. A trapped error is an execution error that results
in an immediate fault (run-time error); an untrapped error is an execution error
that does not immediately result in a fault, corresponding to an unexpected
behavior. We denote such an error by ⊥.

We define three mutually recursive evaluation relations, each of them respon-
sible for characterising the evaluation of different syntactic classes: expressions,
statements and declarations:

– 〈 e | ρ 〉 → r evaluates expression e in state ρ to the value r. Expression
evaluation is side-effect free, and hence the state is not changed.

– 〈 c | ρ 〉 ⇒ 〈 r , ρ′ 〉 means that the evaluation of statement c in state ρ
transforms the state into ρ′, and (possibly) produces result r.

– 〈 d | ρ 〉 V 〈 ρ′ 〉 means that the evaluation of declaration d in state ρ
transforms the state into ρ′.

CAO has a call by value semantics, where there are no references and each vari-
able identifier denotes a value. Assignments mean that old values are replaced
by the new ones in the state. Since expressions are effect-free, simultaneous
value assignments are possible (however, here we will stick to the simpler single-
assignment version of the evaluation rule). In CAO, a run-time trapped error can
occur only in three cases: 1) accessing a vector, matrix or bit string out of the
bounds; 2) division (or remainder of division) by zero; and 3) assigning a value
to a vector, matrix or bit string out of bounds. We present example rules for the
latter two cases below, noting that the frame update operator is defined to return
ε when l identifies an update to an invalid index in a container representation.

Assign-Err
〈 e | ρ 〉 → v

〈 l := e | ρ 〉 ⇒ 〈 ε , 〉
ρ[v/l] = ε

Assign
〈 e | ρ 〉 → v

〈 l := e | ρ 〉 ⇒ 〈 • , ρ[r/l] 〉
ρ[v/l] 6= ε
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Div
〈 e1 | ρ 〉 → v1 〈 e2 | ρ 〉 → v2

〈 e1 / e2 | ρ 〉 → [[/]][v1, v2]

Div-Zero
〈 e1 | ρ 〉 → v1 〈 e2 | ρ 〉 → 0

〈 e1 / e2 | ρ 〉 → ε

where function at returns the n-th element of a sequence. Range accesses actually
cannot cause trapped errors, as the type system enforces that the limits must
be statically defined in order to determine the size of the result, which means
that such errors can be detected. Trapped errors are propagated throughout
evaluation rules, i.e., whenever a premiss evaluates to ε the overall rule also
evaluates to ε. All cases that fall outside of our semantic rules are implicitly
evaluated to untrapped errors (⊥ value).

Soundness Theorem and Proof Sketch Our result is stated in the following
theorem, where ` ρ :: ΓG denotes consistency and ◦ denotes empty store/state.

Theorem 1. Given a program p if ◦, ◦, ◦ ` p :: (•, ΓG) and 〈 p | ◦ 〉 V 〈 ρ 〉
terminates, then ` ρ :: ΓG or ρ is an error state.

Proof (Sketch). The full proof is presented in [1]. The proof is by induction on
typing derivations. The base case for induction is that prior to execution, every
type-checked program has an initial evaluation environment that is (trivially)
consistent with the typing environment. Here, consistency means that all vari-
ables in the evaluation environment have associated values compatible with their
corresponding type in the typing environment. The inductive cases are consid-
ered for each transition defined in the semantics of the language. In each case
we show that one of two cases can occur: 1) either a consistent environment
is produced at the end of each transition; or 2) a trapped error has been gen-
erated and is returned by the program. We present two cases, illustrating how
the proof proceeds for division expressions and assignment statements that may
raise trapped errors.

Division Expressions. We have to prove that if 〈 e1 / e2 | ρ 〉 → v terminates
then v ∈ V. Two semantic rules can be applied for each operator, one in the
case of division by 0; the other in the general case:

– If 〈 e1 | ρ 〉 → v1 and 〈 e2 | ρ 〉 → 0 terminate, then 〈 e1/e2 | ρ 〉 evaluates
to ε ∈ V by semantic Div-Zero.

– If 〈 e1 | ρ 〉 → v1 and 〈 e2 | ρ 〉 → v2 terminate, with v2 6= 0, then 〈 e1/e2 | ρ 〉
evaluates to [[/]][v1, v2] by semantic rule Div. Here [[/]] gives the interpreta-
tion of the / operator with respect to the values v1 and v2. By induction
hypothesis, v1 and v2 are in the semantic domain V, corresponding to rep-
resentations of integer values. Since division is well-defined for integer rep-
resentations, then [[/]][v1, v2] evaluates to another value v which is again a
representation of an integer and v ∈ V\E .

