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Abstract 

In this paper, a simple discontinuous upper bound limit analysis approach with sequential linear 

programming mesh adaptation is presented. Rigid, infinitely strong triangular elements with both 

linear and Bezier curved edges are considered. A possible jump of velocities is allowed at the 

interfaces between contiguous elements, thus allowing plastic dissipation on curved interfaces. 

Bezier curved edges are used with the sole aim of improving the element performance when dealing 

with limit analysis problems involving curved sliding lines. The model performs poorly for 

unstructured meshes (i.e. at the initial iteration), being unable to reproduce the typical plastic 

deformation concentration on inclined slip lines. Therefore, an iterative mesh adaptation based on 

sequential linear programming is proposed. A simple linearization of the non linear constraints is 

performed, allowing to treat the NLP problem with consolidated LP routines. The choice of 

inequalities constraints on elements nodes coordinates turns out to be crucial on the algorithm 

convergence.  

Several examples are treated, consisting in the determination of failure loads for ductile, purely 

cohesive and cohesive frictional materials. The results obtained at the final iteration fit well, for all 

the cases analyzed, previously presented numerical approaches and analytical predictions. 
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1. Introduction 

The determination of the ultimate load bearing capacity of engineering structures deserves great 

consideration from a technical point of view. Despite the considerable research efforts done in the 

past decades in the field of Finite Element (FE) limit analysis, the linear elastic approach is 

generally considered as the most practical tool to obtain quantitative information for design 

purposes. Unfortunately, such analysis fails to give an idea of the structural behaviour beyond the 

beginning of cracking. Especially for cohesive-frictional materials and in the case of masonry, this 

represents a non-negligible drawback. In fact, due to the relatively low tensile strength of such kind 

of materials, linear elastic analyses are unable to represent adequately the structural behaviour, even 

in presence of very low load levels. For this reason, limit analysis is a promising alternative, giving 

the possibility to predict failure loads and failure mechanisms with a moderate computational effort, 

requiring only a few mechanical parameters at failure for the simulations. In geomechanics, limit 

analysis provides a useful method for assessing the load bearing capacity of structures (e.g. 

footings, retaining walls, etc.) and the stability of slopes and excavations. 

While for linear elastic analyses robust and efficient factorization routines are at disposal in FE 

solvers, for limit analysis only linear programming (LP) routines able to tackle problems involving 

several variables are needed. Nowadays, commercial LP packages can compete favourably both for 

stability and time required for the simulations with elastic FE solvers. Furthermore, the time 

requirements to construct the finite element model are the same as for the elastic analysis.  

Nonetheless, limit analysis combines, on one hand, sufficient insight into collapse mechanisms, 

ultimate stress distributions -at least in critical sections-, and load capacities, and on the other hand, 

simplicity to be cast into a practical computational tool. Given the difficulties in obtaining reliable 

experimental data for frictional materials, another appealing feature of limit analysis is the reduced 

number of necessary material parameters. 

Several efforts have been made in this field in the last decades by many authors (see for instance 

[1]-[7]), with the aim of solving the linear optimization problem by means of non-linear 

programming routines (NLP), usually avoiding to perform a linearization of the material strength 

domain. This allowed a further improvement in the numerical efficiency of FE limit analysis 

programs.  

Another important aspect of the FE approach within limit analysis is that the classical lower and 

upper bound theorems allow to rigorously bound the exact limit load for a perfectly plastic 

structure. When the bound theorems are implemented numerically in combination with the finite 

element method, the ability to obtain tight bracketing depends not only on the efficient solution of 
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the arising optimization problem, but also on the effectiveness of the elements employed. Elements 

for (strict) upper bound analysis pose a particular difficulty, since the flow rule is required to hold 

throughout each element, yet it can only be enforced at a finite number of points. The standard 

choice for this type of analysis has been the constant strain element combined with discontinuities 

in the displacement field (see for instance Sloan and Kleeman [1]). 

Nevertheless, the accuracy of the approach is highly dependent on the alignment of the 

discontinuities, meaning that it can perform poorly if an unstructured mesh is employed. Such a 

poor performance increases when dealing with rigid, infinitely strong elements, as is the case 

treated here. Plastic dissipation, in this case, occurs only at the interfaces between contiguous 

elements, thus constraining the collapse loads to be drastically dependent on the disposition of the 

interfaces in the mesh. In order to circumvent this limitation, re-meshing strategies could be 

adopted, as suggested in [8]-[9]. In this case, an iterative procedure with increasing number of 

optimization variables at successive iterations is needed. As an alternative, adaptive upper bound 

methods with linear elements and possible plastic deformation in both triangles and discontinuities, 

as proposed in [10], should be used.  

Considering the drawbacks related to a triangular discretization, it seems also appealing the 

generalization (using adaptive schemes at both element and material level) of totally different 

procedures presented in the recent past in the literature, as for instance the free Galerkin approach 

(see [11]) or the p-FEM [12]. 

Differently from existing algorithms available, the basic idea of the procedure proposed here 

consists in: (a) limiting, as much as possible, optimization variables in order to make the numerical 

model fast and efficient and (b) reproducing general failure mechanisms involving curved 

discontinuities, utilizing few elements without dissipation in continuum (and therefore avoiding the 

introduction of additional plastic multipliers in continuum). Such requirements are somewhat 

contradictory, since it is well known that linear rigid elements perform well in the reproduction of 

complex curved collapse mechanisms, only if the mesh utilized is sufficiently refined (i.e. if curved 

edges, active in the dissipation process, are well approximated by segments).  

In this framework, in order to comply accuracy and limited computational effort both a linear and a 

curved Bezier triangular rigid element with possible dissipation along (curved) interfaces between 

adjoining elements are presented. Since dissipation can occur only at the interfaces between 

contiguous elements, a mesh adaptation algorithm able to enforce the shape of the interfaces to 

coincide with the actual slip lines is adopted. There are many reasons which justify the use of 

adaptive rigid elements with linear or curved edges. Among the others, the most important ones 

(which make, indeed, preferable the use of curved elements in some cases) are their ability to 
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reproduce complex failure mechanisms with plastic dissipation concentrated on curved slip lines 

and the simplicity of the algorithm itself, consisting in the recursive utilization of a LP routine. 

It is worth noting that the utilization of (a) curved elements, (b) relatively coarse meshes and (c) 

iterative LP schemes differs significantly from adaptive techniques recently presented in the 

technical literature (see for instance [10][13]), which are usually based on the utilization of NLP 

codes. The approach here presented, in fact, follows a classical procedure (attempted at the early 

stages of FE limit analysis research) based on linear programming and linearization of the failure 

surfaces. Furthermore, it concentrates exclusively on geometrical aspects (linearization of non 

linear constraints and utilization of splines) rather than on numerical issues related to non-linear 

programming and therefore may be of interest also for practical engineers not involved in the most 

recent optimization research. 

Bezier curves are treated in the model in the same manner as linear interfaces, with the only 

difference that more plastic multiplier rates are required for each interface and that plastic 

dissipation is obtained resorting to numerical integration methods.  

For both linear and curved elements, a simple linearization of the non linear constraints is 

performed, allowing to treat the NLP problem with consolidated LP routines. The choice of 

inequalities constraints on elements nodes coordinates turns out to be crucial on the algorithm 

convergence. 