Assignment Statements. We have to prove that if 〈 l := e | ρ 〉 ⇒ 〈 v , ρ′ 〉
terminates then, either the statement raises a trapped error due to an invalid
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access on the left value, or the returned environment ρ′ is consistent with the
typing environment. Two semantic rules are applicable, Assign and Assign-
Err, the latter only when the target is an invalid position in a container. If
〈 e | ρ 〉 → v terminates, then v ∈ V\E and v represents a value of type τ . The
semantic rule to apply depends on the result of the frame update operation ρ[v/l].
If this returns ε, then semantic rule Assign-Err is applied, and the statement
evaluates to 〈 ε , 〉. Otherwise it will return an updated state ρ′, in which case
semantic rule Assign is applied, and the statement evaluates to 〈 • , ρ[v/l] 〉.
It remains to prove that this resulting evaluation environment is consistent with
the typing environment. Here we resort to the induction hypothesis ` ρ :: Γ ,
which guarantees the value currently stored for l represents a value of type τ .
Since v also represents a value of type τ , the update of left value l for value v
preserves consistency.

7 Related Work

Cryptol [5] is a domain-specific language and tool suite developed for the speci-
fication and implementation of cryptographic algorithms. It is a functional DSL
without global state or side-effects, which was developed with the main purpose
of producing formally verified hardware implementations of symmetric crypto-
graphic primitives such as block ciphers and hash functions. CAO is an impera-
tive language that targets a wider application domain, although also restricted to
cryptography. Indeed, the CAO language features have been designed to permit
expressing, not only symmetric but also asymmetric cryptographic primitives, in
a natural way. Furthermore, CAO tools are released under an open-source policy.

Dependent types offer a powerful approach to ensure program properties.
However, this power in not incorporated in any of the mainstream languages,
while the prototypical languages that do it are mostly functional. The first proto-
type of an imperative language to use dependent types was Xanadu [9], allowing,
e.g., to statically verify that accesses to arrays are within bounds. So far, CAO
offers a modest form of dependent types, where all type parameters values must
be statically known. Ongoing work aims extend CAO with a more powerful ap-
proach to dependent types inspired by [9]. This new version of the type system
allows for symbolic parametrisation, dropping the requirement that all sizes are
known at compilation, using an SMT solver to handle associated constraints.

The use of Generalized Algebraic Data Types (GADTs) in Haskell, together
with type families and existential types, allows the implementation of embedded
DSL’s with some dependent typing features. Moreover, since this approach relies
on Haskell’s type system, this permits avoiding the full implementation of a type
checker. CAO does not follow this embedded approach because it would make it
harder to preserve characteristics of the language that pre-dated formal work on
the type system. For example, the CAO syntax tries to follow the cryptographic
specification standards, and GADTs would impose their own syntax, which is
more suitable for building combinator systems. One could of course try to use
a GADT-based intermediate representation, but it is not clear that this would
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pay out in terms of the global implementation effort. In particular, we anticipate
that dealing with coercions and casts would complicate the type checking appa-
ratus [8]. Moreover, it would probably be difficult using an embedded approach
to keep the implementation structure close to the formal specification.

The use of an embedded implementation in a dependently typed language,
e.g. Coq or Agda, could also be an option for the implementation of our type sys-
tem. However, this would suffer from the same drawbacks previously presented
for GADTs, and would also require specific expertise that are not realistic to
assume in the target audience for CAO. The need to reason about the correct-
ness and termination of CAO programs at this level would also be an overkill for
most applications. In the CAO tool-chain, this sort of analysis is enabled by an
independent deductive formal verification tool called CAOVerif.

8 Conclusion

CAO is a language aimed at closing the gap between the usual way of speci-
fying cryptographic algorithms and their actual implementation, reducing the
possibility of errors and increasing the understanding of the source code. This
language offers high-level features and a type system tailored to the implemen-
tation of cryptographic concepts, statically ruling out some important classes of
errors. In this paper, we have presented a short overview of CAO and the specifi-
cation, validation and implementation of a type-system designed to support the
implementation of front-ends for CAO compilation and formal verification tools.
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