Several meaningful examples are treated to validate the procedure proposed, consisting in the 

determination of failure loads of ductile (plate with central hole), purely cohesive and cohesive 

frictional materials (indentation problems, masonry shear walls). The results obtained at the final 

iteration fit well, for all the cases analyzed, previously presented numerical approaches and, where 

available, analytical predictions. 

2. Triangular upper bound limit analysis 

In this section, an adaptive upper bound limit analysis conducted by means of triangular elements 

with both linear and curved Bezier edges and possible dissipation between adjoining elements is 

presented.  

Linear elements can be regarded as a particular sub-class of curved elements. Anyway, the reasons 

at the base of the utilization of adaptive rigid elements with generally curved edges are (1) the 

capability of the method to reproduce complex failure mechanisms with non linear slip lines more 

accurately, when compared with standard linear triangles and (2) the simplicity of the algorithm, 

consisting on a trivial recursive utilization of robust LP routines. For both linear and curved 

elements, it is worth noting that the method competes favourably with more classical re-meshing 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

IJMS-08-37 Revised version R2.  

 5 

techniques ([8][9]). In fact, while for the present analyses a number of LP problems with the same 

number of optimization variables has to be solved to converge to suitable solutions, in re-meshing 

[8] the number of optimization variables increases at successive iterations, meaning that time 

required to perform the simulation becomes great near the optimal mesh. 

2.1. The linear and the rigid splines element 

Let us consider a triangular element T  with curved edges, as shown in Figure 1. Each edge of the 

element is constituted by cubic Bézier splines defined by four control points 1P , 2P , 3P  and 4P , see 

Figure 1-a. As well known from the technical literature [14]-[16], Cartesian coordinates of each 

point of the Bezier curve can be obtained in parametric form having at disposal 1P … 4P  as follows: 

( ) ( ) ( ) ( )
[ ]1,0

13131 2

3

4

2

3

2

1

3

∈
+−−−+−−=

t
ttttttt PPPPP  ( 1 ) 

In the model, both a C0 and C1 continuity of the edges between adjoining elements can be required. 

In particular, when a C1 continuity is required, control points 3P  and 5P  (see Figure 1-b) in the 

initial mesh have to be set in such a way that they are aligned with 4P . Similar considerations can 

be repeated for 6P , 7P  and 8P . During the sequential linear programming mesh adaptation, C1 

continuity requirement yields to a further set of linear equality constraints in the form: 

( ) 2/534 PPP +=  ( 2 ) 

Obviously, linear triangular elements are obtained as a sub-class of curved elements simply 

imposing that: 

214

213

)1(

)1(

PPP

PPP

ββ

αα

−+=

−+=
 ( 3 ) 

with [ ]10, ∈βα . 

2.1.1. Jump of displacement field at the interfaces 

A triangular linear or curved element T  with vertices 1P , 2P  and 3P  and control points 94 PP �  of 

coordinates ( ) 9,,1,, �=iyx ii  is considered, Figure 2. 

For an arbitrary edge e

ijΓ  of element T  connecting nodes ji − , a suitable local curved frame of 

reference ee rs −  with origin on vertex i  and er  parallel to the interface normal can be easily 

determined from equation ( 1 ). 
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Its analytical description in the global frame of reference is necessary in the framework of limit 

analysis with plastic dissipation allowed only at the interfaces between contiguous elements. The 

determination of the tangential and normal components with respect to the interface direction of the 

jump of velocities vector between adjoining elements is, in fact, required for the evaluation of the 

internal power dissipated. 

Let us consider for the sake of conciseness only a 21−  linear or Bézier curved edge 12Γ , as shown 

in Figure 2. Similar considerations can be repeated for 31−  and 32 −  edges respectively, with no 

conceptual differences. 

From equations ( 1 ) and the total derivative with respect to the independent parameter t , the versor 

es  can be obtained as follows: 

( ) ( ) ( )
( ) ( )

3

2

24433211

2

24433211

2

2

4

2

3

2

1

2
3233143313

/

esr

PPPPPP
s

×=
+−+−++−+−

+−−+−+−−
==

ee

e

yyyyxxxx

tttttt

dt

d

dt

d

ξξξξξξξξ  

( 4 ) 

Where: 

- ( ) ( ) ( ) 2

4

2

3

2

2

2

1 3233143313 tttttt =−−=+−=−−= ξξξξ ; 

- 213 eee ×= =[0 0 1] is the z -axis versor. 

Therefore, the transformation matrix from the global to the interface local coordinate system reads 

as follows: 

( ) ( )
( ) ( ) ( ) ( ) ��

�
��

�
=��

�
��

�
⇔��

�
��

�
=��

�
��

�
��

�
��

�
=��

�
��

� −
e

e

e

e

tt
tt

tt

r
s

T
e

e

e

e
T

e

e

r
s 1

2

1

2

1

2

1

1212

1212

cossin

sincos

ϑϑ
ϑϑ

 
( 5 ) 

Equation ( 4 ) allows the explicit determination of the components of unit vectors es  and er  point 

by point of the interface. Nevertheless, since edge 21−  is a polynomial of degree 3 in t , jump of 

displacements has to be written only in 4 points of the interface in order to describe the field 

completely for each point of 12Γ . 

Furthermore, since the curved triangular elements here adopted are rigid, velocity field interpolation 

inside each element depends only on 3 independent variables represented respectively by velocities 
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[ ]TG

y

G

xG uu=u  of a point of the rigid body and rigid rotation [ ]TG

zG Φ= 00�  along z  coordinate 

axis. For the sake of simplicity, point G  is chosen as the centroid of the triangle connecting points 

1P , 2P , 3P , see Figure 3. 

Therefore, the velocities’ field of the 21−  edge belonging to a generic element M  is expressed in 

global coordinates as follows: 

( )
( )

( )
( ) ( )( )GPR −=��

�
��

�
−
−

�
�

�
�
�

�

Φ−

Φ
=�

�

�
�
�

�
00

00

00

00

00

10

01
t

yty

xtx

tu

tu
G

G

G
G

z

G

z

y

x  
( 6 ) 

Where: 

- r
x0  and r

y0  are global coordinates of a generic point 0P  corresponding to 0tt = on e

ijΓ  edge. 

- ( )00 tu x  and ( )00 tu y  are the horizontal and vertical global velocities of point 0P  respectively. 

Equation ( 5 ) can be substituted in ( 6 ) in order to obtain the edge velocities’ field in the local 

coordinate system: 

( )
( ) ( ) ( )( )GPRT −=��

�
��

� −
tt

tu

tu
G

r

s 1
 

( 7 ) 

From the above considerations, when two contiguous elements M  and N  with common interface 

e

12Γ  are considered, the jump of displacements at the common interface can be written as: 

( ) ( )( ) ( )( )[ ]NN

G

MM

G

NM
ttt GPRGPRTu −−−=

−− 1
][  ( 8 ) 

with obvious meaning of all the symbols introduced. 

2.1.2. Plastic flow relationships and power dissipation 

From equation ( 7 ), power dissipated at the interfaces can be numerically evaluated in the local 

coordinate system. With this aim, the stress vector It  acting at the interface I  between contiguous 

elements is introduced, Figure 4, defined as [ ]TI

r

I

s

I στ=t and constituted by a normal stress I

rσ  

acting along local axis er  and a tangential stress I

sτ  acting along es  respectively.  
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On the other hand, the length of the edges can be evaluated by means of a numerical integration as 

follows: 

( ) ( )� � +==Γ
1

0

1

0

22
// dtdtdxdtdyds

ee

ij  
( 9 ) 

From the above considerations, power dissipated at the interface is evaluated solving analytically 

the following integral: 

[ ] [ ]( ) ( ) ( )� ++= −−
1

0

22
// dtdtdydtdxuuP

NM

r

I

r

NM

s

I

s

I τσ  
( 10 ) 

For each interface I of length 12L , we suppose to have at disposal a linearized strength domain for 

the material constituting the interface and defined by I
m  planes in the local coordinate system (of 

equation IIq

I

I

r

q

r

I

s

q

s mqCAA
III

≤≤=+ 1τσ ). Introducing plastic multipliers fields at the interface 

(one for each linearization plane), the well know associated plasticity relation can be written: 

[ ] ( )

[ ] ( )
I

I

I

I

I

I

I

I

q

r

m

q

I

q

NM

r

q

s

m

q

I

q

NM

s

Atu

Atu

�

�

=

=

−

−

λ

λ

�

�

 

( 11 ) 

where ( )tI

q
Iλ�  represents the q

th
 plastic multiplier rate field. 

It is stressed that, when dealing with problems involving friction (as in the case, for instance, of 

geotechnical problems and masonry structures), the current approach still assumes classical 

normality (otherwise, as well known, the bound theorems of limit analysis are inapplicable and a 

different mathematical formulation should be adopted, see Ferris and Tin-Loi [17]). 

It is worth noting that, when curved triangular elements are considered, equation ( 11 ) is weakened 

under the form of inequality, in order to avoid that algorithm fails to find a solution (as underlined, 

for instance, in [5]-[7]). In particular, a small tolerance TOL is introduced so that: 
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( ) [ ] ( )

( ) [ ] ( ) TOLAtuTOLAt

TOLAtuTOLAt

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

q

r

m

q

I

q

NM

r

q

r

m

q

I

q

q

s

m

q

I

q

NM

s

q

s

m

q

I

q

+<<−

+<<−

��

��

−

−

λλ

λλ

��

��

 

( 12 ) 

Parameter TOL in the previous equation is set in the simulations equal to [ ]NM

su
−χ , with χ  small 

scalar constant. As a rule, χ  has been chosen in the range 1/50-1/200. Authors experienced that 

stability of the algorithm is optimal for χ  around 1/80, but this parameter has to be tuned case by 

case by the user. 

In what follows, curvature of the edges is always small if compared with linear elements, therefore 

the introduction of equation ( 12 ) permit a sufficient stability of the algorithm which otherwise 

could fail (Makrodimopoulos and Martin [5]) in presence of jump of displacements different from a 

simplex. Obviously, using equation ( 12 ), the property of obtaining strict upper bound 

approximations for the collapse load is lost; nonetheless, the approximation introduced results in 

good estimations (at least from an engineering point of view) of failure loads, as shown in the last 

section. Such an approximation is avoided when linear elements are used. 

In this way, from equations( 10 )( 11 ), the power dissipated at the interface can be re-written as: 

( )[ ] ( ) ( )

( ) ( ) ( )��

��

+=

=++=

1

0

22

1

0

22

//

//

dtdtdydtdxCt

dtdtdydtdxAAtP

I

I

I

I

II

I

I

I

q

I

m

q

I

q

I

r

q

r

I

s

q

s

m

q

I

q

I

λ

τσλ

�

�

 

( 13 ) 

Obviously, ( )t
I

q
Iλ�  field should assume the same analytical expression found for the jump of velocity 

at the interface, equation ( 7 ). The analytical determination of ( )t
I

q Iλ�  field is not a trivial task and is 

not strictly necessary from a numerical point of view. Furthermore, a limitation of the number of 

optimization variables for each interface is always desirable. Here, for the sake of simplicity, a 

cubic polynomial in t  both for plastic multipliers and for the jump of velocities field is assumed 

(see Figure 5). Therefore, the ( )t
I

q Iλ�  field is fully determined introducing only 4 plastic multipliers 
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for each linearization plane for each internal, corresponding to t =0, 1/3, 2/3 and 1 respectively. In 

this way, plastic dissipation at the interface can be handled numerically with a small computation 

effort as follows: 

( ) I

I

I

IIII

q

I

m

q

I

q

I

q

I

q

I

q

I
CWWWWP � +++= 2,

2

4,

4

3,

3

1,

1 λλλλ ����  
( 14 ) 

where: 

- 4,3,2,1=iWi  are numerical coefficients easily determined by the authors making use of a 

subroutine which operates on a generic curved interface by means of the Symbolic Matlab toolbox 

[18]. In particular, assuming ( ) 3

3

2

210 tatataat
I

q
I +++=λ� , constants 3,2,1,0=iai  are determined 

symbolically imposing that ( ) iI

q

I

q
II t
,λλ =� . It is worth noting that constants 3,2,1,0=iai  result linear 

functions in iI

q I

,λ . Hence ( ) ( ) ( )�� +
1

0

22
// dtdtdydtdxCt

I

I

I

I

q

I

m

q

I

q
λ�  is symbolically evaluated, leading to 

the numerical determination of iW  constants; 

- iI

q
I

,λ�  is the plastic multiplier of node i . 

External power dissipated can be written as ( )wPP TTex
P 10 λ+= , where 0P  is the vector of 

(equivalent lumped) permanent loads, λ  is the load multiplier for the structure examined, T

1P  is the 

vector of (lumped) variable loads and w  is the vector of assembled nodal velocities. As the 

amplitude of the failure mechanism is arbitrary, a further normalization condition 11 =wPT  is 

usually introduced. Hence, the external power becomes linear in w  and λ . 

2.1.3. The Linear Programming (LP) problem 

After some elementary assemblage operations, a simple linear programming problem is obtained 

(analogous to the dual or primal problem reported in [19]-[22]), where the objective function 

consists in the minimization of the total internal power dissipated: 
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( 15 ) 

where: 

- U  is the vector of global unknowns and collects the vector of elements centroids velocities ( w ) 

and rotation rates (� ) and the vector of assembled interface plastic multiplier rates ( assI ,
�� ). 

- eqA  is the overall constraints matrix and collects normalization conditions, velocity boundary 

conditions, constraints for plastic flow in velocity discontinuities and compatibility conditions. 

- I
n  is the total number of interfaces in the model. 

The reader is referred to [19]-[22] for a critical discussion of the most efficient tools for solving the 

upper bound (primal or dual) linear programming problem reported in equation ( 15 ). 

2.2. Mesh adaptation by means of a sequential linear programming 

scheme and SLP 

In this section, a sequential linear programming scheme is presented which allows the adaptation at 

each step of the mesh used. The aim is of reproducing real failure mechanisms of 2D limit analysis 

problems as closest as possible with the numerical approach proposed, even with relatively coarse 

discretizations. If variation in an element geometry is considered, equality constraints ( 8 )( 11 )( 14 

) become non linear. The technique of sequential linear programming (SLP) relies on an iterative 

process in which linearized approximations are used in any particular iteration [23]-[25]. It is worth 

mentioning that SLP schemes have been adopted by many authors in the recent past for the limit 

analysis of slabs, see for instance Johnson [23] [25] and Ramsay and Johnson [24] making use of 

triangular linear elements. While triangular elements with linear edges are adequate for out-of-plane 

problems as shown by Johansen [26], such an approach may give an overestimation of the actual 

collapse loads in the case of in-plane problems, due to the fact that slip lines are usually non linear. 
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Therefore, a limit analysis approach with both linear and Bèzier triangular elements may be useful, 

as is the case here treated. 

In order to use a sequential linear programming scheme, coordinates of control points of each 

interface have to be taken as optimization variables. Each non linear inequality and/or equality 

constraint may be linearised by replacing each term by its first-order Taylor series approximation. 

For instance, a first order approximation of equation ( 8 ) becomes:  

( ) ( ) ( )( ) ( )( )[ ] ( )1
1111111
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1
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q
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I

II

I

I ttt
A

A
t XXfGPRGPRT uλ�  

( 16 ) 

where: 

- Indices i  and 1−i  represent the actual and the previous iteration in the optimization process 

respectively; 

- 
1−

−

∇
i

NMuf  is the gradient of equation ( 8 ); 

- iX  and 1−iX  collect all optimization variables (i.e. horizontal EU  and vertical EV  elements 

velocities, elements rotations E
� , interfaces plastic multipliers I

��  and nodes coordinates Nx , 

Ny ) in the i -th and ( i -1)-th iteration. 

Analogously, a linearization of equation ( 14 ) can be written as follows: 

( ) ( ) ( ) ( ) ( )1
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qi

I
PCWWWWP

I

I

I

IIII XXλλλλ ����  
( 17 ) 

Where 
1−

∇
i

I
P  is the gradient of equation ( 14 ) and all the other symbols have been already 

introduced. 

Equations ( 16 ) and ( 17 ) replace classic linear programming constraints ( 8 ) ( 14 ) and the linear 

programming solution is repeated until a desired adjustment of the initial mesh is reached. At the 

conclusion of each linear programming iteration, the nodes coordinate values Nx  and Ny  will 

indicate directly the mesh adaptation. 
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Obviously, the magnitude of the changes to the geometric variables cannot be obtained from a 

linear solution and must be enforced by the imposition of suitable inequality bounds. The geometric 

variables will need to be constrained by lower and upper bounds as follows: 



�
�

≤≤

≤≤
+−

+−

yyy

xxx
N

i

N

i  
( 18 ) 

where: 

- −x , −y , +x , +y  are respectively lower and bound vectors for x  and y  nodes coordinates; 

- N

ix  and N

iy  are horizontal and vertical vectors of nodes coordinates at the i -th iteration. 

For particular nodes with coordinates N

Fx  and N

Fy , it is required that their position is not altered, to 

ensure that the boundaries of the problem and its basic topology are not changed. This implies that, 

e.g. +− == F

N

FF xxx  and +− == F

N

FF yyy . Nevertheless, from a numerical point of view it is preferable 

to avoid the use of inequalities ( 18 ) as strict equalities (i.e. +− == F

N

FF xxx ). In these cases, in fact, 

it is preferable (to ensure stability of the algorithm) to remove N

Fx  and N

Fy  from optimization 

variables. 

Finally, since failure load of the linearized linear programming problem does not necessarily 

represent a rigorous upper bound of the true collapse load, a post-processing linear programming 

problem with the new positions of nodes obtained from the i -th iteration kept fixed has to be 

performed. The pseudo-code of the SLP algorithm used for all the examples treated is shown in 

Figure 6. 

2.3. Nodes condensation at successive iterations 

Condensation of nodes with re-meshing may be necessary passing from one iteration to the 

successive, in order to avoid topological errors (i.e. overlapping of existing elements). In particular, 

at the end of each iteration, overlapping of elements is checked with a double strategy. The first 

strategy consists in measuring the distance between each node and its neighbors: if a limit lower 

bound distance limr  is surpassed between two nodes, Figure 7, nodes are condensed into one and a 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

IJMS-08-37 Revised version R2.  

 14 

re-meshing is performed. As a rule, if bounds on nodes positions at each iteration (i.e. vectors −x , 

−y , +x , +y ) are suitably set (typically 1/10 of elements edge), such a preliminary procedure 

precludes the program to commit frequently topological errors. Nevertheless, in order to make the 

algorithm more robust, a second strategy, computationally more onerous, is performed at the end of 

each iteration, consisting in selecting with a simple Monte Carlo strategy a fixed number of points 

internal to the splines triangle under consideration (the procedure is much more easier for linear 

elements) and in checking if each of the points so selected results external to all the neighboring 

triangles. A semi automatic control is in any case performed at the end of each iteration, in which 

the topology correctness is manually assessed.  

It is interesting to notice that such a procedure is handled exchanging automatically data from 

Matlab [18] to a FE mesh generator within Strand 7 FE software [27]. In particular, the new mesh at 

each iteration is generated by Strand 7 mesh generator, whereas each topological correction is 

checked manually before passing data to Matlab processor. 

3. Numerical examples 

In this section, the performance of the adaptive upper bound formulation presented is assessed by 

using it to predict the collapse load of a number of technically meaningful examples. In particular, 

at a first attempt, the capabilities of the model are assessed on a simple uniaxial tension test on a 

square plate with central circular hole. The exact collapse solution for a Tresca failure criterion is 

well known (see for instance Chen and Han [28]) and is characterized by an in-plane symmetrical 

shearing failure mechanism. In this case, the failure mechanism is determined by a diagonal straight 

line, therefore splines and linear elements provide the same failure load at the converged solution. 

An initial distorted mesh is used in order to test the capabilities of the sequential procedure 

proposed. The second example relies on a plane strip footing (see also [29]) both with frictionless 

and frictional material. In both cases, the exact collapse load is known. The third analysis, 

consisting in the evaluation of the failure load of an ice sheet obeying the well known Reinicke and 
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Ralston [30] failure criterion and subjected to indentation is aimed at testing the capabilities of the 

procedure in presence of a non-linear failure criterion for the interfaces. A piecewise linear 

approximation of it is used in the simulations, meaning that several plastic multipliers for each 

interface are introduced. The last example is a masonry shear wall experimentally tested at ETH 

Zurich by Ganz and Thurlimann [31]. When dealing with the shear wall, numerical results are 

obtained assuming for masonry a homogenized linearized failure criterion hom
S . hom

S  is obtained 

making use of a equilibrated micro-mechanical model recently presented in the technical literature 

[32].  

From the results of the numerical simulations reported, it is possible to conclude that the adaptive 

sequential linear programming scheme allows to approximate rather well analytical solutions, in 

terms of collapse load and failure mechanism, meaning that the approach proposed is able to 

provide accurate upper bounds. 

3.1. Square plate with central circular hole 

The first example is a plane stress problem consisting of a square plate of edge length L  with a 

central circular hole of diameter d  and subjected to uniaxial tension, as shown in Figure 8. For the 

problem at hand, a Ld /  ratio equal to 0.2 is assumed, in agreement with numerical simulations 

performed by Yu and Tin-Loi in [33]. Let 0σ  be the uniaxial tensile strength of the specimen, 

obeying a Tresca failure criterion in plane stress, and p  the failure pressure, as indicate in Figure 8. 

A distorted initial mesh (only ¼ of the plate is modelled for symmetry, Figure 9) is used both for 

the linear and splines triangular element. Since plastic dissipation occurs only at the interfaces 

between adjoining elements, the true inclined sliding line is not included in the possible failure 

mechanisms reproducible with the initial mesh. Failure mechanisms obtained at the first and last 

iteration are shown in Figure 9 and Figure 10 respectively. As a consequence of the fact that the 

initial mesh does not contain the true slip line of the model at hand, an overestimation of 11.25% of 

the true collapse load is obtained at the initial iteration, both for the linear triangular and the splines 
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triangular element, as depicted in Figure 11, where the collapse load at successive iterations is 

shown for both models. As it is possible to notice, convergence is almost identical for both models, 

occurring in practice after the sixth iteration. The adaptation of the mesh performed with the 

algorithm proposed allows the reproduction of the true failure mechanism, which consists in a 45° 

inclined yield departing from the bottom left corner of the mesh, as show in Figure 10. 

3.2. Strip footing problem 

Two different examples are treated in this section, namely a strip footing on a frictionless soil and a 

strip footing on a cohesive-frictional material. In both cases, analytical formulas are at disposal to 

determine the true collapse load. In what follows, it is shown how the mesh adaptation allows to 

obtain collapse loads in good agreement with analytical predictions. 

3.2.1. Case I: frictionless soil 

The exact collapse pressure fq  of a smooth strip footing on a purely cohesive soil is given by the 

well known expression ucf cNq = , where uc  is the undrained shear strength and the bearing 

capacity factor is π+= 2cN  (5.14). 

Two different meshes are used to analyze the problem at hand, see Figure 12. The first, here 

denoted as M1, is used only for the three noded model, whereas the second (denoted as M2) is 

utilized both for the linear and the curved elements approach. Such a comparison is reported in 

order to show that curved elements are able to provide better results in terms of collapse load when 

compared with linear elements with almost the same number of optimization variables involved. 

The results obtained with both meshes in terms of both cN  and failure mechanisms are reported at 

successive iterations from Figure 13 to Figure 15. 

As can be noted from Figure 13, the real collapse load of the strip footing is very well approximated 

using curved elements, with a percentage error at the converged iteration of only 3.31 %. It is 
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interesting to note that the initial iteration furnishes the same collapse load, which strongly 

overestimate the actual value of cN , with a percentage error equal to 21.56 %.  

In Figure 14 the failure mechanism obtained by means of mesh M1 at successive iterations is 

reported. As one can note, the adaptation at the converged iteration is non optimal; in particular, the 

region of soil involved by the failure mechanism is slightly overestimated, meaning that mesh used 

is too coarse to reproduce accurately the real behavior of the soil.  

Such an overestimation is eliminated when mesh M2 is used, as reported in Figure 15, where 

meshes and failure mechanisms at the converged iteration for both linear and curved elements is 

reported. 

3.2.2. Case II: soil with friction 

The Prandtl collapse pressure for a surface footing on a weightless cohesive-frictional material is 

'cNq cf =  where 'cot1
2

'

4
tan 2'tan φ

φπφπ

�
�

�
�
�

�
−�
�

�
�
�

�
+= eN c  and 'φ  and 'c  are the effective friction angle 

and cohesion respectively. 

For the example at hand, only the mesh shown in Figure 16 is used for the simulations, representing 

a quite refined discretization. As in the previous case, both linear triangular and Bezier elements are 

used and compared.  

A Mohr-Coulomb failure criterion is assumed for the soil with 'φ =30° and 'c =1 MPa. In this case, 

the Prandtl exact value assumed by constant cN  is 30.14. The results in terms of cN  at successive 

iterations obtained with both models are reported at successive iterations in Figure 17. 

As one can note from the successive values of cN , the real collapse load of the strip footing is very 

well approximated using both curved and linear elements, with a percentage error at the converged 

iteration of only 2.30 %. Finally it is interesting to underline that the result at the first iteration 

strongly overestimates the actual value of cN , with a percentage error equal to 126 %. In any case, 
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such an error is comparable with those committed using rigid-plastic linear triangular elements 

without discontinuities of the velocity field (see [1]). 

In Figure 18, failure mechanisms obtained with the initial and final mesh (curved elements) are 

reported. As it is possible to notice, the final mesh approximates very well the analytical failure 

mechanism suggested by Prandtl, which consists of a linear triangular element which translates 

vertically after the point of application of the load, followed by a processing zone with a curved 

shape line (logarithmic spiral shape), ending with a rigid isosceles triangle moving vertically and 

horizontally. Since plastic dissipation occurs only at the interface between contiguous elements, it is 

easily justifiable the inaccurate result obtained with the initial mesh, which is obviously unable to 

reproduce the true collapse mechanism. Furthermore, it is worth noting that, in this case, the curved 

element gives, at fixed iteration, better results with respect to the linear one, being the true failure 

mechanism due to the formation of non-linear slip lines, Figure 17. 

3.3. Ice indentation problem  

The problem of the indentation of an ice sheet, Figure 19, is of engineering interest because of its 

similarity to the crushing of ice sheets moving towards a vertical pier. If the indentator is assumed 

prismatic with width b , as indicated in Figure 19, the problem may be idealized, depending on the 

tb /  ratio as a either plane strain ( tb / =0) or plane stress ( tb / = ∞ ) problem. For the sake of 

conciseness, in the following only the plane strain case is taken into consideration, being the plane 

stress problem conceptually similar. 

As already discussed by Reinicke and Ralston [30], see also Krabbenhoft et al. [34] and Chen and 

Han [28], a yield criterion capable of capturing the typical anisotropic and sensitive to confining 

stress columnar-ice behavior at collapse is the following: 
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( 19 ) 
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where ia  are nine material parameters necessary to define adequately the strength with respect to 

three mutually orthogonal planes of symmetry. 

When restrictions due to plane strain condition are applied to ( 19 ), the following failure criterion is 

obtained (see [30][35] for details): 
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( 20 ) 

where the restriction ( )316 22 aaa +=  due to symmetry in the material strength properties has to be 

taken into account. 

The kinematical admissible velocities discontinuities corresponding to this yield criterion are non-

trivial. Here, the formulation proposed by Krabbenhoft et al. in [34] is adopted, with a piecewise 

linearization with 30 segments of the failure surface in the τσ −  interface plane. In particular, the 

interface is considered as a degeneracy of two triangular elements with an edge of length 0→δ  as 

shown in Figure 20. 

The velocity field in the local nt −  coordinate system for the triangle T  is defined as: 
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( 21 ) 

where iξ  are well known area coordinates (see for instance Sloan and Kleeman [1]), nu  and tu  are 

normal and tangential element velocities and i

ntu ,  are nodal velocities. 

Differentiation of equation ( 21 ) gives the plastic strain rates in each element: 
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( 22 ) 

The following remarks may be done on the previous expression: 

1. 0=ttε� , being non degenerated elements rigid and infinitely strong ( 32

tt uu = ); 
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2. the jump of displacements vector 1u∆  on node 1 of the interface are defined as: 
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( 23 ) 

where Γ�  is the plastic multiplier rate of the element integrated along the infinitesimal thickness of 

the interface. 

The condition 0=ttε�  of the elements belonging to the interface, via the associated flow rule 

imposition, leads to a further equality constraint for each node of each interface, which reads as 

follows:  

( ) 000
1 32 =

∂

∂
�=

∂
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tttt

tttt

ff
uu

L σσ
λε ��  

( 24 ) 

Following the ice indentation experiments conducted by Ralston [35], parameters 1a , 3a , 7a  and 

9a  are assumed as follows: 

xxxx
C

a
C

a
C

a
C

a
54.304.627.577.1

972321 −====  
( 25 ) 

where xC  is the in-plane unconfined compressive strength (here assumed equal to 1 for the sake of 

simplicity). 

For the simulations, the initial mesh of Figure 21 has been used. The results obtained in terms of 

failure load are reported at successive iterations in Figure 22, together with the analytical upper 

bound found by Reinicke and Ralston [30] and the upper bound solution by Krabbenhoft et al. [34].  

The initial mesh failure mechanism is shown in Figure 23, whereas in Figure 24 the final curved 

mesh with the corresponding failure mechanism are depicted. As it is possible to argue from Figure 

22, the final mesh gives very satisfactory results in terms of collapse load, even furnishing a 

solution more accurate than that proposed by Reinicke and Ralston [30] (see also [28]). As in the 

previous case, the advantage of the utilization of curved elements is evident. Results in this case are 

in discrete agreement with those obtained by Krabbenhoft et al. [34]. Despite the fact that in [34] a 
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lower value of the collapse load is obtained, it should be mentioned that results reported in [34] 

were obtained with a very refined mesh and that the percentage difference with respect to present 

results is around 2%, meaning that the present procedure can be used for technical purposes. 

3.4. Application to a masonry wall 

In the final example, the capabilities of the model are assessed by means of the limit analysis (see 

Figure 25) of a clay masonry shear wall tested by Ganz and Thürlimann [31] at ETH Zurich and 

analysed in Lourenço [36]. Experimental evidences show a very ductile response, so justifying the 

use of limit analysis for predicting the collapse load, with tensile and shear failure along diagonal 

stepped cracks. 

A homogenization approach is used for the analyses, based on the simple equilibrated limit analysis 

micro-mechanical model proposed by Milani et al. [32][37]. Thus, the heterogeneous model 

composed by bricks and mortar joints, is substituted by a fictitious homogeneous material obtained 

through micro-mechanical considerations performed at the micro-scale, once that a suitable 

boundary values problem on the elementary cell (which generates the wall by repetition) is solved. 

For joints, a linearized Lourenço and Rots [38] failure criterion in adopted, able to gather typical 

frictional failure of joints, tensile failure and compressive crushing. Mechanical properties are 

summarized in Table I. For bricks, a Mohr-Coulomb failure criterion in plane stress is adopted (see 

Table I). Following the procedure presented in [32], a linearization with 58 planes representing a 

lower bound approximation of masonry failure surface hom
S  is utilized.  

ETH Zurich shear tests are well suited for the validation of the model, not only because they are 

large and fit well with homogenization concepts, but also because most of the parameters necessary 

to characterize the model are available from biaxial tests [39]. Figure 25 shows the geometry of the 

wall considered here, which consist of a masonry panel of dimensions 3600×2000×150 3mm  

( tHL ×× ) and two flanges of dimensions 150×2000×600 3mm  ( fLHt ×× ), and the failure crack 

pattern experimentally obtained. Additional boundary conditions are given by two concrete slabs 
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placed in the top and bottom of the specimen. Initially, the wall is subjected to a vertical load p  

uniformly distributed over the length of the wall with a resultant P . This is followed by the 

application of a horizontal force F  on the top slab along a horizontal displacement d . 

A regular mesh of 160 linear or curved triangular elements is used for the present simulations, as 

shown in Figure 26. It is noted that the self-weight of the wall and the top slab are also considered 

in the analyses. 

The properties of the composite material are obtained from Ganz and Thürlimann [39]. A low 

tensile strength value is assumed in the direction normal to the bed joints, which approximates well 

a no tension material model. It is noted that the flanges have the width of a single unit and the 

failure in the x  direction (equivalent to the out-of-plane direction of the panel) is determined by the 

tensile and compressive strength of the clay brick. Therefore, for the flanges new inelastic 

properties are assumed, namely tensile strength tf  equal 0.68 2/ mmN and compressive strength cf  

equal to 9.5 2/ mmN . 

The wall analyzed here is denoted by W1 and is subjected to an initial vertical load P  of 415 kN  

corresponding to a moderately low vertical pressure equal to 0.61 2/ mmN . The wall shows a very 

ductile response with tensile and shear failure along the diagonal stepped cracks (see Figure 25-b). 

In Figure 26, a comparison between final and initial mesh failure mechanisms numerically obtained 

is reported. Authors experienced negligible differences between linear and curved elements 

performance during the optimization process, therefore only linear mesh failure mechanisms are 

reported for the sake of conciseness. It is particularly evident the good agreement between present 

numerical results and experimental evidences. The reader is also refereed to [40], where the same 

example has been analyzed with standard linear triangles with dissipation on both interfaces and 

elements (Sloan and Kleeman elements [1]), to confirm that present results fit well both 

experimental data and previously presented alternative numerical approaches. Finally, in Figure 27 

the numerical collapse load at successive iterations obtained with both linear and curved elements is 
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represented. Experimental value of collapse load found in [31] (around 250 kN) is also depicted. As 

it is possible to notice, collapse load evaluation confirms that both linear triangular and curved 

elements perform well with the example at hand, providing a converged upper bound shear strength 

for the wall (approximately 255 kN) very near to the experimental one. 

4. Conclusions 

A discontinuous upper bound limit analysis model with sequential linear programming mesh 

adaptation has been presented. In the model, rigid, infinitely strong triangular elements with both 

linear and Bezier curved edges have been used. A possible jump of velocities is allowed at the 

interfaces between contiguous elements, thus constraining plastic dissipation only at the interfaces. 

Bezier curved edges have been used with the sole aim of improving the element performance when 

dealing with limit analysis problems involving curved sliding surfaces. Since the model performs 

poorly for unstructured meshes (typically at the initial iteration), an iterative mesh adaptation based 

on the linearization of equality constraints (SLP) has been performed.  

Several applications have been proposed, consisting in the determination of failure loads for a 

number of different problems (plates with holes, indentation problem on cohesive frictional soils, 

ice sheet indentation, masonry shear wall). Comparisons with literature show the reliability and 

efficiency of the method proposed from an engineering point of view. In order to evaluate the 

numerical performance of the method, a synopsis of CPU times required to obtain a converged 

solution and corresponding limit loads for all the examples analyzed are summarized in Table II. As 

it is possible to notice (also comparing present CPU times with data collected from the literature), 

the procedure proposed requires CPU times comparable with existing approaches. Nevertheless, 

despite the fact that fully rigorous and valuable alternatives (for instance based in the utilization of 

(a) adaptive NLP routines [10][13], (b) re-meshing techniques [9] and (c) p-FEM [29]) are already 

at disposal for the analysis at collapse of engineering problems, the procedure proposed has a 

number of advantages which makes it interesting for practitioners. The advantages are: (a) the 
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simplicity of the algorithm, which focuses exclusively on geometrical issues, (b) the robustness of 

the iterative approach, which requires only the recursive utilization of LP packages with few 

variables (usually available for free in the market) and (c) the very limited computational effort 

require for the optimization of real scale examples, strictly related to the utilization of splines 

elements (i.e. able to reproduce, in principle, complex curved failure mechanisms) with dissipation 

allowed only at the interfaces between contiguous elements. 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

IJMS-08-37 Revised version R2.  

 25 

 

5. References 

[1] Sloan SW, Kleeman PW (1995). Upper bound limit analysis using discontinuous velocity 

fields. Computer Methods in Applied Mechanics and Engineering 127:293-314. 

[2] Lyamin AV, Sloan SW (2002). Lower bound limit analysis using non-linear 

programming, International Journal for Numerical Methods in Engineering 55: 573–611.  

[3] Lyamin AV, Sloan SW (2002). Upper bound limit analysis using linear finite elements 

and non-linear programming, International Journal for Numerical and Analytical 

Methods in Geomechanics 26: 181–216. 

[4] Krabbenhøft K, Damkilde L (2003). A general nonlinear optimization algorithm for 

lower bound limit analysis. International Journal for Numerical Methods in Engineering 

56: 165–184. 

[5] Makrodimopoulos A, Martin CM (2007). Upper bound limit analysis using simplex strain 

elements and second-order cone programming. International Journal for Numerical and 

Analytical Methods in Geomechanics. 31(6): 835-865. 

[6] Makrodimopoulos A, Martin CM (2007). Lower bound limit analysis of cohesive-

frictional materials using second-order cone programming. International Journal for 

Numerical Methods in Engineering, 66(4): 604-634. 

[7] Makrodimopoulos A, Martin CM (2007). Upper bound limit analysis using discontinuous 

quadratic displacement fields. Communications in Numerical Methods in Engineering, in 

press. 

[8] Christiansen E, Andersen KD (1999). Computation of collapse loads with von Mises type 

yield condition. International Journal for Numerical Methods in Engineering 45: 1185–

1202.  

[9] Christiansen E, Pedersen OS (2001). Automatic mesh refinement in limit analysis. 

International Journal for Numerical Methods in Engineering 50: 1331-1346. 

[10] Lyamin AV, Krabbenhøft K, Sloan SW, Hjiaj M (2004). An adaptive algorithm for upper 

bound limit analysis using discontinuous velocity fields. Proceedings of European 

Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 

2004), Jyväskylä, Finland. 

[11] Chen S, Liu Y, Cen Z (2008). Lower bound shakedown analysis by using the element 

free Galerkin method and non-linear programming. Computer Methods in Applied 

Mechanics and Engineering 197: 3911-3921. 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

IJMS-08-37 Revised version R2.  

 26 

[12] Ngo NS, Tin-Loi F (2007) Shakedown analysis using the p-adaptive finite element 

method and linear programming, Engineering Structures 29: 46-56. 

[13] Lyamin AV, Sloan SW, Krabbenhoft K, Hjiaj M (2005). Lower bound limit analysis with 

adaptive remeshing. International Journal for Numerical Methods in Engineering 63: 

1961-1974. 

[14] Foley D, van Dam A, Feiner SK, Hughes JF (1996). Computer Graphics: Principles and 

Practice (2nd Edition). New York: Addison-Wesley.  

[15] Ueshiba T, Roth G (1999). Generating smooth surfaces with bicubic splines over 

triangular meshes, 2nd International Conference on Recent Advances in 3D Imaging and 

Modelling, Ottawa, Canada, 302-311October. 

[16] Piegl L, Tiller W (1997). The NURBS book. Springer, Berlin. 

[17] Ferris M, Tin-Loi F. Limit analysis of frictional block assemblies as a mathematical 

program with complementarity constraints. Int. J. Mech. Sci. 2001; 43: 209-224. 

[18] Matlab User’s Guide, Version 6. The MathWorks, June 2001. 

[19] Anderheggen E, Knopfel H (1972). Finite element limit analysis using linear 

programming. . International Journal of Solids and Structures 8: 1413-1431. 

[20] Olsen PC (2001). Rigid-plastic finite element analysis of steel plates, structural girders 

and connections. Computer Methods in Applied Mechanics and Engineering 191: 761-

781. 

[21] Sloan SW (1988). A steepest edge active set algorithm for solving sparse linear 

programming problems. International Journal Numerical Methods Engineering 12: 61-67. 

[22] Poulsen PN, Damkilde L (2000). Limit state analysis of reinforced concrete plates 

subjected to in-plane forces. International Journal of Solids and Structures 37: 6011-6029. 

[23] Johnson D (1995). Yield-line analysis by sequential linear programming. International 

Journal of Solids and Structures 32(10): 1395-1404. 

[24] Ramsay ACA, Johnson D (1998). Analysis of practical slab configurations using 

automated yield-line analysis and geometric optimization of fracture pattern. Engineering 

Structures 20(8): 647-654.  

[25] Johnson D (2001). On the safety of the strip method for reinforced concrete slab design. 

Computers and Structures 79: 2425-2430. 

[26] Johansen KW (1962). Yield-line theory. Cement and Concrete Association, London. 

[27] Strand 7.2 User’s manual. www.strand7.com 

[28] Chen WF, Han DJ. Plasticity for structural engineers. Springer, New York 1988. 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

IJMS-08-37 Revised version R2.  

 27 

[29] Tin-Loi F, Ngo NG. Performance of the p-version finite element method for limit 

analysis. International Journal of Mechanical Sciences 2003; 45: 1149-1166. 

[30] Reinicke KM, Ralston TD (1977). Plastic limit analysis with an anisotropic yield 

function. International Journal of Rock mechanics and Mining Science 14: 147-154. 

[31] Ganz HR, Thürlimann B (1984). Tests on masonry walls under normal and shear loading 

(in German). Report No. 7502-4. Institute of Structural Engineering, ETH Zurich, Zurich, 

Switzerland. 

[32] Milani G, Lourenço PB, Tralli A (2006). Homogenised limit analysis of masonry walls. 

Part I: failure surfaces. Computers and Structures 84(3-4): 166-180. 

[33] Yu X, Tin-Loi F (2006). A simple mixed finite element for static limit analysis. 

Computers and Structures 84: 1906-1917. 

[34] Krabbenhoft K, Lyamin AV, Hjiaj M, Sloan SW (2005). A new discontinuous upper 

bound limit analysis formulation. International Journal for Numerical Methods in 

Engineering 63: 1069-1088. 

[35] Ralston TD (1978). An analysis of ice sheet indentation. In: 4th International Symposium 

on Ice Problems. International Association for Hydraulic Research: Lulea, Sweden: 13-

31. 

[36] Lourenço PB (1996). Computational strategies for masonry structures. Ph. Thesis, Delf 

University of Technology 

[37] Milani G, Lourenço PB, Tralli A (2006). Homogenised limit analysis of masonry walls. 

Part II: structural examples. Computers and Structures 84(3-4): 181-195. 

[38] Lourenço PB, Rots J (1997). A multi-surface interface model for the analysis of masonry 

structures. Journal of Engineering Mechanics ASCE, 123(7): 660-668. 

[39] Ganz HR, Thürlimann B (1982). Tests on the biaxial strength of masonry (in German). 

Report No. 7502-3, Institute of Structural Engineering, ETH Zurich, Zurich, Switzerland. 

[40] Lourenço PB, Milani G, Zucchini A, Tralli A (2007). The analysis of masonry structures: 

review and possibilities of homogenisation techniques. Canadian Journal of Civil 

Engineering, 34(11): 1443-1457. 

 



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

IJMS-08-37 Revised version R2.  

 28 

Figures 

-a 

1
P

x

y

2
P

3
P

4
P

cubic Bézier curve

3
P

x

y

9
P

5
P

cubic Bézier curve 2

2
P

1
P

4
P

6
P

7
P

8
P

10
P

cubic Bézier curve 1

cubic Bézier curve 3

T

 

-b 

Figure 1: Typical cubic Beziér curve with the identification of control points (-a) and C1 continuity between two 

contiguous curves (-b). 
 

 

 

P
4

L

P
2

12

es

x

P
1

y er

L
13

12

L
23

3
P

P
5

P
6

P
7

P
8

P
9

T

P
2

P
1

3
P

G

Element centroid

P
4

P
5

P
8

P
9

P
6

P
7

x

y

Linear elementCurved element

 
Figure 2: Curved and linear triangular elements used for the simulations. 
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Figure 3: Generic curved triangular element. –a: G coordinates identification. –b: optimization variables 

involved for an infinitely resistant element. –c: Local coordinates of a generic point on the edge. 
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Figure 4: Generic curved interface between contiguous elements. 
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Figure 5: Plastic multipliers field interpolation in a generic interface between two contiguous elements. 
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Figure 6: Sequential linear programming (SLP) adopted pseudo-code. 
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Figure 7: Strategy adopted at the end of each iteration in order to avoid topological errors. –a: nodes 

condensation. –b: elimination of an element and remeshing. 

 

 

 

L

L

d

p

 
Figure 8: square plate with central circular hole, geometry 
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Figure 9: square plate with central circular hole, initial mesh (1/4 of the plate is meshed for 

symmetry) failure mechanism. –a: triangular three nodes element. –b: splines elements. 
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-a 

 

-b 

Figure 10: square plate with central circular hole, final mesh (1/4 of the plate is meshed for symmetry) failure 
mechanism. –a: triangular three nodes element. –b: splines elements. 

 

 

 
Figure 11: square plate with central circular hole, convergence of limit multiplier at successive iterations 
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Figure 12: strip footing problem with Tresca failure surface. M1 mesh (triangular three nodes elements) and 

M2 Mesh (splines elements). 
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Figure 13: strip footing problem with Tresca failure surface. Sequential linear programming evaluation of cN . 
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Figure 14: strip footing problem with Tresca failure surface, Mesh 1 at successive iterations. 
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-a 

 

-b 

Figure 15: strip footing problem with Tresca failure surface. –a: final mesh M2, linear elements. –b: final 

mesh M2, splines elements. 
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Figure 16: strip footing problem for a cohesive-frictional material. M1 mesh (triangular three nodes elements 

and splines elements). 
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Figure 17: strip footing problem for a cohesive-frictional material. Sequential linear programming evaluation of 

cN . 
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Figure 18: strip footing problem for a cohesive-frictional material. Adaptation of the mesh at successive 

iterations, first and last iteration. 
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Figure 19: ice sheet indentation-physical problem. 
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Figure 20: interpretation of interface elements when a piecewise linear approximation of the failure surface is 

used for the interfaces. 
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Figure 21: ice sheet indentation-physical problem, initial mesh M1 used for the simulations. 
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Figure 22: ice sheet indentation-physical problem. Sequential linear programming evaluation of  failure load 

cN . 
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Figure 23: ice sheet indentation-physical problem, initial mesh failure mechanism. 

 

 

 

 
Figure 24: ice sheet indentation-physical problem, final mesh and failure mechanism, splines triangular 

element. 
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-a 

 

-b 

Figure 25: geometry and loads for ETH Zurich shear walls (-a) and experimental failure 

mechanism (-b, from [31]). 
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-a 

 

 

-b 

Figure 26: ETH Zurich shear wall, initial (-a) and final (-b) mesh failure 

mechanism (linear and splines elements provide almost the same results at 

the converged iteration, thus only linear elements are reported). 
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Figure 27: ETH Zurich shear test. Sequential linear programming evaluation of failure load. 
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Tables 
 

Table I: ETH Zurich shear test. Mechanical characteristic assumed for joints and bricks. 

Joint (linearized Lourenço and Rots 1997 failure criterion) 

[ ]2/ mmNf t  Tensile strength 0.05 

[ ]2/ mmNf c  Compressive strength 4.74
(*)

 

c  Cohesion 1.2 tf  

Φ  Friction angle 30° 

2Φ  Angle of the linerized compressive cap 40° 

Brick (Mohr-Coulomb failure criterion in plane stress) 

[ ]2/ mmNf c  Compressive strength 7 

Φ  Friction angle 45° 

(*): the value adopted is evaluate as the mean of the horizontal and vertical compressive 

strength 
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Table II: CPU times required for the simulations reported in the paper and synopsys of the failure loads (PC 

used:MS OS, Intel Celeron 1.6 GHz processor, 1GB ram). 

Example number Splines element Linear element Literature comparison 

 LM OT LM OT LM OT 

I: square plate with central hole 0.80 67 0.80 59 
0.78 

(7)
 

0.80 
(8)

 

0.2 
(7)

 

618 
(8)

 

II: strip footing problem  

(frictionless soil) 
5.31 91 5.40 78 

6.25 
(1)

 

5.17 
(2)

 

5.59 
(3)

 

5.32 
(3)

 

0.1 
(1) 

2028 
(2) 

5.7 
(3) 

198.6 
(3)

 

III: strip footing problem  

(friction soil) 
30.70 129 32.00 115 

37.26 

31.75 

Error % 8 
(9)

 

Error % 2.5 
(10) 

Error % 16.2 
(11)

 

Error % 1.2 
(12)

 

220 
(3) 

8906 
(3)

 

1.82 
(9) 

13.6 
(10) 

0.60 
(11) 

5.0 
(12)

 

IV: ice-sheet indentation 

problem 
4.38 203 4.51 197 4.16 

(6)
 - 

V: ETHZ shear wall 257 
(4)

 509 257 
(4)

 407 248 
(5)

 312 
(5)

 

LEGEND 

LM Limit Multiplier  

OT Optimization Time [sec] 
(1)

 p-FEM [29] with p=1 
(2)

 p-FEM [29] with p=15 
(3)

 data from [1], with discontinuities of the velocity field 
(4)

 value expressed in kN 
(5)

 data from [40] 
(6)

 data from [34] 
(7)

 data from [33], mixed element, coarse mesh  
(8)

 data from [33], mixed element, refined mesh 
(9) 

 data from [3], upper bound, example with friction angle 35°, coarse mesh. Comparison on 

collapse loads not possible (error is calculated with respect to Prandtl solution) 
(10) 

 data from [3], upper bound, example with friction angle 35°, fine mesh. Comparison on collapse 

loads not possible (error is calculated with respect to Prandtl solution) 
(11) 

 data from [2], lower bound, example with friction angle 35°, coarse mesh. Comparison on 

collapse loads not possible (error is calculated with respect to Prandtl solution) 
(12) 

 data from [2], lower bound, example with friction angle 35°, fine mesh. Comparison on collapse 

loads not possible (error is calculated with respect to Prandtl solution) 

 


